1
|
Hung CT, Haas GD, Watkinson RE, Chiu HP, Kowdle S, Stevens CS, Park A, Wohlschlegel JA, Thibault PA, Lee B. Paramyxovirus matrix proteins modulate host cell translation via exon-junction complex interactions in the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611502. [PMID: 39282406 PMCID: PMC11398453 DOI: 10.1101/2024.09.05.611502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Viruses have evolved myriad strategies to exploit the translation machinery of host cells to potentiate their replication. However, how paramyxovirus (PMVs) modulate cellular translation for their own benefit has not been systematically examined. Utilizing puromycylation labeling, overexpression of individual viral genes, and infection with wild-type virus versus its gene-deleted counterpart, we found that PMVs significantly inhibit host cells' nascent peptide synthesis during infection, with the viral matrix being the primary contributor to this effect. Using the rNiV-NPL replicon system, we discovered that the viral matrix enhances viral protein translation without affecting viral mRNA transcription and suppresses host protein expression at the translational level. Polysome profile analysis revealed that the HPIV3 matrix promotes the association of viral mRNAs with ribosomes, thereby enhancing their translation efficiency during infection. Intriguingly, our NiV-Matrix interactome identified the core exon-junction complex (cEJC), critical for mRNA biogenesis, as a significant component that interacts with the paramyxoviral matrix predominantly in the cytoplasm. siRNA knockdown of eIF4AIII simulated the restriction of cellular functions by the viral matrix, leading to enhanced viral gene translation and a reduction in host protein synthesis. Moreover, siRNA depletion of cEJC resulted in a 2-3 log enhancement in infectious virus titer for various PMVs but not SARS-CoV-2, enterovirus D68, or influenza virus. Our findings characterize a host translational interference mechanism mediated by viral matrix and host cEJC interactions. We propose that the PMV matrix redirects ribosomes to translate viral mRNAs at the expense of host cell transcripts, enhancing viral replication, and thereby enhancing viral replication. These insights provide a deeper understanding of the molecular interactions between paramyxoviruses and host cells, highlighting potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Donnelly CM, Vogel OA, Edwards MR, Taylor PE, Roby JA, Forwood JK, Basler CF. Henipavirus Matrix Protein Employs a Non-Classical Nuclear Localization Signal Binding Mechanism. Viruses 2023; 15:1302. [PMID: 37376602 DOI: 10.3390/v15061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic species from the Henipavirus genus within the paramyxovirus family and are harbored by Pteropus Flying Fox species. Henipaviruses cause severe respiratory disease, neural symptoms, and encephalitis in various animals and humans, with human mortality rates exceeding 70% in some NiV outbreaks. The henipavirus matrix protein (M), which drives viral assembly and budding of the virion, also performs non-structural functions as a type I interferon antagonist. Interestingly, M also undergoes nuclear trafficking that mediates critical monoubiquitination for downstream cell sorting, membrane association, and budding processes. Based on the NiV and HeV M X-ray crystal structures and cell-based assays, M possesses a putative monopartite nuclear localization signal (NLS) (residues 82KRKKIR87; NLS1 HeV), positioned on an exposed flexible loop and typical of how many NLSs bind importin alpha (IMPα), and a putative bipartite NLS (244RR-10X-KRK258; NLS2 HeV), positioned within an α-helix that is far less typical. Here, we employed X-ray crystallography to determine the binding interface of these M NLSs and IMPα. The interaction of both NLS peptides with IMPα was established, with NLS1 binding the IMPα major binding site, and NLS2 binding as a non-classical NLS to the minor site. Co-immunoprecipitation (co-IP) and immunofluorescence assays (IFA) confirm the critical role of NLS2, and specifically K258. Additionally, localization studies demonstrated a supportive role for NLS1 in M nuclear localization. These studies provide additional insight into the critical mechanisms of M nucleocytoplasmic transport, the study of which can provide a greater understanding of viral pathogenesis and uncover a potential target for novel therapeutics for henipaviral diseases.
Collapse
Affiliation(s)
- Camilla M Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Olivia A Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan R Edwards
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige E Taylor
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Justin A Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Rawlinson SM, Zhao T, Ardipradja K, Zhang Y, Veugelers PF, Harper JA, David CT, Sundaramoorthy V, Moseley GW. Henipaviruses and lyssaviruses target nucleolar treacle protein and regulate ribosomal RNA synthesis. Traffic 2023; 24:146-157. [PMID: 36479968 PMCID: PMC10947316 DOI: 10.1111/tra.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.
Collapse
Affiliation(s)
- Stephen M. Rawlinson
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Tianyue Zhao
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Katie Ardipradja
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Australian Centre for Disease Preparedness (ACDP)East GeelongVictoriaAustralia
| | - Yilin Zhang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneMelbourneAustralia
| | - Patrick F. Veugelers
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Jennifer A. Harper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Australian Centre for Disease Preparedness (ACDP)East GeelongVictoriaAustralia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| | - Vinod Sundaramoorthy
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Australian Centre for Disease Preparedness (ACDP)East GeelongVictoriaAustralia
- School of MedicineDeakin UniversityGeelongVictoriaAustralia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery InstituteMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Zhu L, Li X, Xu H, Fu L, Gao GF, Liu W, Zhao L, Wang X, Jiang W, Fang M. Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. J Gen Virol 2021; 102. [PMID: 34882534 PMCID: PMC8744269 DOI: 10.1099/jgv.0.001697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The matrix protein of many enveloped RNA viruses regulates multiple stages of viral life cycle and has the characteristics of nucleocytoplasmic shuttling. We have previously demonstrated that matrix protein 1 (M1) of an RNA virus, influenza virus, blocks host cell cycle progression by interacting with SLD5, a member of the GINS complex, which is required for normal cell cycle progression. In this study, we found that M protein of several other RNA viruses, including VSV, SeV and HIV, interacted with SLD5. Furthermore, VSV/SeV infection and M protein of VSV/SeV/HIV induced cell cycle arrest at G0/G1 phase. Importantly, overexpression of SLD5 partially rescued the cell cycle arrest by VSV/SeV infection and VSV M protein. In addition, SLD5 suppressed VSV replication in vitro and in vivo, and enhanced type Ⅰ interferon signalling. Taken together, our results suggest that targeting SLD5 by M protein might be a common strategy used by multiple enveloped RNA viruses to block host cell cycle. Our findings provide new mechanistic insights for virus to manipulate cell cycle progression by hijacking host replication factor SLD5 during infection.
Collapse
Affiliation(s)
- Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xinyu Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Henan Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.,International College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Donnelly CM, Roby JA, Scott CJ, Raidal SR, Forwood JK. The Structural Features of Henipavirus Matrix Protein Driving Intracellular Trafficking. Viral Immunol 2020; 34:27-40. [PMID: 33021467 DOI: 10.1089/vim.2020.0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Henipaviruses are single-stranded RNA viruses that have recently emerged as zoonotic pathogens, capable of causing severe acute respiratory disease and encephalitis in humans. The prototypical henipaviruses, Hendra henipavirus and Nipah henipavirus, are a major health concern as they have high mortality rates and no currently approved human vaccine or drug therapy. Understanding the mechanisms of viral replication and pathogenicity is of critical importance for therapeutic developments. A novel target for such therapies is the Henipavirus Matrix (M) protein, a multifunctional protein that drives viral assembly and inhibits the innate immune response. These multifunctional attributes promote a complicated lifecycle: while viral replication occurs in the cytoplasm, M traffics to the nucleus, where it is ubiquitinated, for correct cellular targeting and virion packaging. In this study, we review the relationship between the structure and functions of M. In specific cases, the compatibility between structural accessibility and protein functionality is not always evident, and we highlight areas that require further investigation.
Collapse
Affiliation(s)
- Camilla M Donnelly
- School of Biomedical Sciences and Charles Sturt University, Wagga Wagga, Australia
| | - Justin A Roby
- School of Biomedical Sciences and Charles Sturt University, Wagga Wagga, Australia
| | - Christopher J Scott
- School of Biomedical Sciences and Charles Sturt University, Wagga Wagga, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Jade K Forwood
- School of Biomedical Sciences and Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
6
|
Labrecque M, Marchand C, Archambault D. Characterization of Signal Sequences Determining the Nuclear/Nucleolar Import and Nuclear Export of the Caprine Arthritis-Encephalitis Virus Rev Protein. Viruses 2020; 12:v12080900. [PMID: 32824614 PMCID: PMC7471974 DOI: 10.3390/v12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Caprine arthritis-encephalitis virus (CAEV), a lentivirus, relies on the action of the Rev protein for its replication. The CAEV Rev fulfills its function by allowing the nuclear exportation of partially spliced or unspliced viral mRNAs. In this study, we characterized the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the CAEV Rev protein. These signals are key actors in the nucleocytoplasmic shuttling of a lentiviral Rev protein. Several deletion and alanine substitution mutants were generated from a plasmid encoding the CAEV Rev wild-type protein that was fused to the enhanced green fluorescent protein (EGFP). Following cell transfection, images were captured by confocal microscopy and the fluorescence was quantified in the different cell compartments. The results showed that the NLS region is localized between amino acids (aa) 59 to 75, has a monopartite-like structure and is exclusively composed of arginine residues. The NoLS was found to be partially associated with the NLS. Finally, the CAEV Rev protein’s NES mapped between aa 89 to 101, with an aa spacing between the hydrophobic residues that was found to be unconventional as compared to that of other retroviral Rev/Rev-like proteins.
Collapse
Affiliation(s)
- Marlène Labrecque
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Claude Marchand
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
7
|
Günther M, Bauer A, Müller M, Zaeck L, Finke S. Interaction of host cellular factor ANP32B with matrix proteins of different paramyxoviruses. J Gen Virol 2020; 101:44-58. [PMID: 31793855 DOI: 10.1099/jgv.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although most non-segmented negative-strand RNA viruses (NNSVs) replicate in the cytoplasm, NNSV proteins often exert host manipulatory functions in the nucleus. Matrix (M) proteins of henipaviruses and other paramyxoviruses shuttle through the nucleus, where host factors may bind for M modification or host-cell manipulation. Acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) is an interactor of Hendra and Nipah virus M. Both accumulate in the nucleus in an ANP32B-dependent manner. Here we demonstrate that the nuclear localization signal (NLS) of ANP32B is dispensable for HeV M binding. Specific purification of M-ANP32B but not of M-ANP32A complexes revealed that neither the negatively charged acidic nor the leucine-rich regions of ANP32 proteins per se mediate interactions with henipavirus M proteins. Whereas pneumovirus M did not interact with ANP32B, Newcastle disease virus (NDV, genus Avulavirus), Sendai virus (SeV, genus Respirovirus), Measles virus (MeV, genus Morbillivirus) and Canine distemper virus (CDV, genus Morbillivirus) M were able to form complexes with ANP32B. However, in contrast to NDV M and SeV M, which accumulated in the nucleus ANP32B dependently, both morbillivirus Ms did not accumulate in the nucleus, neither at ANP32B overexpression nor after nuclear protein export inhibition. These results indicate that intracellular compartmentalization of cytoplasmic morbillivirus M and nuclear ANP32B prevented an intracellular interaction. Overall, we provide evidence for a general ability of paramyxovirus M proteins to interact with ANP32B. This suggests a conserved, yet to be clarified mechanism might play a role in host manipulation and immune regulation in infected hosts.
Collapse
Affiliation(s)
- Maria Günther
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anja Bauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Luca Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Ringel M, Behner L, Heiner A, Sauerhering L, Maisner A. Replication of a Nipah Virus Encoding a Nuclear-Retained Matrix Protein. J Infect Dis 2019; 221:S389-S394. [DOI: 10.1093/infdis/jiz440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Nipah virus (NiV) matrix protein (NiV M) plays a major role in virus assembly. It undergoes nuclear transit before accumulating at the plasma membrane and recruiting nucleocapsids to the budding sites. Because nuclear NiV M cannot be detected in all cell types, we wondered whether it can reach the cell surface by bypassing the nucleus. Using an M mutant with a defective nuclear export signal (MNESmut), however, we revealed that the nuclear import of M is ubiquitous, because MNESmut was retained in the nuclei of all cell types tested. Because a functional nuclear transit is a general prerequisite for M surface transport, we wanted to characterize the effect of nuclear-retained M protein in a full viral context and generated a recombinant NiV-MNESmut. Mutant NiV-MNESmut caused increased cell-cell fusion and produced lower virus titers. As expected for an assembly defective NiV, perinuclear inclusions (IBperi) were formed, but inclusions at the plasma membrane (IBPM), which probably represent the viral assembly platforms, were not found. It is interesting to note that the transport-defective MNESmut was recruited to IBperi. This probably prevents overaccumulation of nonfunctional M proteins in the cytoplasm and nuclei of NiV-infected cells and thus provides first evidence that IBperi are functionally relevant aggresome-like compartments.
Collapse
Affiliation(s)
- Marc Ringel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Laura Behner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
9
|
The Jembrana disease virus Rev protein: Identification of nuclear and novel lentiviral nucleolar localization and nuclear export signals. PLoS One 2019; 14:e0221505. [PMID: 31437223 PMCID: PMC6706053 DOI: 10.1371/journal.pone.0221505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
The lentiviral Rev protein, which is a regulatory protein essential for virus replication, has been first studied in the human immunodeficiency virus type 1 (HIV-1). The main function of Rev is to mediate the nuclear exportation of viral RNAs. To fulfill its function, Rev shuttles between the cytoplasm and the nucleus. The Jembrana disease virus (JDV), a lentivirus, is the etiologic agent of the Jembrana disease which was first described in Bali cattle in Indonesia in 1964. Despite the high mortality rate associated with JDV, this virus remains poorly studied. Herein the subcellular distribution of JDV Rev, the nuclear and nucleolar localization signals (NLS and NoLS, respectively) and the nuclear export signal (NES) of the protein were examined. JDV Rev fused to the enhanced green fluorescent protein (EGFP) predominantly localized to the cytoplasm and nucleolus of transfected cells, as determined by fluorescence microscopy analyses. Through transfection of a series of deletion mutants of JDV Rev, it was possible to localize the NLS/NoLS region between amino acids (aa) 74 to 105. By substituting basic residues with alanine within this sequence, we demonstrated that the JDV Rev NLS encompasses aa 76 to 86, and is exclusively composed of arginine residues, whereas a bipartite NoLS was observed for the first time in any retroviral Rev/Rev-like proteins. Finally, a NES was identified downstream of the NLS/NoLS and encompasses aa 116 to 128 of the JDV Rev protein. The JDV Rev NES was found to be of the protein kinase A inhibitor (PKI) class instead of the HIV-1 Rev class. It also corresponds to the most optimal consensus sequence of PKI NES and, as such, is novel among lentiviral Rev NES.
Collapse
|
10
|
Ringel M, Heiner A, Behner L, Halwe S, Sauerhering L, Becker N, Dietzel E, Sawatsky B, Kolesnikova L, Maisner A. Nipah virus induces two inclusion body populations: Identification of novel inclusions at the plasma membrane. PLoS Pathog 2019; 15:e1007733. [PMID: 31034506 PMCID: PMC6488097 DOI: 10.1371/journal.ppat.1007733] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 01/31/2023] Open
Abstract
Formation of cytoplasmic inclusion bodies (IBs) is a hallmark of infections with non-segmented negative-strand RNA viruses (order Mononegavirales). We show here that Nipah virus (NiV), a bat-derived highly pathogenic member of the Paramyxoviridae family, differs from mononegaviruses of the Rhabdo-, Filo- and Pneumoviridae families by forming two types of IBs with distinct localizations, formation kinetics, and protein compositions. IBs in the perinuclear region form rapidly upon expression of the nucleocapsid proteins. These IBperi are highly mobile and associate with the aggresome marker y-tubulin. IBperi can recruit unrelated overexpressed cytosolic proteins but do not contain the viral matrix (M) protein. Additionally, NiV forms an as yet undescribed IB population at the plasma membrane (IBPM) that is y-tubulin-negative but contains the M protein. Infection studies with recombinant NiV revealed that IBPM require the M protein for their formation, and most likely represent sites of NiV assembly and budding. The identification of this novel type of plasma membrane-associated IBs not only provides new insights into NiV biology and may open new avenues to develop novel antiviral approaches to treat these highly pathogenic viruses, it also provides a basis for a more detailed characterization of IBs and their role in virus assembly and replication in infections with other Mononegavirales. Inclusion bodies (IBs) induced by non-segmented negative-strand RNA viruses (Mononegavirales) are described as mobile cytosolic compartments that concentrate viral proteins and represent the main viral replication sites in infected cells. This general concept is mainly based on studies with mononegaviruses from the Rhabdo-, Filo- and Pneumoviridae families. IBs induced by members of the Paramyxoviridae family are much less well characterized, and this study provides evidence that paramyxoviral IBs may have different compositions and functions. The main finding of this study is that Nipah virus (NiV), a highly pathogenic member of the genus Henipavirus in the family Paramyxoviridae, forms a novel type of IB whose formation at plasma membrane assembly sites depends on the viral matrix protein, and suggests a role for IBs not yet described for other Mononegavirales. This discovery clearly extents the current concept of IB functions and illustrates the need to further investigate IBs formed by other paramyxoviruses.
Collapse
Affiliation(s)
- Marc Ringel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Laura Behner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Nico Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Bevan Sawatsky
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Ma L, Chen Z, Guan W, Chen Q, Liu D. Rapid and Specific Detection of All Known Nipah virus Strains' Sequences With Reverse Transcription-Loop-Mediated Isothermal Amplification. Front Microbiol 2019; 10:418. [PMID: 30915049 PMCID: PMC6421284 DOI: 10.3389/fmicb.2019.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic virus and can be transmitted through contaminated food or directly between people. NiV is classified as a Biosafety Level 4 agent, not only because of its relatively high case fatality rate, but also because there is no vaccine or other medical countermeasures and it appears to be transmitted by fomites/particulates. The development of rapid detection assay for NiV is of great importance because no effective field test is currently available. In this study, an isothermal (65°C) reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method was developed, targeting the nucleocapsid protein (N) gene, for the rapid detection of NiV, and was compared with conventional RT-PCR. Three pseudoviruses of NiV N gene representing all known strains were constructed to replace live NiV. A set of RT-LAMP primers, targeting a highly conserved region of the N gene in the viral genome was designed to identify all known NiV strains. Sensitivity tests indicated that the detection limit of the RT-LAMP assay was approximately 100 pg of total NiV pseudovirus RNA, which is at least 10-fold higher than that of conventional RT-PCR. Specificity tests showed that there was no cross-reactivity with nucleocapsid protein gene of Hendra virus, Newcastle disease virus, Japanese encephalitis virus, or Influenza A virus. The RT-LAMP assay provides results within 45 min, and requires no sophisticated instruments, except an isothermal water bath or metal bath with 1 μl calcein indicator. An analysis of the clinical samples showed that the assay had good stability. In conclusion, systematic experiments have shown that the RT-LAMP assay developed here effectively detects three NiV pseudoviruses representing all known strains of NiV, with high specificity, sensitivity and stability.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Rawlinson SM, Zhao T, Rozario AM, Rootes CL, McMillan PJ, Purcell AW, Woon A, Marsh GA, Lieu KG, Wang LF, Netter HJ, Bell TDM, Stewart CR, Moseley GW. Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response. Nat Commun 2018; 9:3057. [PMID: 30076298 PMCID: PMC6076271 DOI: 10.1038/s41467-018-05354-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that nucleoli play critical roles in the DNA-damage response (DDR) via interaction of DDR machinery including NBS1 with nucleolar Treacle protein, a key mediator of ribosomal RNA (rRNA) transcription and processing. Here, using proteomics, confocal and single molecule super-resolution imaging, and infection under biosafety level-4 containment, we show that this nucleolar DDR pathway is targeted by infectious pathogens. We find that the matrix proteins of Hendra virus and Nipah virus, highly pathogenic viruses of the Henipavirus genus in the order Mononegavirales, interact with Treacle and inhibit its function, thereby silencing rRNA biogenesis, consistent with mimicking NBS1–Treacle interaction during a DDR. Furthermore, inhibition of Treacle expression/function enhances henipavirus production. These data identify a mechanism for viral modulation of host cells by appropriating the nucleolar DDR and represent, to our knowledge, the first direct intranucleolar function for proteins of any mononegavirus. Many RNA viruses that replicate in the cytoplasm express proteins that localize to nucleoli, but the nucleolar functions remain largely unknown. Here, the authors show that the Henipavirus matrix protein mimics an endogenous Treacle partner of the DNA-damage response, resulting in suppression of rRNA biogenesis.
Collapse
Affiliation(s)
- Stephen M Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Tianyue Zhao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ashley M Rozario
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Christina L Rootes
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Amanda Woon
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Glenn A Marsh
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Kim G Lieu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Victoria, 3000, Australia
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron R Stewart
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, 3220, Australia
| | - Gregory W Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia. .,Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
13
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|