1
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
2
|
Fuerst TR, Marin A, Jeong S, Kulakova L, Hlushko R, Gorga K, Toth EA, Singh NJ, Andrianov AK. Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist-Synthesis, Characterization, and In Vivo Activity. J Funct Biomater 2025; 16:34. [PMID: 39852590 PMCID: PMC11766188 DOI: 10.3390/jfb16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle. The resulting assemblies were characterized using dynamic light scattering and asymmetric flow field-flow fractionation methods and directly visualized in their vitrified state by cryogenic electron microscopy. The in vivo superiority of VMPNs over the individual components and an Alum-formulated vaccine manifests in higher neutralizing antibody titers, the promotion of a balanced IgG response, and the induction of a cellular immunity-CD4+ T cell responses to core proteins. The aqueous-based spontaneous co-assembly of antigens and immunopotentiating molecules enabled by a synthetic biodegradable carrier offers a simple and effective pathway to the development of polymer-based supramolecular nanovaccine systems.
Collapse
Affiliation(s)
- Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Sarah Jeong
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Katrina Gorga
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| | - Nevil J. Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, Rockville, MD 20850, USA
| |
Collapse
|
3
|
Ali AA, Azouz RAM, Hussein NA, El-Shenawy R, Helmy NM, El-Abd YS, Tabll AA. Development of Virus-Like Particles (VLPs) for Hepatitis C Virus genotype 4: a novel approach for vaccine development in Egypt. BMC Biotechnol 2025; 25:8. [PMID: 39827115 PMCID: PMC11742997 DOI: 10.1186/s12896-024-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Egypt has the highest global prevalence of Hepatitis C Virus (HCV) infection, particularly of genotype 4. The development of a prophylactic vaccine remains crucial for HCV eradication, yet no such vaccine currently exists due to the vaccine development challenges. The ability of Virus-Like Particles (VLPs) to mimic the native virus and incorporate neutralizing and conformational epitopes, while effectively engaging both humoral and cellular immune responses, makes them a promising approach to addressing the challenges in HCV vaccine development. METHODS Lentiviral-based vectors were constructed and employed to integrate the full-length sequence of Core, E1, E2, and P7 genes of HCV genotype 4 into the genome of Human Embryonic Kidney cells (HEK293T). Upon the expression, HCV structural proteins can oligomerize and self-assemble into VLPs mimicking the structure of HCV native virus. VLPs were purified and characterized for the development of a potential VLPs-based vaccine. RESULTS In this study, mammalian cells were successfully engineered to stably express HCV structural proteins and generate non-infectious VLPs for HCV genotype 4. The expression of HCV-integrated genes resulted in a successful production of HCV structural proteins, which oligomerized and self-assembled into two layers enveloped VLPs. Electron microscopy analysis of purified VLPs revealed spherical particles with an average diameter of 60-65 nm, closely resembling mature HCV virions. These results highlighted the potential of these VLPs as a vaccine candidate for HCV genotype 4. CONCLUSIONS HCV genotype 4 remains an underexplored target in vaccine development, despite its significant public health burden, especially in Egypt. The successful generation of VLPs for this genotype represents a promising avenue for further vaccine development. The established system provides a robust platform for the production and study of VLP-based vaccines targeting HCV genotype 4.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt.
| | - Rasha A M Azouz
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Reem El-Shenawy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Naiera M Helmy
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Yasmine S El-Abd
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, 12622, Egypt
- Egyptian Centre for Research and Regenerative Medicine (ECRRM), Cairo, 11517, Egypt
| |
Collapse
|
4
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
5
|
Rzymski P, Jibril AT, Rahmah L, Abarikwu SO, Hashem F, Lawati AA, Morrison FMM, Marquez LP, Mohamed K, Khan A, Mushtaq S, Minakova K, Poniedziałek B, Zarębska-Michaluk D, Flisiak R. Is there still hope for the prophylactic hepatitis C vaccine? A review of different approaches. J Med Virol 2024; 96:e29900. [PMID: 39234788 DOI: 10.1002/jmv.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Universal Scientific Education and Research Network (USERN)
| | - Aliyu Tijani Jibril
- Universal Scientific Education and Research Network (USERN)
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Rahmah
- Universal Scientific Education and Research Network (USERN)
- Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sunny O Abarikwu
- Universal Scientific Education and Research Network (USERN)
- Department of Biochemistry, University of Port Harcourt, Choba, PMB, Port Harcourt, Rivers State, Nigeria
| | - Fareeda Hashem
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Al Lawati
- Universal Scientific Education and Research Network (USERN)
- Sultan Qaboos University Hospital, Al Khoud, Muscat, Oman
| | | | - Leander Penaso Marquez
- Universal Scientific Education and Research Network (USERN)
- University of the Philippines Diliman, Quezon City, Philippines
| | - Kawthar Mohamed
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Khan
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Mushtaq
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Kseniia Minakova
- Universal Scientific Education and Research Network (USERN)
- Micro- and Nanoelectronics Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
6
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
7
|
Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses. Rev Med Virol 2024; 34:e2498. [PMID: 38116958 DOI: 10.1002/rmv.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Manel Ben M'hadheb
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Collett S, Earnest L, Carrera Montoya J, Edeling MA, Yap A, Wong CY, Christiansen D, Roberts J, Mumford J, Lecouturier V, Pavot V, Marco S, Loi JK, Simmons C, Gulab SA, Mackenzie JM, Elbourne A, Ramsland PA, Cameron G, Hans D, Godfrey DI, Torresi J. Development of virus-like particles with inbuilt immunostimulatory properties as vaccine candidates. Front Microbiol 2023; 14:1065609. [PMID: 37350788 PMCID: PMC10282183 DOI: 10.3389/fmicb.2023.1065609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.
Collapse
Affiliation(s)
- Simon Collett
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Melissa A. Edeling
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Ashley Yap
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Jason Roberts
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jamie Mumford
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | - Joon Keit Loi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cameron Simmons
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Shivali A. Gulab
- Avalia Immunotherapies Limited, Wellington, New Zealand
- Vaccine Alliance Aotearoa New Zealand, Wellington, New Zealand
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Garth Cameron
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Dhiraj Hans
- Research, Innovation and Commercialisation, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
10
|
Zhao Q, He K, Zhang X, Xu M, Zhang X, Li H. Production and immunogenicity of different prophylactic vaccines for hepatitis C virus (Review). Exp Ther Med 2022; 24:474. [PMID: 35761816 PMCID: PMC9214603 DOI: 10.3892/etm.2022.11401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global health challenge, and prophylactic vaccines are the most effective way to eliminate the infection. To date, numerous forms of preventive vaccines have entered the clinical trial stage, including the virus-like particle (VLP) vaccine, recombinant subunit vaccine, peptide vaccine and nucleic acid vaccine. The rational design makes it easier to obtain specific vaccine structures with a broad spectrum and strong immunogenicity. Different vaccine antigens can evoke different immune responses, including humoral and T-cell immune responses, and can be produced using different expression systems, such as bacteria, yeast, mammals, plants, insects or parasites. Intracellular and insoluble production and a narrow immune spectrum are two difficulties that limit the application of vaccines. The present study summarizes the immunogenicity of different preventive vaccines, evaluates the characteristics of different expression systems used for vaccine production, and analyzes the strategies to enhance the secretion and immune spectrum of vaccine proteins.
Collapse
Affiliation(s)
- Qianqian Zhao
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Kun He
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuhua Zhang
- Key Laboratory of Biological Drugs, Shandong Academy of Pharmaceutical Science, Jinan, Shandong 250101, P.R. China
| | - Mingjie Xu
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xiuping Zhang
- Microbiology Department, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Huanjie Li
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
11
|
Bankwitz D, Krey T, Pietschmann T. [Development approaches for vaccines against hepatitis C virus infections]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:183-191. [PMID: 35015104 PMCID: PMC8749110 DOI: 10.1007/s00103-021-03477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Mehr als 10 Jahre nach der Zulassung der ersten direkt wirkenden antiviralen Wirkstoffe zur Behandlung der Hepatitis C bleibt die Inzidenz der Hepatitis-C-Virus-(HCV-)Infektion ungebrochen hoch. In manchen Ländern stecken sich mehr Menschen neu mit dem Virus an, als Patienten durch eine erfolgreiche Therapie geheilt werden. Die Entwicklung eines prophylaktischen Impfstoffes könnte die Transmission des Virus unterbinden und dadurch einen wesentlichen Beitrag zur Kontrolle dieser weltweit verbreiteten Infektion leisten. In diesem Artikel werden die besonderen Herausforderungen und die aktuellen Ansätze der HCV-Impfstoffentwicklung dargestellt. HCV ist ein hochgradig diverses und wandlungsfähiges Virus, das zumeist dem Immunsystem entkommt und chronische Infektionen etabliert. Andererseits heilt die HCV-Infektion bei bis zu einem Drittel der exponierten Individuen aus, sodass eine schützende Immunität erreichbar ist. Zahlreiche Untersuchungen zu den Determinanten einer schützenden Immunität gegen HCV zeichnen ein immer kompletteres Bild davon, welche Ziele ein Impfstoff erreichen muss. Sehr wahrscheinlich werden sowohl starke neutralisierende Antikörper als auch wirkungsvolle zytotoxische T‑Zellen gebraucht, um sicher vor einer chronischen Infektion zu schützen. Die Schlüsselfrage ist, welche Ansätze besonders breit wirksame Antikörper und T‑Zellen heranreifen lassen. Dies wird erforderlich sein, um vor der großen Fülle unterschiedlicher HCV-Varianten zu schützen. Die jüngsten Erfolge von mRNA-Impfstoffen öffnen neue Türen auch für die HCV-Impfstoffforschung. Kombiniert mit einem tieferen Verständnis der Struktur und Funktion der viralen Hüllproteine, der Identifizierung kreuzprotektiver Antikörper- und T‑Zellepitope sowie der Nutzung standardisierter Verfahren zur Quantifizierung der Wirksamkeit von Impfkandidaten ergeben sich neue Perspektiven für die Entwicklung eines Impfstoffes.
Collapse
Affiliation(s)
- Dorothea Bankwitz
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland
| | - Thomas Krey
- Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland.,Zentrum für Strukturbiologie und Zellbiologie in der Medizin, Institut für Biochemie, Universität Lübeck, Lübeck, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hamburg-Lübeck-Borstel-Riems, Braunschweig, Deutschland.,Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Thomas Pietschmann
- Twincore Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Experimentelle Virologie, Feodor-Lynen-Str. 7, 30625, Hannover, Deutschland. .,Medizinische Hochschule Hannover, RESIST Exzellenzcluster EXC2155, Hannover, Deutschland. .,Deutsches Zentrum für Infektionsforschung (DZIF), Partnerstandort Hannover-Braunschweig, Braunschweig, Deutschland.
| |
Collapse
|
12
|
Virus-Like Particles Containing the E2 Core Domain of Hepatitis C Virus Generate Broadly Neutralizing Antibodies in Guinea Pigs. J Virol 2022; 96:e0167521. [PMID: 34986001 PMCID: PMC8906423 DOI: 10.1128/jvi.01675-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.
Collapse
|
13
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
14
|
Incorporation of apolipoprotein E into HBV-HCV subviral envelope particles to improve the hepatitis vaccine strategy. Sci Rep 2021; 11:21856. [PMID: 34750487 PMCID: PMC8575973 DOI: 10.1038/s41598-021-01428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.
Collapse
|
15
|
Andrianov AK, Fuerst TR. Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses 2021; 13:v13060981. [PMID: 34070543 PMCID: PMC8227888 DOI: 10.3390/v13060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Development of preventive vaccines against hepatitis C virus (HCV) remains one of the main strategies in achieving global elimination of the disease. The effort is focused on the quest for vaccines capable of inducing protective cross-neutralizing humoral and cellular immune responses, which in turn dictate the need for rationally designed cross-genotype vaccine antigens and potent immunoadjuvants systems. This review provides an assessment of the current state of knowledge on immunopotentiating compounds and vaccine delivery systems capable of enhancing HCV antigen-specific immune responses, while focusing on the synergy and interplay of two modalities. Structural, physico-chemical, and biophysical features of these systems are discussed in conjunction with the analysis of their in vivo performance. Extreme genetic diversity of HCV-a well-known hurdle in the development of an HCV vaccine, may also present a challenge in a search for an effective immunoadjuvant, as the effort necessitates systematic and comparative screening of rationally designed antigenic constructs. The progress may be accelerated if the preference is given to well-defined molecular immunoadjuvants with greater formulation flexibility and adaptability, including those capable of spontaneous self-assembly behavior, while maintaining their robust immunopotentiating and delivery capabilities.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Correspondence:
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
16
|
To Include or Occlude: Rational Engineering of HCV Vaccines for Humoral Immunity. Viruses 2021; 13:v13050805. [PMID: 33946211 PMCID: PMC8146105 DOI: 10.3390/v13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.
Collapse
|
17
|
Investigating virus-host cell interactions: Comparative binding forces between hepatitis C virus-like particles and host cell receptors in 2D and 3D cell culture models. J Colloid Interface Sci 2021; 592:371-384. [PMID: 33677197 DOI: 10.1016/j.jcis.2021.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Cell cultures have been successfully used to study hepatitis C virus (HCV) for many years. However, most work has been done using traditional, 2-dimensional (2D) cell cultures (cells grown as a monolayer in growth flasks or dishes). Studies have shown that when cells are grown suspended in an extra-cellular-matrix-like material, they develop into spherical, 'organoid' arrangements of cells (3D growth) that display distinct differences in morphological and functional characteristics compared to 2D cell cultures. In liver organoids, one key difference is the development of clearly differentiated apical and basolateral surfaces separated and maintained by cellular tight junctions. This phenomenon, termed polarity, is vital to normal barrier function of hepatocytes in vivo. It has also been shown that viruses, and virus-like particles, interact very differently with cells derived from 2D as compared to 3D cell cultures, bringing into question the usefulness of 2D cell cultures to study virus-host cell interactions. Here, we investigate differences in cellular architecture as a function of cell culture system, using confocal scanning laser microscopy, and determine differences in binding interactions between HCV virus-like particles (VLPs) and their cognate receptors in the different cell culture systems using atomic force microscopy (AFM). We generated organoid cultures that were polarized, as determined by localization of key apical and basolateral markers. We found that, while uptake of HCV VLPs by both 2D and 3D Huh7 cells was observed by flow cytometry, binding interactions between HCV VLPs and cells were measurable by AFM only on polarized cells. The work presented here adds to the growing body of research suggesting that polarized cell systems are more suitable for the study of HCV infection and dynamics than non-polarized systems.
Collapse
|
18
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
19
|
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C Virus Vaccine: Challenges and Prospects. Vaccines (Basel) 2020; 8:vaccines8010090. [PMID: 32079254 PMCID: PMC7157504 DOI: 10.3390/vaccines8010090] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) causes both acute and chronic infection and continues to be a global problem despite advances in antiviral therapeutics. Current treatments fail to prevent reinfection and remain expensive, limiting their use to developed countries, and the asymptomatic nature of acute infection can result in individuals not receiving treatment and unknowingly spreading HCV. A prophylactic vaccine is therefore needed to control this virus. Thirty years since the discovery of HCV, there have been major gains in understanding the molecular biology and elucidating the immunological mechanisms that underpin spontaneous viral clearance, aiding rational vaccine design. This review discusses the challenges facing HCV vaccine design and the most recent and promising candidates being investigated.
Collapse
Affiliation(s)
- Joshua D. Duncan
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- Correspondence:
| | - Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK; (R.A.U.); (A.W.T.); (J.K.B.)
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
20
|
Virus-Like Particle Systems for Vaccine Development against Viruses in the Flaviviridae Family. Vaccines (Basel) 2019; 7:vaccines7040123. [PMID: 31547131 PMCID: PMC6963367 DOI: 10.3390/vaccines7040123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses in the Flaviviridae family are important human and animal pathogens that impose serious threats to global public health. This family of viruses includes emerging and re-emerging viruses, most of which are transmitted by infected mosquito or tick bites. Currently, there is no protective vaccine or effective antiviral treatment against the majority of these viruses, and due to their growing spread, several strategies have been employed to manufacture prophylactic vaccines against these infectious agents including virus-like particle (VLP) subunit vaccines. VLPs are genomeless viral particles that resemble authentic viruses and contain critical repetitive conformational structures on their surface that can trigger the induction of both humoral and cellular responses, making them safe and ideal vaccine candidates against these viruses. In this review, we focus on the potential of the VLP platform in the current vaccine development against the medically important viruses in the Flaviviridae family.
Collapse
|
21
|
Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep 2019; 9:9251. [PMID: 31239471 PMCID: PMC6592879 DOI: 10.1038/s41598-019-45461-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
The introduction of directly acting antiviral agents (DAAs) has produced significant improvements in the ability to cure chronic hepatitis C infection. However, with over 2% of the world’s population infected with HCV, complications arising from the development of cirrhosis of the liver, chronic hepatitis C infection remains the leading indication for liver transplantation. Several modelling studies have indicated that DAAs alone will not be sufficient to eliminate HCV, but if combined with an effective vaccine this regimen would provide a significant advance towards achieving this critical World Health Organisation goal. We have previously generated a genotype 1a, 1b, 2a, 3a HCV virus like particle (VLP) quadrivalent vaccine. The HCV VLPs contain the core and envelope proteins (E1 and E2) of HCV and the vaccine has been shown to produce broad humoral and T cell immune responses following vaccination of mice. In this report we further advanced this work by investigating vaccine responses in a large animal model. We demonstrate that intradermal microneedle vaccination of pigs with our quadrivalent HCV VLP based vaccine produces long-lived multi-genotype specific and neutralizing antibody (NAb) responses together with strong T cell and granzyme B responses and normal Th1 and Th2 cytokine responses. These responses were achieved without the addition of adjuvant. Our study demonstrates that our vaccine is able to produce broad immune responses in a large animal that, next to primates, is the closest animal model to humans. Our results are important as they show that the vaccine can produce robust immune responses in a large animal model before progressing the vaccine to human trials.
Collapse
|
22
|
Collett S, Torresi J, Earnest-Silveira L, Christiansen D, Elbourne A, Ramsland PA. Probing and pressing surfaces of hepatitis C virus-like particles. J Colloid Interface Sci 2019; 545:259-268. [DOI: 10.1016/j.jcis.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 02/09/2023]
|
23
|
Masavuli MG, Wijesundara DK, Underwood A, Christiansen D, Earnest-Silveira L, Bull R, Torresi J, Gowans EJ, Grubor-Bauk B. A Hepatitis C Virus DNA Vaccine Encoding a Secreted, Oligomerized Form of Envelope Proteins Is Highly Immunogenic and Elicits Neutralizing Antibodies in Vaccinated Mice. Front Immunol 2019; 10:1145. [PMID: 31178869 PMCID: PMC6543710 DOI: 10.3389/fimmu.2019.01145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) persistently infects approximately 71 million people globally. To prevent infection a vaccine which elicits neutralizing antibodies against the virus envelope proteins (E1/E2) which are required for entry into host cells is desirable. DNA vaccines are cost-effective to manufacture globally and despite recent landmark studies highlighting the therapeutic efficacy of DNA vaccines in humans against cervical cancer, DNA vaccines encoding E1/E2 developed thus far are poorly immunogenic. We now report a novel and highly immunogenic DNA vaccination strategy that incorporates secreted E1 and E2 (sE1 and sE2) into oligomers by fusion with the oligomerization domain of the C4b-binding protein, IMX313P. The FDA approved plasmid, pVax, was used to encode sE1, sE2, or sE1E2 with or without IMX313P, and intradermal prime-boost vaccination studies in BALB/c mice showed that vaccines encoding IMX313P were the most effective in eliciting humoral and cell-mediated immunity against the envelope proteins. Further boosting with recombinant E1E2 proteins but not DNA nor virus-like particles (VLPs) expressing E1E2 increased the immunogenicity of the DNA prime-boost regimen. Nevertheless, the antibodies generated by the homologous DNA prime-boost vaccinations more effectively inhibited the binding of VLPs to target cells and neutralized transduction with HCV pseudoparticles (HCVpp) derived from different genotypes including genotypes 1, 2, 3, 4, 5, and 6. This report provides the first evidence that IMX313P can be used as an adjuvant for E1/E2-based DNA vaccines and represents a translatable approach for the development of a HCV DNA vaccine.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Alexander Underwood
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Rowena Bull
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci Rep 2018; 8:6483. [PMID: 29691437 PMCID: PMC5915487 DOI: 10.1038/s41598-018-24762-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
The significant public health problem of Hepatitis C virus (HCV) has been partially addressed with the advent of directly acting antiviral agents (DAAs). However, the development of an effective preventative vaccine would have a significant impact on HCV incidence and would represent a major advance towards controlling and possibly eradicating HCV globally. We previously reported a genotype 1a HCV viral-like particle (VLP) vaccine that produced neutralizing antibodies (NAb) and T cell responses to HCV. To advance this approach, we produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine to produce broader immune responses. We show that this quadrivalent vaccine produces antibody and NAb responses together with strong T and B cell responses in vaccinated mice. Moreover, selective neutralizing human monoclonal antibodies (HuMAbs) targeting conserved antigenic domain B and D epitopes of the E2 protein bound strongly to the HCV VLPs, suggesting that these critical epitopes are expressed on the surface of the particles. Our findings demonstrate that a quadrivalent HCV VLP based vaccine induces broad humoral and cellular immune responses that will be necessary for protection against HCV. Such a vaccine could provide a substantial addition to highly active antiviral drugs in eliminating HCV.
Collapse
|
25
|
Christiansen D, Earnest-Silveira L, Chua B, Boo I, Drummer HE, Grubor-Bauk B, Gowans EJ, Jackson DC, Torresi J. Antibody Responses to a Quadrivalent Hepatitis C Viral-Like Particle Vaccine Adjuvanted with Toll-Like Receptor 2 Agonists. Viral Immunol 2018; 31:338-343. [PMID: 29489437 DOI: 10.1089/vim.2017.0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of an effective preventative hepatitis C virus (HCV) vaccine will reside, in part, in its ability to elicit neutralizing antibodies (NAbs). We previously reported a genotype 1a HCV virus like particle (VLP) vaccine that produced HCV specific NAb and T cell responses that were substantially enhanced by Toll-like receptor 2 (TLR2) agonists. We have now produced a quadrivalent genotype 1a/1b/2a/3a HCV VLP vaccine and tested the ability of two TLR2 agonists, R4Pam2Cys and E8Pam2Cys, to stimulate the production of NAb. We now show that our vaccine with R4Pam2Cys or E8Pam2Cys produces strong antibody and NAb responses in vaccinated mice after just two doses. Total antibody titers were higher in mice inoculated with vaccine plus E8Pam2Cys compared to HCV VLPs alone. However, the TLR2 agonists did not result in stronger NAb responses compared to vaccine without adjuvant. Such a vaccine could provide a substantial addition to the overall goal to eliminate HCV.
Collapse
Affiliation(s)
- Dale Christiansen
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Linda Earnest-Silveira
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Brendon Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Irene Boo
- 2 Burnet Institute , Melbourne, Australia
| | - Heidi E Drummer
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Burnet Institute , Melbourne, Australia .,3 Department of Microbiology, Monash University , Clayton, Australia
| | - Branka Grubor-Bauk
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - Eric J Gowans
- 4 Department of Surgery, The University of Adelaide and The Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| | - Joseph Torresi
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia
| |
Collapse
|
26
|
Masavuli MG, Wijesundara DK, Torresi J, Gowans EJ, Grubor-Bauk B. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C. Front Microbiol 2017; 8:2413. [PMID: 29259601 PMCID: PMC5723323 DOI: 10.3389/fmicb.2017.02413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs) are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV) and human papilloma virus (HPV) have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric) VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Torresi J. The Rationale for a Preventative HCV Virus-Like Particle (VLP) Vaccine. Front Microbiol 2017; 8:2163. [PMID: 29163442 PMCID: PMC5674006 DOI: 10.3389/fmicb.2017.02163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
HCV represents a global health problem with ~200 million individuals currently infected, worldwide. With the high cost of antiviral therapies, the global burden of chronic hepatitis C infection (CHCV) infection will be substantially reduced by the development of an effective vaccine for HCV. The field of HCV vaccines is generally divided into proponents of strategies to induce neutralizing antibodies (NAb) and those who propose to elicit cell mediated immunity (CMI). However, for a hepatitis C virus (HCV) vaccine to be effective in preventing infection, it must be capable of generating cross-reactive CD4+, CD8+ T cell, and NAb responses that will cover the major viral genotypes. Simulation models of hepatitis C have predicted that a vaccine of even modest efficacy and coverage will significantly reduce the incidence of hepatitis C. A HCV virus like particle (VLP) based vaccine would fulfill the requirement of delivering critical conformational neutralizing epitopes in addition to providing HCV specific CD4+ and CD8+ epitopes. Several approaches have been reported including insect cell-derived genotype 1b HCV VLPs; a human liver-derived quadrivalent genotype 1a, 1b, 2, and 3a vaccine; a genotype 1a HCV E1 and E2 glycoprotein/MLV Gag pseudotype VLP vaccine; and chimeric HBs-HCV VLP vaccines. All to result in the production of cross-NAb and/or T cell responses against HCV. This paper summarizes the evidence supporting the development of a HCV VLP based vaccine.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Tabll A, El-Shenawy R, Abd YE. Progress in Vaccine Development for HCV Infection. UPDATE ON HEPATITIS C 2017. [DOI: 10.5772/intechopen.70649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
29
|
Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods 2016; 236:87-92. [PMID: 27373602 DOI: 10.1016/j.jviromet.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.
Collapse
|