1
|
de Amorim Conceição LB, Santos JPN, Costa MA, Aguiar ERGR. Circulation of bee-infecting viruses in Brazil: a call for action. Braz J Microbiol 2024; 55:3037-3041. [PMID: 38898364 PMCID: PMC11405577 DOI: 10.1007/s42770-024-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
Bees are fundamental for maintaining pollination-dependent plant populations, both economically and ecologically. In Brazil, they constitute 66.3% of pollinators, contributing to an annual market value estimated at R$ 43 billion for pollination services. Unfortunately, worldwide bee populations are declining due to parasites and pathogens, more specifically viruses, alongside climate change, habitat loss, and pesticides. In this scenario, extensive research concerning bee diversity, virus diversity and surveillance, is necessary to aid the conservation of native managed pollinators and potential wild alternatives besides mitigating the emergence and spread of viral pathogens. A decrease in pollination can be a point of economic vulnerability in a country like Brazil because of its main dependence on food exports. Here we conducted a study aiming to obtain an overview of circulating viruses in bees within Brazilian territory highlighting the need for further studies to have a more realistic view of bee-infecting viruses in Brazil.
Collapse
Affiliation(s)
- Lucas Barbosa de Amorim Conceição
- Department of Biological Sciences, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz (UESC), Ilhéus-BA, Brazil
| | - João Pedro Nunes Santos
- Department of Biological Sciences, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz (UESC), Ilhéus-BA, Brazil
| | - Marco Antônio Costa
- Department of Biological Sciences, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz (UESC), Ilhéus-BA, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Sciences, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz (UESC), Ilhéus-BA, Brazil.
- Department of Engineering and Computing, Universidade Estadual de Santa Cruz, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
2
|
Caesar L, Haag KL. Tailed bacteriophages (Caudoviricetes) dominate the microbiome of a diseased stingless bee. Genet Mol Biol 2024; 46:e20230120. [PMID: 38252058 PMCID: PMC10802228 DOI: 10.1590/1678-4685-gmb-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Bacteriophages, viruses that infect bacterial hosts, are known to rule the dynamics and diversity of bacterial populations in a number of ecosystems. Bacterial communities residing in the gut of animals, known as the gut microbiome, have revolutionized our understanding of many diseases. However, the gut phageome, while of apparent importance in this context, remains an underexplored area of research. Here we identify for the first time genomic sequences from tailed viruses (Caudoviricetes) that are associated with the microbiome of stingless bees (Melipona quadrifasciata). Both DNA and RNA were extracted from virus particles isolated from healthy and diseased forager bees, the latter showing symptoms from an annual syndrome that only affects M. quadrifasciata. Viral contigs from previously sequenced metagenomes of healthy and diseased forager bees were used for the analyses. Using conserved proteins deduced from their genomes, we found that Caudoviricetes were only present in the worker bee gut microbiome from diseased stingless bees. The most abundant phages are phylogenetically related to phages that infect Gram-positive bacteria from the order Lactobacillales and Gram-negative bacteria from the genus Gilliamella and Bartonella, that are common honey bee symbionts. The potential implication of these viruses in the M. quadrifasciata syndrome is discussed.
Collapse
Affiliation(s)
- Lilian Caesar
- Indiana University Bloomington, Department of Biology, Bloomington, IN, USA
| | - Karen Luisa Haag
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Jung SW, Kim KE, Kim HJ, Lee TK. Metavirome Profiling and Dynamics of the DNA Viral Community in Seawater in Chuuk State, Federated States of Micronesia. Viruses 2023; 15:1293. [PMID: 37376592 DOI: 10.3390/v15061293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their abundance and ecological importance, little is known about the diversity of marine viruses, in part because most cannot be cultured in the laboratory. Here, we used high-throughput viral metagenomics of uncultivated viruses to investigate the dynamics of DNA viruses in tropical seawater sampled from Chuuk State, Federated States of Micronesia, in March, June, and December 2014. Among the identified viruses, 71-79% were bacteriophages belonging to the families Myoviridae, Siphoviridae, and Podoviridae (Caudoviriales), listed in order of abundance at all sampling times. Although the measured environmental factors (temperature, salinity, and pH) remained unchanged in the seawater over time, viral dynamics changed. The proportion of cyanophages (34.7%) was highest in June, whereas the proportion of mimiviruses, phycodnaviruses, and other nucleo-cytoplasmic large DNA viruses (NCLDVs) was higher in March and December. Although host species were not analysed, the dramatic viral community change observed in June was likely due to changes in the abundance of cyanophage-infected cyanobacteria, whereas that in NCLDVs was likely due to the abundance of potential eukaryote-infected hosts. These results serve as a basis for comparative analyses of other marine viral communities, and guide policy-making when considering marine life care in Chuuk State.
Collapse
Affiliation(s)
- Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| |
Collapse
|
4
|
Haag KL, Caesar L, da Silveira Regueira-Neto M, de Sousa DR, Montenegro Marcelino V, de Queiroz Balbino V, Torres Carvalho A. Temporal Changes in Gut Microbiota Composition and Pollen Diet Associated with Colony Weakness of a Stingless Bee. MICROBIAL ECOLOGY 2023; 85:1514-1526. [PMID: 35513592 DOI: 10.1007/s00248-022-02027-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
Compared to honeybees and bumblebees, the effect of diet on the gut microbiome of Neotropical corbiculate bees such as Melipona spp. is largely unknown. These bees have been managed for centuries, but recently an annual disease is affecting M. quadrifasciata, an endangered species kept exclusively by management in Southern Brazil. Here we report the results of a longitudinal metabarcoding study involving the period of M. quadrifasciata colony weakness, designed to monitor the gut microbiota and diet changes preceding an outbreak. We found increasing amounts of bacteria associated to the gut of forager bees 2 months before the first symptoms have been recorded. Simultaneously, forager bees showed decreasing body weight. The accelerated growth of gut-associated bacteria was uneven among taxa, with Bifidobacteriaceae dominating, and Lactobacillaceae decreasing in relative abundance within the bacterial community. Dominant fungi such as Candida and Starmerella also decreased in numbers, and the stingless bee obligate symbiont Zygosaccharomyces showed the lowest relative abundance during the outbreak period. Such changes were associated with pronounced diet shifts, i.e., the rise of Eucalyptus spp. pollen amount in forager bees' guts. Furthermore, there was a negative correlation between the amount of Eucalyptus pollen in diets and the abundance of some bacterial taxa in the gut-associated microbiota. We conclude that diet and subsequent interactions with the gut microbiome are key environmental components of the annual disease and propose the use of diet supplementation as means to sustain the activity of stingless bee keeping as well as native bee pollination services.
Collapse
Affiliation(s)
- Karen Luisa Haag
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Lílian Caesar
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Dayana Rosalina de Sousa
- Department of Agronomy and Program of Post Graduation in Entomology, Federal Rural University of Pernambuco, Recife, PA, Brazil
| | - Victor Montenegro Marcelino
- Department of Genetics and Program of Post Graduation in Genetics and Molecular Biology, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Program of Post Graduation in Bioinformatics, Multidisciplinary Environment, Digital Metropolis Institute, Federal University of Rio Grande Do Norte, Natal, Brazil
| | | | - Airton Torres Carvalho
- Department of Biosciences, Center of Biological and Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
5
|
Abstract
Stingless bees form perennial colonies of honey-making insects. The >600 species of stingless bees, mainly Neotropical, live throughout tropical latitudes. Foragers influence floral biology, plant reproduction, microbe dispersal, and diverse ecosystem functions. As tropical forest residents since the upper Cretaceous, they have had a long evolutionary history without competition from honey bees. Most stingless bees are smaller than any Apis species and recruit nest mates to resources, while their defense strategies exclude stinging behavior but incorporate biting. Stingless bees have diversified ecologically; excel in nesting site selection and mutualisms with plants, arthropods, and microbes; and display opportunism, including co-opting plant defenses. As their biology becomes better known, applications to human endeavors are imposing selective pressures from exploitation and approaches to conservation that entail colony extraction from wildlands. Although some meliponines can adjust to new conditions, their populations shall require tropical diversity for survival and reproduction.
Collapse
Affiliation(s)
- David W Roubik
- Smithsonian Tropical Research Institute, Balboa, Republic of Panamá;
| |
Collapse
|
6
|
Rosa-Fontana AS, Dorigo AS, Malaquias JB, Pachú JKS, Nocelli RCF, Tosi S, Malaspina O. Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides. Sci Rep 2022; 12:20948. [PMID: 36470975 PMCID: PMC9722777 DOI: 10.1038/s41598-022-25482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are the largest group of eusocial bees in the world. They play an essential role as crop pollinators and have been considered for inclusion in pesticide risk assessments (RAs). Beyond the mutualism involving stingless bee larvae and fungi, the fungivorous mite Proctotydaeus (Neotydeolus) alvearii proved to be interesting for studies of associations with stingless bees. Their presence is related to colony strength and health, showing a permanent-host-association level. Here, we tested whether the coexistence with P. (N.) alvearii affects stingless bee larvae survivorship and development, including when fed pesticide-dosed food. We chose dimethoate, the reference standard for toxicity tests, and thiamethoxam, widely used in neotropical crops and listed to be reassessed in RAs. Bees associated with the mites showed higher larval survivorship rates, even in the dosed ones, and revealed changes in the developmental time and body size. Our study represents the first approach to stingless bee responses to the coexistence of fungivorous mites inside brood cells, leading us to believe that these mites play a beneficial role in stingless bees, including when they are exposed to pesticides.
Collapse
Affiliation(s)
- Annelise S. Rosa-Fontana
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - Adna Suelen Dorigo
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - José Bruno Malaquias
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Jéssica K. S. Pachú
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Roberta C. F. Nocelli
- grid.411247.50000 0001 2163 588XCentre of Agrarian Science, Federal University of Sao Carlos, Araras, SP Brazil ,grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Simone Tosi
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Osmar Malaspina
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| |
Collapse
|
7
|
Richard JC, Leis EM, Dunn CD, Harris C, Agbalog RE, Campbell LJ, Knowles S, Waller DL, Putnam JG, Goldberg TL. Freshwater Mussels Show Elevated Viral Richness and Intensity during a Mortality Event. Viruses 2022; 14:v14122603. [PMID: 36560607 PMCID: PMC9785814 DOI: 10.3390/v14122603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Freshwater mussels (Unionida) are among the world's most imperiled taxa, but the relationship between freshwater mussel mortality events and infectious disease is largely unstudied. We surveyed viromes of a widespread and abundant species (mucket, Actinonaias ligamentina; syn: Ortmanniana ligamentina) experiencing a mortality event of unknown etiology in the Huron River, Michigan, in 2019-2020 and compared them to viromes from mucket in a healthy population in the St. Croix River, Wisconsin and a population from the Clinch River, Virginia and Tennessee, where a mortality event was affecting the congeneric pheasantshell (Actinonaias pectorosa; syn: Ortmanniana pectorosa) population. We identified 38 viruses, most of which were associated with mussels collected during the Huron River mortality event. Viral richness and cumulative viral read depths were significantly higher in moribund mussels from the Huron River than in healthy controls from each of the three populations. Our results demonstrate significant increases in the number and intensity of viral infections for freshwater mussels experiencing mortality events, whereas individuals from healthy populations have a substantially reduced virome comprising a limited number of species at low viral read depths.
Collapse
Affiliation(s)
- Jordan C. Richard
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53711, USA
- Southwestern Virginia Field Office, U.S. Fish and Wildlife Service, Abingdon, VA 24210, USA
- Correspondence: (J.C.R.); (T.L.G.)
| | - Eric M. Leis
- La Crosse Fish Health Center, Midwest Fisheries Center, U.S. Fish and Wildlife Service, Onalaska, WI 54650, USA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Cleyo Harris
- Michigan Department of Natural Resources, Waterford, MI 48327, USA
| | - Rose E. Agbalog
- Southwestern Virginia Field Office, U.S. Fish and Wildlife Service, Abingdon, VA 24210, USA
| | - Lewis J. Campbell
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Susan Knowles
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA
| | - Joel G. Putnam
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53711, USA
- Correspondence: (J.C.R.); (T.L.G.)
| |
Collapse
|
8
|
Yan T, Li G, Zhou D, Hu L, Hao X, Li R, Wang G, Cheng Z. Long read sequencing revealed proventricular virome of broiler chicken with transmission viral proventriculitis. BMC Vet Res 2022; 18:253. [PMID: 35768837 PMCID: PMC9241223 DOI: 10.1186/s12917-022-03339-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background Transmissible viral proventriculitis (TVP) causes significant economic loss to the poultry industry. However, the exact causative agents are obscure. Here we examine the virome of proventriculus from specified pathogen free (SPF) chickens that reproduced by infection of proventricular homogenate from broiler chicken with TVP using long read sequencing of the Pacific Biosciences RSII platform. The normal SPF chickens were used as control. Results Our investigation reveals a virome of proventriculitis, including three Gyrovirus genera of the Aneloviridae: Gyrovirus homsa1 (GyH1) (also known as Gyrovirus 3, GyV3) (n = 2662), chicken anemia virus (CAV) (n = 482) and Gyrovirus galga1 (GyG1) (also known as avian Gyrovirus 2, AGV2) (n = 11); a plethora of novel CRESS viral genomes (n = 26) and a novel genomovirus. The 27 novel viruses were divided into three clusters. Phylogenetic analysis showed that the GyH1 strain was more closely related to the strains from chicken (MG366592) than mammalian (human and cat), the GyG1 strain was closely related to the strains from cat in China (MK089245) and from chicken in Brazil (HM590588), and the CAV strain was more closely related to the strains from Germany (AJ297684) and United Kingdom (U66304) than that previously found in China. Conclusion In this study, we revealed that Gyrovirus virome showed high abundance in chickens with TVP, suggesting their potential role in TVP, especially GyH1. This study is expected to contribute to the knowledge of the etiology of TVP. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03339-9.
Collapse
Affiliation(s)
- Tianxing Yan
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China
| | - Gen Li
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China.,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266000, China
| | - Defang Zhou
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China
| | - Liping Hu
- Animal Epidemic Prevention and Control Center of Shandong Province, Jinan, China
| | - Xiaojing Hao
- Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao, China
| | - Ruiqi Li
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China
| | - Guihua Wang
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China
| | - Ziqiang Cheng
- Present Address: College of Veterinary Medicine, Shandong Agricultural University, Shandong Provence, Tai'an, 271018, China.
| |
Collapse
|
9
|
Virome Analysis Reveals Diverse and Divergent RNA Viruses in Wild Insect Pollinators in Beijing, China. Viruses 2022; 14:v14020227. [PMID: 35215821 PMCID: PMC8877953 DOI: 10.3390/v14020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Insect pollinators provide major pollination services for wild plants and crops. Honeybee viruses can cause serious damage to honeybee colonies. However, viruses of other wild pollinating insects have yet to be fully explored. In the present study, we used RNA sequencing to investigate the viral diversity of 50 species of wild pollinating insects. A total of 3 pathogenic honeybee viruses, 8 previously reported viruses, and 26 novel viruses were identified in sequenced samples. Among these, 7 novel viruses were shown to be closely related to honeybee pathogenic viruses, and 4 were determined to have potential pathogenicity for their hosts. The viruses detected in wild insect pollinators were mainly from the order Picornavirales and the families Orthomyxoviridae, Sinhaliviridae, Rhabdoviridae, and Flaviviridae. Our study expanded the species range of known insect pollinator viruses, contributing to future efforts to protect economic honeybees and wild pollinating insects.
Collapse
|
10
|
Virome Characterization in Commercial Bovine Serum Batches-A Potentially Needed Testing Strategy for Biological Products. Viruses 2021; 13:v13122425. [PMID: 34960693 PMCID: PMC8705701 DOI: 10.3390/v13122425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine serum has been widely used as a universal supplement in culture media and other applications, including the manufacture of biological products and the production of synthetic meat. Currently, commercial bovine serum is tested for possible viral contaminants following regional guidelines. Regulatory agencies’ established tests focused on detecting selected animal origin viruses and are based on virus isolation, immunofluorescence, and hemadsorption assays. However, these tests may fail to detect new or emerging viruses in biological products. High-throughput sequencing is a powerful option since no prior knowledge of the viral targets is required. In the present study, we evaluate the virome of seven commercial batches of bovine serum from Mexico (one batch), New Zealand (two batches), and the United States (four batches) using a specific preparation and enrichment method for pooled samples and sequencing using an Illumina platform. A variety of circular replicase-encoding single-stranded (CRESS) DNA families (Genomoviridae, Circoviridae, and Smacoviridae) was identified. Additionally, CrAssphage, a recently discovered group of bacteriophage correlated with fecal contamination, was identified in 85% of the tested batches. Furthermore, sequences representing viral families with single-stranded DNA (Parvoviridae), double-stranded DNA (Polyomaviridae and Adenoviridae), single-stranded RNA (Flaviviridae, Picornaviridae, and Retroviridae), and double-stranded RNA (Reoviridae) were identified. These results support that high-throughput sequencing associated with viral enrichment is a robust tool and should be considered an additional layer of safety when testing pooled biologicals to detect viral contaminants overlooked by the current testing protocols.
Collapse
|
11
|
Abstract
The enormous diversity of RNA viruses in insects is continuously validated. Parasitoid wasps, as biocontrol insects which are widely used against insect pests in agroecosystems, may also carry many “good” RNA viruses. In this study, many virus-like fragments were obtained from transcriptomes of three wasp species, including Anisopteromalus calandrae (8), Lariophagus distinguendus (3), and Theocolax elegans (18), which can parasitize and control rice weevil Sitophilus oryzae, a serious insect pest of farm-stored grains. By further bioinformatic analysis and sequencing, we identified six novel RNA viruses with complete genomes and named them WWPSRV-1, WWPSRV-2, AcPSRV-1, AcNSRV-1, AcNSRV-2, and LdNSRV-1. PCR-based detection revealed that WWPSRV-1 and WWPSRV-2 had the possibility of interspecies virus transmission, especially WWPSRV-2, which was also present in the rice weevil adults. Phylogenetically, three out of these six viruses appeared to be members of order Picornavirales: WWPSRV-1 belonged to unassigned virus families of this order, whereas WWPSRV-2 and AcPSRV-1 belonged to families Iflaviridae and Dicistroviridae, respectively. The conserved picornavirus-typical domains helicase, protease, and RNA-dependent RNA polymerase could be found in the nonstructural protein encoded by the three viruses, whose genomes consisted of the different numbers of open reading frames (ORFs). The other three RNA viruses could be classified to order Mononegavirales: AcNSRV-1 and AcNSRV-2 belonged to family Lispiviridae, whereas LdNSRV-1 belonged to a big family Rhabdoviridae. The genomes of the three viruses contained at least five ORFs, encoding deduced proteins in the following order: 3′-N-P-M-G-L-5′. All the ORFs were separated by conserved intergenic sequences which likely regulated the transcription termination and initiation. Our findings enhance the understanding of RNA viruses in weevil wasps and set the foundation for the future study of the association among weevils, weevil wasps, and RNA viruses. IMPORTANCE The enormous diversity of RNA viruses in insects is continuously validated. Parasitoid wasps, as biocontrol insects which are widely used against insect pests in agroecosystems, may also carry many “good” RNA viruses. Some RNA viruses in parasitoid wasps have been reported to affect the host wasps or the wasps’ host. Here, six novel RNA viruses with complete genomes were identified in three parasitoid wasps of the rice weevil. One of these viruses was also detected in the rice weevil adults. Phylogenetically, WWPSRV-1 was the first unambiguous detection of Nora-like virus in insect parasitoids. WWPSRV-2 and AcPSRV-1 belong to families Iflaviridae and Dicistroviridae, some viruses of which can result in lethal infections in silkworms and honeybees. The other three RNA viruses belong to order Mononegavirales, which comprises many well-known insect-associated viruses.
Collapse
|
12
|
de Paula GT, Menezes C, Pupo MT, Rosa CA. Stingless bees and microbial interactions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:41-47. [PMID: 33271364 DOI: 10.1016/j.cois.2020.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Stingless bees (Meliponini) are a monophyletic group of eusocial insects inhabiting tropical and subtropical regions. These insects represent the most abundant and diversified group of corbiculate bees. Meliponini mostly rely on fermentation by symbiont microbes to preserve honey and transform pollen in stored food. Bee nests harbor diverse microbiota that includes bacteria, yeasts, filamentous fungi, and viruses. These microorganisms may interact with the bees through symbiotic relationships, or they may act as food for the insects, or produce biomolecules that aid in the biotransformation of bee products, such as honey and bee bread. Certain microbial species can also produce antimicrobial compounds that inhibit opportunistic bee pathogens.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Cristiano Menezes
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil
| | - Mônica Tallarico Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, SP, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
13
|
Cibulski S, Alves de Lima D, Fernandes Dos Santos H, Teixeira TF, Tochetto C, Mayer FQ, Roehe PM. A plate of viruses: Viral metagenomics of supermarket chicken, pork and beef from Brazil. Virology 2021; 552:1-9. [PMID: 33032031 PMCID: PMC7521440 DOI: 10.1016/j.virol.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
A viral metagenomics study was conducted in beef, pork, and chicken sold in supermarkets from Southern Brazil. From chicken, six distinct gyroviruses (GyV) were detected, including GyV3 and GyV6, which for the first time were detected in samples from avian species, plus a novel smacovirus species and two highly divergent circular Rep-encoding ssDNA (CRESS-DNA) viruses. From pork, genomes of numerous anelloviruses, porcine parvovirus 5 (PPV5) and 6 (PPV6), two new genomoviruses and two new CRESS-DNA viruses were found. Finally, two new CRESS-DNA genomes were recovered from beef. Although none of these viruses have history of transmission to humans, the findings reported here reveal that such agents are inevitably consumed in diets that include these types of meat.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerg Top Life Sci 2020; 4:59-76. [PMID: 32558901 DOI: 10.1042/etls20190069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.
Collapse
|
15
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|