1
|
Lu T, Ji Y, Chang M, Zhang X, Wang Y, Zou Z. The accumulation of modular serine protease mediated by a novel circRNA sponging miRNA increases Aedes aegypti immunity to fungus. BMC Biol 2024; 22:7. [PMID: 38233907 PMCID: PMC10795361 DOI: 10.1186/s12915-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mosquitoes transmit many infectious diseases that affect human health. The fungus Beauveria bassiana is a biological pesticide that is pathogenic to mosquitoes but harmless to the environment. RESULTS We found a microRNA (miRNA) that can modulate the antifungal immunity of Aedes aegypti by inhibiting its cognate serine protease. Fungal infection can induce the expression of modular serine protease (ModSP), and ModSP knockdown mosquitoes were more sensitive to B. bassiana infection. The novel miRNA-novel-53 is linked to antifungal immune response and was greatly diminished in infected mosquitoes. The miRNA-novel-53 could bind to the coding sequences of ModSP and impede its expression. Double fluorescence in situ hybridization (FISH) showed that this inhibition occurred in the cytoplasm. The amount of miRNA-novel-53 increased after miRNA agomir injection. This resulted in a significant decrease in ModSP transcript and a significant increase in mortality after fungal infection. An opposite effect was produced after antagomir injection. The miRNA-novel-53 was also knocked out using CRISPR-Cas9, which increased mosquito resistance to the fungus B. bassiana. Moreover, mosquito novel-circ-930 can affect ModSP mRNA by interacting with miRNA-novel-53 during transfection with siRNA or overexpression plasmid. CONCLUSIONS Novel-circ-930 affects the expression level of ModSP by a novel-circ-930/miRNA-novel-53/ModSP mechanism to modulate antifungal immunity, revealing new information on innate immunity in insects.
Collapse
Affiliation(s)
- Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yannan Ji
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Marzec S, Siperstein A, Zhou A, Holzapfel CM, Bradshaw WE, Meuti ME, Armbruster PA. MicroRNA Expression Prior to Biting in a Vector Mosquito Anticipates Physiological Processes Related to Energy Utilization, Reproduction and Immunity. INSECTS 2023; 14:700. [PMID: 37623410 PMCID: PMC10455316 DOI: 10.3390/insects14080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Understanding the molecular and physiological processes underlying biting behavior in vector mosquitoes has important implications for developing novel strategies to suppress disease transmission. Here, we conduct small-RNA sequencing and qRT-PCR to identify differentially expressed microRNAs (miRNAs) in the head tissues of two subspecies of Culex pipiens that differ in biting behavior and the ability to produce eggs without blood feeding. We identified eight differentially expressed miRNAs between biting C. pipiens pipiens (Pipiens) and non-biting C. pipiens molestus (Molestus); six of these miRNAs have validated functions or predicted targets related to energy utilization (miR8-5-p, miR-283, miR-2952-3p, miR-1891), reproduction (miR-1891), and immunity (miR-2934-3p, miR-92a, miR8-5-p). Although miRNAs regulating physiological processes associated with blood feeding have previously been shown to be differentially expressed in response to a blood meal, our results are the first to demonstrate differential miRNA expression in anticipation of a blood meal before blood is actually imbibed. We compare our current miRNA results to three previous studies of differential messenger RNA expression in the head tissues of mosquitoes. Taken together, the combined results consistently show that biting mosquitoes commit to specific physiological processes in anticipation of a blood meal, while non-biting mosquitoes mitigate these anticipatory costs.
Collapse
Affiliation(s)
- Sarah Marzec
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (S.M.); (A.Z.)
| | - Alden Siperstein
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (A.S.); (M.E.M.)
| | - Angela Zhou
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (S.M.); (A.Z.)
| | - Christina M. Holzapfel
- Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA; (C.M.H.); (W.E.B.)
| | - William E. Bradshaw
- Laboratory of Evolutionary Genetics, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA; (C.M.H.); (W.E.B.)
| | - Megan E. Meuti
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (A.S.); (M.E.M.)
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, Washington, DC 20057, USA; (S.M.); (A.Z.)
| |
Collapse
|
3
|
Lu MY, Chtarbanova S. The role of micro RNAs (miRNAs) in the regulation of Drosophila melanogaster's innate immunity. Fly (Austin) 2022; 16:382-396. [PMID: 36412256 PMCID: PMC9683055 DOI: 10.1080/19336934.2022.2149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.
Collapse
Affiliation(s)
- Max Yang Lu
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA
| | - Stanislava Chtarbanova
- Department of Biological Sciences, the University of Alabama, Tuscaloosa, AL, USA,Center for Convergent Bioscience & Medicine, University of Alabama, Tuscaloosa, AL, USA,Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, USA,CONTACT Stanislava Chtarbanova Department of Biological Sciences, the University of Alabama, 300, Hackberry Ln, Tuscaloosa, AL-35487, USA
| |
Collapse
|
4
|
Schneider J, Imler JL. Sensing and signalling viral infection in drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103985. [PMID: 33358662 DOI: 10.1016/j.dci.2020.103985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The fruitfly Drosophila melanogaster is a valuable model to unravel mechanisms of innate immunity, in particular in the context of viral infections. RNA interference, and more specifically the small interfering RNA pathway, is a major component of antiviral immunity in drosophila. In addition, the contribution of inducible transcriptional responses to the control of viruses in drosophila and other invertebrates is increasingly recognized. In particular, the recent discovery of a STING-IKKβ-Relish signalling cassette in drosophila has confirmed that NF-κB transcription factors play an important role in the control of viral infections, in addition to bacterial and fungal infections. Here, we review recent developments in the field, which begin to shed light on the mechanisms involved in sensing of viral infections and in signalling leading to production of antiviral effectors.
Collapse
Affiliation(s)
- Juliette Schneider
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France; Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Tenth Scientific Biennial Meeting of the Australasian Virology Society-AVS10 2019. Viruses 2020; 12:v12060621. [PMID: 32517260 PMCID: PMC7354434 DOI: 10.3390/v12060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
The Australasian Virology Society (AVS) aims to promote, support and advocate for the discipline of virology in the Australasian region. The society was incorporated in 2011 after 10 years operating as the Australian Virology Group (AVG) founded in 2001, coinciding with the inaugural biennial scientific meeting. AVS conferences aim to provide a forum for the dissemination of all aspects of virology, foster collaboration, and encourage participation by students and post-doctoral researchers. The tenth Australasian Virology Society (AVS10) scientific meeting was held on 2–5 December 2019 in Queenstown, New Zealand. This report highlights the latest research presented at the meeting, which included cutting-edge virology presented by our international plenary speakers Ana Fernandez-Sesma and Benjamin tenOever, and keynote Richard Kuhn. AVS10 honoured female pioneers in Australian virology, Lorena Brown and Barbara Coulson. We report outcomes from the AVS10 career development session on “Successfully transitioning from post-doc to lab head”, winners of best presentation awards, and the AVS gender equity policy, initiated in 2013. Plans for the 2021 meeting are underway which will celebrate the 20th anniversary of AVS where it all began, in Fraser Island, Queensland, Australia.
Collapse
|
6
|
Leonetti P, Miesen P, van Rij RP, Pantaleo V. Viral and subviral derived small RNAs as pathogenic determinants in plants and insects. Adv Virus Res 2020; 107:1-36. [PMID: 32711727 DOI: 10.1016/bs.aivir.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins. RNA silencing is a gene regulation mechanism conserved within eukaryotic kingdoms (with the exception of some yeast species), and in plants and insects it also functions as an antiviral mechanism. Non-coding RNAs of viral origin, ranging in size from 21 to 24 nucleotides (viral small interfering RNAs, vsiRNAs) accumulate in virus-infected tissues and organs, in some cases to comparable levels as the entire complement of host-encoded small interfering RNAs. Upon incorporation into RNA-induced silencing complexes, vsiRNAs can mediate cleavage or induce translational inhibition of nucleic acid targets in a sequence-specific manner. This review focuses on recent findings that suggest an increased complexity of small RNA-based interactions between virus and host. We mainly address plant viruses, but where applicable discuss insect viruses as well. Prominence is given to studies that have indisputably demonstrated that vsiRNAs determine diseased phenotype by either carrying sequence determinants or, indirectly, by altering host-gene regulatory pathways. Results from these studies suggest biotechnological applications, which are also discussed.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, CNR, Bari, Italy..
| |
Collapse
|
7
|
Shekhar MS, Karthic K, Kumar KV, Kumar JA, Swathi A, Hauton C, Peruzza L, Vijayan KK. Comparative analysis of shrimp (Penaeus vannamei) miRNAs expression profiles during WSSV infection under experimental conditions and in pond culture. FISH & SHELLFISH IMMUNOLOGY 2019; 93:288-295. [PMID: 31330255 DOI: 10.1016/j.fsi.2019.07.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the importance of viral and host microRNAs (miRNAs) in mediating viral replication and control of host cellular machinery, has been realised and increasing efforts have been taken in order to understand the interactions of miRNAs from host and pathogen during infection. However, all existing studies has thus far been conducted in controlled experimental conditions and the veracity of these data for field conditions are yet to be established. In this framework, small RNA sequencing was performed to identify the miRNAs involved in shrimp (Penaeus vannamei) immune responses under two different WSSV infection conditions of natural infection and experimentally challenged conditions. The expression profiles of miRNAs of shrimp infected with WSSV under two contrasting conditions were compared and as a result, 23365 known miRNAs and 481 novel miRNAs were identified. Amongst the most abundantly expressed miRNAs, the hypoxia related miR-210 and immune pathway related miR-29b were expressed only in infected shrimps of both conditions. miR-8-5p, having a functional role in modulation of chitin biosynthesis was exclusively represented in higher numbers in the WSSV -infected shrimps under natural conditions whilst four of the miRNAs (mja-miR-6493-5p, mja-miR-6492, mmu-miR-3968, tcf-miR-9b-5p) identified from shrimps collected from pond culture targeted chitinase, an important enzyme involved in growth and moulting in shrimps, indicating an interaction between WSSV infection and moult cycle under culture conditions. Some of the miRNAs (tca-miR-87b-3p, cte-miR-277a) and miRNAs belonging to class miR-9, miR-981 that were identified only in WSSV infected shrimps under experimental conditions, are known to respond against WSSV infection in shrimps. Moreover, the miRNA target prediction revealed several immune-related gene targets such as cathepsin, c-type lectin, haemocyanin and ubiquitin protein ligase were commonly identified under both the conditions. However, the miRNAs identified from challenge experiment had wide number of gene targets as compared to the miRNAs of natural infection. The shrimp miRNA mja-miR-6489-3p, was also found to target early virus gene wsv001 of WSSV. Our study, therefore, provides the comparative analysis of miRNA expression from shrimp during WSSV infection in two different conditions.
Collapse
Affiliation(s)
- M S Shekhar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India.
| | - K Karthic
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India
| | - K Vinaya Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India
| | - J Ashok Kumar
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India
| | - A Swathi
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom
| | - L Peruzza
- School of Ocean and Earth Science, University of Southampton, Hampshire, SO14 3ZH, United Kingdom
| | - K K Vijayan
- Genetics and Biotechnology Unit, Central Institute of Brackishwater Aquaculture, 75 Santhome High Road, R.A Puram, Chennai, India
| |
Collapse
|
8
|
Harsh S, Ozakman Y, Kitchen SM, Paquin-Proulx D, Nixon DF, Eleftherianos I. Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2018; 201:3058-3072. [PMID: 30305326 DOI: 10.4049/jimmunol.1800597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) outbreaks pose a massive public health threat in several countries. We have developed an in vivo model to investigate the host-ZIKV interaction in Drosophila We have found that a strain of ZIKV replicates in wild-type flies without reducing their survival ability. We have shown that ZIKV infection triggers RNA interference and that mutating Dicer-2 results in enhanced ZIKV load and increased susceptibility to ZIKV infection. Using a flavivirus-specific Ab, we have found that ZIKV is localized in the gut and fat body cells of the infected wild-type flies and results in their perturbed homeostasis. In addition, Dicer-2 mutants display severely reduced insulin activity, which could contribute toward the increased mortality of these flies. Our work establishes the suitability of Drosophila as the model system to study host-ZIKV dynamics, which is expected to greatly advance our understanding of the molecular and physiological processes that determine the outcome of this disease.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Yaprak Ozakman
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Shannon M Kitchen
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Dominic Paquin-Proulx
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| |
Collapse
|
9
|
Leggewie M, Schnettler E. RNAi-mediated antiviral immunity in insects and their possible application. Curr Opin Virol 2018; 32:108-114. [DOI: 10.1016/j.coviro.2018.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
|
10
|
Monsanto-Hearne V, Johnson KN. Wolbachia-mediated protection of Drosophila melanogaster against systemic infection with its natural viral pathogen Drosophila C virus does not involve changes in levels of highly abundant miRNAs. J Gen Virol 2018; 99:827-831. [DOI: 10.1099/jgv.0.001064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane 4067, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4067, Australia
| |
Collapse
|