1
|
Forrester JV, Mölzer C, Kuffova L. Immune Privilege Furnishes a Niche for Latent Infection. FRONTIERS IN OPHTHALMOLOGY 2022; 2:869046. [PMID: 38983514 PMCID: PMC11182092 DOI: 10.3389/fopht.2022.869046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 07/11/2024]
Abstract
The microenvironment of the CNS (eye and brain) is fertile ground for infection if the barriers are breached. The result of pathogen invasion is often devastating destruction of tissues. In the eye, inflammation is broadly classified either as "infectious" (i.e. caused by infection) or "non-infectious". However, increasingly, forms of intraocular inflammation (IOI), which clinically appear to be "non-infectious" turn out to be initiated by infectious agents, suggesting that pathogens have been retained in latent or persistent form within ocular tissues and have reactivated to cause overt disease. A similar pathogenesis applies to latent infections in the brain. Not all CNS tissues provide an equally protective niche while different pathogens escape detection using different strategies. This review summarises how immune privilege (IP) in the CNS may be permissive for latent infection and allow the eye and the brain to act as a reservoir of pathogens which often remain undetected for the lifetime of the host but in states of immune deficiency may be activated to cause sight- and life-threatening inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Yasmeen N, Jabbar A, Shah T, Fang LX, Aslam B, Naseeb I, Shakeel F, Ahmad HI, Baloch Z, Liu Y. One Health Paradigm to Confront Zoonotic Health Threats: A Pakistan Prospective. Front Microbiol 2022; 12:719334. [PMID: 35211097 PMCID: PMC8861076 DOI: 10.3389/fmicb.2021.719334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
The emergence and re-emergence of zoonotic diseases significantly impact human health, particularly those who live in impoverished areas and have close contact with domestic or wild animals. Nearly 75% of zoonotic diseases are transmitted directly from animals to humans or indirectly via vector/agent interactions between animals and humans. Growing populations, globalization, urbanization, and the interaction of the environment with humans and livestock all play roles in the emergence and spread of zoonotic diseases. "One Health" is a multidisciplinary concept aimed at improving human, animal, and environmental health, but this concept is not widely accepted in developing countries. In Pakistan, environmental, human, and animal health are severely affected due to a lack of sufficient resources. This review article provides an overview of the most common zoonotic diseases found in Pakistan and emphasizes the importance of the "One Health" concept in managing these diseases. Given the current situation, interdisciplinary research efforts are required to implement and sustain effective and long-term control measures in animal, human, and environmental health surveillance and accurate diagnostic methods.
Collapse
Affiliation(s)
- Nafeesa Yasmeen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Abdul Jabbar
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liang-xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Iqra Naseeb
- Institute of Applied Microbiology, University of Veterinary and Animal Sciences, Punjab, Pakistan
| | - Faiqa Shakeel
- Institute of Applied Microbiology, University of Veterinary and Animal Sciences, Punjab, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Punjab, Pakistan
| | - Zulqarnain Baloch
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
4
|
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:antiox10091440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
|
5
|
Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul 2020; 77:100741. [PMID: 32773102 PMCID: PMC7334659 DOI: 10.1016/j.jbior.2020.100741] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
6
|
Raftery MJ, Lalwani P, Lütteke N, Kobak L, Giese T, Ulrich RG, Radosa L, Krüger DH, Schönrich G. Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol 2020; 10:281. [PMID: 32596167 PMCID: PMC7304325 DOI: 10.3389/fcimb.2020.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Members of different virus families including Hantaviridae cause viral hemorrhagic fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so far has not been associated with any symptoms. They are thus defined here as low pathogenic/apathogenic hantavirus species. We found that productive infection of cells of the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs), correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification of endosomes with chloroquine decreased the number of TULV genomes in myeloid cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus species induced conversion of monocytes into inflammatory DCs. The proinflammatory programming of MPS cells by pathogenic hantavirus species required integrin signaling and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a prominent feature of hantaviral pathogenicity.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Pritesh Lalwani
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nina Lütteke
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lidija Kobak
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Lukas Radosa
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Detlev H Krüger
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun 2019; 12:4-20. [PMID: 31610541 PMCID: PMC6959104 DOI: 10.1159/000503030] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The impact of respiratory virus infections on the health of children and adults can be very significant. Yet, in contrast to most other childhood infections as well as other viral and bacterial diseases, prophylactic vaccines or effective antiviral treatments against viral respiratory infections are either still not available, or provide only limited protection. Given the widespread prevalence, a general lack of natural sterilizing immunity, and/or high morbidity and lethality rates of diseases caused by influenza, respiratory syncytial virus, coronaviruses, and rhinoviruses, this difficult situation is a genuine societal challenge. A thorough understanding of the virus-host interactions during these respiratory infections will most probably be pivotal to ultimately meet these challenges. This review attempts to provide a comparative overview of the knowledge about an important part of the interaction between respiratory viruses and their host: the arms race between host innate immunity and viral innate immune evasion. Many, if not all, viruses, including the respiratory viruses listed above, suppress innate immune responses to gain a window of opportunity for efficient virus replication and setting-up of the infection. The consequences for the host's immune response are that it is often incomplete, delayed or diminished, or displays overly strong induction (after the delay) that may cause tissue damage. The affected innate immune response also impacts subsequent adaptive responses, and therefore viral innate immune evasion often undermines fully protective immunity. In this review, innate immune responses relevant for respiratory viruses with an RNA genome will briefly be summarized, and viral innate immune evasion based on shielding viral RNA species away from cellular innate immune sensors will be discussed from different angles. Subsequently, viral enzymatic activities that suppress innate immune responses will be discussed, including activities causing host shut-off and manipulation of stress granule formation. Furthermore, viral protease-mediated immune evasion and viral manipulation of the ubiquitin system will be addressed. Finally, perspectives for use of the reviewed knowledge for the development of novel antiviral strategies will be sketched.
Collapse
Affiliation(s)
- Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Molecular Virology Laboratory, Leiden, The Netherlands,
| |
Collapse
|
8
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
9
|
Vogels CBF, Rückert C, Cavany SM, Perkins TA, Ebel GD, Grubaugh ND. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol 2019; 17:e3000130. [PMID: 30668574 PMCID: PMC6358106 DOI: 10.1371/journal.pbio.3000130] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mosquitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of humans with multiple viruses. Despite the potential impact on public health, we know only little about the occurrence and consequences of such coinfections. Here, we review the impact of coinfection on clinical disease in humans, discuss the possibility for co-transmission from mosquito to human, and describe a role for modeling transmission dynamics at various levels of co-transmission. Solving the mystery of virus coinfections will reveal whether they should be viewed as a serious concern for public health.
Collapse
Affiliation(s)
- Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sean M. Cavany
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
10
|
Forrester JV. Ebola virus and persistent chronic infection: when does replication cease? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S39. [PMID: 30613614 DOI: 10.21037/atm.2018.09.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|