1
|
Bilotti K, Keep S, Sikkema AP, Pryor JM, Kirk J, Foldes K, Doyle N, Wu G, Freimanis G, Dowgier G, Adeyemi O, Tabatabaei SK, Lohman GJS, Bickerton E. One-pot Golden Gate Assembly of an avian infectious bronchitis virus reverse genetics system. PLoS One 2024; 19:e0307655. [PMID: 39052682 PMCID: PMC11271894 DOI: 10.1371/journal.pone.0307655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates. In this study, we have applied data-optimized Golden Gate Assembly design to create a rapidly executable, flexible, and faithful reverse genetics system for IBV. The IBV genome was divided into 12 fragments at high-fidelity fusion site breakpoints. All fragments were synthetically produced and propagated in E. coli plasmids, amenable to standard molecular biology techniques for DNA manipulation. The assembly can be carried out in a single reaction, with the products used directly in subsequent viral rescue steps. We demonstrate the use of this system for generation of point mutants and gene replacements. This Golden Gate Assembly-based reverse genetics system will enable rapid response to emerging variants of IBV, particularly important to vaccine development for controlling spread within poultry populations.
Collapse
Affiliation(s)
- Katharina Bilotti
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | - Andrew P. Sikkema
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - John M. Pryor
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - James Kirk
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Ge Wu
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
2
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Kariithi HM, Volkening JD, Chiwanga GH, Goraichuk IV, Msoffe PLM, Suarez DL. Molecular Characterization of Complete Genome Sequence of an Avian Coronavirus Identified in a Backyard Chicken from Tanzania. Genes (Basel) 2023; 14:1852. [PMID: 37895200 PMCID: PMC10606662 DOI: 10.3390/genes14101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
A complete genome sequence of an avian coronavirus (AvCoV; 27,663 bp excluding 3' poly(A) tail) was determined using nontargeted next-generation sequencing (NGS) of an oropharyngeal swab from a backyard chicken in a live bird market in Arusha, Tanzania. The open reading frames (ORFs) of the Tanzanian strain TZ/CA127/19 are organized as typical of gammaCoVs (Coronaviridae family): 5'UTR-[ORFs 1a/1b encoding replicase complex (Rep1ab) non-structural peptides nsp2-16]-[spike (S) protein]-[ORFs 3a/3b]-[small envelop (E) protein]-[membrane (M) protein]-[ORFs 4a/4c]-[ORFs 5a/5b]-[nucleocapsid (N) protein]-[ORF6b]-3'UTR. The structural (S, E, M and N) and Rep1ab proteins of TZ/CA127/19 contain features typically conserved in AvCoVs, including the cleavage sites and functional motifs in Rep1ab and S. Its genome backbone (non-spike region) is closest to Asian GI-7 and GI-19 infectious bronchitis viruses (IBVs) with 87.2-89.7% nucleotide (nt) identities, but it has a S gene closest (98.9% nt identity) to the recombinant strain ck/CN/ahysx-1/16. Its 3a, 3b E and 4c sequences are closest to the duck CoV strain DK/GD/27/14 at 99.43%, 100%, 99.65% and 99.38% nt identities, respectively. Whereas its S gene phylogenetically cluster with North American TCoVs and French guineafowl COVs, all other viral genes group monophyletically with Eurasian GI-7/GI-19 IBVs and Chinese recombinant AvCoVs. Detection of a 4445 nt-long recombinant fragment with breakpoints at positions 19,961 and 24,405 (C- and N-terminus of nsp16 and E, respectively) strongly suggested that TZ/CA127/19 acquired its genome backbone from an LX4-type (GI-19) field strain via recombination with an unknown AvCoV. This is the first report of AvCoV in Tanzania and leaves unanswered the questions of its emergence and the biological significance.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00200, Kenya
| | | | - Gaspar H. Chiwanga
- Tanzania Veterinary Laboratory Agency, South Zone, Mtwara P.O. Box 186, Tanzania
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
| | - Peter L. M. Msoffe
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Chuo Kikuu, Morogoro P.O. Box 3021, Tanzania
- National Ranching Company Ltd., Dodoma P.O. Box 1819, Tanzania
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA 30605, USA
| |
Collapse
|
4
|
Fritch EJ, Sanders W, Sims AC, Herring LE, Barker NK, Schepmoes AA, Weitz KK, Texier JR, Dittmer DP, Graves LM, Smith RD, Waters KM, Moorman NJ, Baric RS, Graham RL. Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection. iScience 2023; 26:106780. [PMID: 37193127 PMCID: PMC10152751 DOI: 10.1016/j.isci.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature.
Collapse
Affiliation(s)
- Ethan J. Fritch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy C. Sims
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Athena A. Schepmoes
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Karl K. Weitz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Jordan R. Texier
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M. Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard D. Smith
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Katrina M. Waters
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99394, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Keep S, Dowgier G, Lulla V, Britton P, Oade M, Freimanis G, Tennakoon C, Jonassen CM, Tengs T, Bickerton E. Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions. J Virol 2023; 97:e0003823. [PMID: 36779761 PMCID: PMC10062133 DOI: 10.1128/jvi.00038-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | | | - Valeria Lulla
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | - Michael Oade
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
6
|
Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med 2023; 21:152. [PMID: 36841805 PMCID: PMC9958328 DOI: 10.1186/s12967-023-03996-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Karim Rahimian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, 2040, 3000 CA, Rotterdam, The Netherlands
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
7
|
Dong X, Penrice-Randal R, Goldswain H, Prince T, Randle N, Donovan-Banfield I, Salguero FJ, Tree J, Vamos E, Nelson C, Clark J, Ryan Y, Stewart JP, Semple MG, Baillie JK, Openshaw PJM, Turtle L, Matthews DA, Carroll MW, Darby AC, Hiscox JA. Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. Gigascience 2022; 11:giac045. [PMID: 35639883 PMCID: PMC9154083 DOI: 10.1093/gigascience/giac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/08/2021] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a complex strategy for the transcription of viral subgenomic mRNAs (sgmRNAs), which are targets for nucleic acid diagnostics. Each of these sgmRNAs has a unique 5' sequence, the leader-transcriptional regulatory sequence gene junction (leader-TRS junction), that can be identified using sequencing. High-resolution sequencing has been used to investigate the biology of SARS-CoV-2 and the host response in cell culture and animal models and from clinical samples. LeTRS, a bioinformatics tool, was developed to identify leader-TRS junctions and can be used as a proxy to quantify sgmRNAs for understanding virus biology. LeTRS is readily adaptable for other coronaviruses such as Middle East respiratory syndrome coronavirus or a future newly discovered coronavirus. LeTRS was tested on published data sets and novel clinical samples from patients and longitudinal samples from animal models with coronavirus disease 2019. LeTRS identified known leader-TRS junctions and identified putative novel sgmRNAs that were common across different mammalian species. This may be indicative of an evolutionary mechanism where plasticity in transcription generates novel open reading frames, which can then subject to selection pressure. The data indicated multiphasic abundance of sgmRNAs in two different animal models. This recapitulates the relative sgmRNA abundance observed in cells at early points in infection but not at late points. This pattern is reflected in some human nasopharyngeal samples and therefore has implications for transmission models and nucleic acid-based diagnostics. LeTRS provides a quantitative measure of sgmRNA abundance from sequencing data. This can be used to assess the biology of SARS-CoV-2 (or other coronaviruses) in clinical and nonclinical samples, especially to evaluate different variants and medical countermeasures that may influence viral RNA synthesis.
Collapse
Affiliation(s)
- Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Julia Tree
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Ecaterina Vamos
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Charlotte Nelson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Jordan Clark
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - James P Stewart
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Malcolm G Semple
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
| | | | - Miles W Carroll
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- UK-Health Security Agency, Salisbury, SP4 0JG, UK
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, Liverpool, L69 7BE, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, 138632, Singapore
| |
Collapse
|
8
|
Identification of Amino Acids within Nonstructural Proteins 10 and 14 of the Avian Coronavirus Infectious Bronchitis Virus That Result in Attenuation In Vivo and In Ovo. J Virol 2022; 96:e0205921. [PMID: 35044208 PMCID: PMC8941869 DOI: 10.1128/jvi.02059-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.
Collapse
|
9
|
Brandão PE, Berg M, Silva SOS, Taniwaki SA. Emergence of Avian coronavirus Escape Mutants Under Suboptimal Antibody Titers. J Mol Evol 2022; 90:176-181. [PMID: 35195749 PMCID: PMC8865171 DOI: 10.1007/s00239-022-10050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
To perform a quasispecies assessment of the effect of vaccine combinations and antibody titers on the emergence of Avian coronavirus (AvCoV) escape mutants, 5-week-old males from a commercial chicken breeder lineage were vaccinated intramuscularly with one dose of a monovalent (genotype GI-1) or a bivalent (genotypes GI-1 and GI-11 (n = 40 birds/group) AvCoV vaccine. Seven birds were kept as controls. Six weeks later, pools of sera of each group were prepared and incubated at virus neutralization doses of 10 and 10–1 with the Beaudette strain (GI-1) of AvCoV in VERO cells. Rescued viruses were then submitted to genome-wide deep sequencing for subconsensus variant detection. After treatment with serum from birds vaccinated with the bivalent vaccine at a titer of 10–1, an F307I variant was detected in the spike glycoprotein that mapped to an important neutralizing region, which indicated an escape mutant derived from natural selection. Further variants were detected in nonstructural proteins and non-coding regions that are not targets of neutralizing antibodies and might be indicators of genetic drift. These results indicate that the evolution of AvCoV escape mutants after vaccination depends on the type of vaccine strain and the antibody titer and must be assessed based on quasispecies rather than consensus dominant sequences only because quasispecies may be otherwise undetected.
Collapse
Affiliation(s)
- P E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil. .,Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av Prof. Dr. Orlando M Paiva 87, São Paulo, SP, 05508-270, Brazil.
| | - M Berg
- Department of Biomedical Sciences and Veterinary Public Health, Section of Virology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S O S Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - S A Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Sun L, Tang X, Qi J, Zhang C, Zhao J, Zhang G, Zhao Y. Two newly isolated GVI lineage infectious bronchitis viruses in China show unique molecular and pathogenicity characteristics. INFECTION GENETICS AND EVOLUTION 2021; 94:105006. [PMID: 34293479 DOI: 10.1016/j.meegid.2021.105006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
During 2016 to 2020, GVI-1 type infectious bronchitis virus (IBV) strains were sporadically reported across China, indicating a new epidemic trend of the virus. Here we investigated the molecular characteristics and pathogenicity of two newly isolated GVI-1 type IBV virus strains (CK/CH/TJ1904 and CK/CH/NP2011) from infected chicken farms in China. Genetic evolution analysis of the S1 gene showed the highest homology with the GVI-1 representative strain, TC07-2. Phylogenetic analysis and recombination analysis of the virus genomes indicated that newly isolated strains in China may be independently derived from recombination events that occurred between GI-19 and GI-22 strains and early GVI-1 viruses. Interestingly, unlike the deduced parental GI-19 or GI-22 strains, CK/CH/TJ1904 and CK/CH/NP2011 showed affinity for the trachea rather than the kidney and were less pathogenic. This difference may be because of recombination events that occurred during the long co-existence of the GVI-1 viruses with prevalent GI-19 and GI-22 strains. Considering the new trend, it is very important to permanently monitor circulating strains and to develop new vaccines to counteract emerging new-type IBVs.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinyan Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chunyan Zhang
- Heilongjiang Hegang Center for Animal Disease Control and Prevention, Hegang 154106, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Bhuiyan MSA, Amin Z, Bakar AMSA, Saallah S, Yusuf NHM, Shaarani SM, Siddiquee S. Factor Influences for Diagnosis and Vaccination of Avian Infectious Bronchitis Virus (Gammacoronavirus) in Chickens. Vet Sci 2021; 8:47. [PMID: 33809420 PMCID: PMC8001924 DOI: 10.3390/vetsci8030047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a major economic problem in commercial chicken farms with acute multiple-system infection, especially in respiratory and urogenital systems. A live-attenuated and killed vaccine is currently immunized to control IBV infection; however, repeated outbreaks occur in both unvaccinated and vaccinated birds due to the choice of inadequate vaccine candidates and continuous emergence of novel infectious bronchitis (IB) variants and failure of vaccination. However, similar clinical signs were shown in different respiratory diseases that are essential to improving the diagnostic assay to detect IBV infections. Various risk factors involved in the failure of IB vaccination, such as various routes of application of vaccination, the interval between vaccinations, and challenge with various possible immunosuppression of birds are reviewed. The review article also highlights and updates factors affecting the diagnosis of IBV disease in the poultry industry with differential diagnosis to find the nature of infections compared with non-IBV diseases. Therefore, it is essential to monitor the common reasons for failed IBV vaccinations with preventive action, and proper diagnostic facilities for identifying the infective stage, leading to earlier control and reduced economic losses from IBV disease.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Ag Muhammad Sagaf Abu Bakar
- Jabatan Perkhidmatan Veterinar Sabah, Makamal Diagnosa Veterinar Kota Kinabalu, Peti Surat No 59, Tanjung Aru 89457, Sabah, Malaysia;
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Noor Hydayaty Md. Yusuf
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri, Malaysia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| |
Collapse
|