1
|
Guo T, Yang L, Zhou N, Wang Z, Huan C, Zhou J, Lin T, Bao G, Hu J, Li G. Subminimum Inhibitory Concentrations Tetracycline Antibiotics Induce Biofilm Formation in Minocycline-Resistant Klebsiella pneumonia by Affecting Bacterial Physical and Chemical Properties and Associated Genes Expression. ACS Infect Dis 2024; 10:2929-2938. [PMID: 38949961 PMCID: PMC11321339 DOI: 10.1021/acsinfecdis.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Biofilm formation of Klebsiella pneumoniae can protect bacteria from antibiotics and is difficult to eradicate. Thus, the influence of subinhibitory concentrations of antibiotics on bacteria is becoming increasingly important. Our study showed that subminimum inhibitory concentrations (sub-MICs) of tetracycline antibiotics can increase biofilm formation in minocycline-resistant Klebsiella pneumoniae clinical strains. However, in the bacterial adhesion and invasion experiments, the adhesion and invasion ability decreased and the survival rate of Galleria mellonella increased. Under sub-MICs of tetracycline antibiotics treatment, abnormal stretching of bacteria was observed by scanning electron microscopy. Treatment with sub-MICs of tetracyclines leads to increased surface hydrophobicity and eDNA content and decreased outer membrane permeability. The expression levels of the fimA, luxS, qseB, and qseC genes decreased, the expression level of mrkA increased, and the expression level of acrA was inconsistent under different tetracycline antibiotics treatments. Together, our results suggested that the increase in Klebsiella pneumoniae biofilm formation caused by sub-MICs of tetracycline antibiotics may occur by affecting bacterial physical and chemical properties and associated genes expression.
Collapse
Affiliation(s)
- Tingting Guo
- Department
of Microbiology, Medical College, Yangzhou
University, Yangzhou 225001, China
- Jiangsu
Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention
and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225001, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Liying Yang
- Department
of Microbiology, Medical College, Yangzhou
University, Yangzhou 225001, China
| | - Na Zhou
- Department
of Microbiology, Medical College, Yangzhou
University, Yangzhou 225001, China
| | - Zichen Wang
- Department
of Microbiology, Medical College, Yangzhou
University, Yangzhou 225001, China
| | - Changchao Huan
- Institute
of Agricultural Science and Technology Development, College of Veterinary
Medicine, Yangzhou University, Yangzhou 225001, China
| | - Jun Zhou
- Department
of Respiratory and Critical Care Medicine, Affiliated Hospital, Yangzhou University, Yangzhou 225009, China
| | - Tao Lin
- Department
of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou 225009, China
| | - Guangyu Bao
- Department
of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou 225009, China
| | - Jian Hu
- Department
of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine/Clinical
Medical College, Guangling College, Yangzhou
University, Yangzhou 214200, China
| | - Guocai Li
- Department
of Microbiology, Medical College, Yangzhou
University, Yangzhou 225001, China
- Jiangsu
Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention
and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225001, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
2
|
Zhang F, Liu F, Sheng X, Liu Q, Cui L, Cao Z, Hu T, Li D, Dai M. Bacitracin-resistant Staphylococcus aureus induced in chicken gut and in vitro under bacitracin exposure. Microb Pathog 2024; 191:106666. [PMID: 38685360 DOI: 10.1016/j.micpath.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
It is common knowledge that prolonged and excessive use of antibiotics can lead to antimicrobial resistance. However, the characteristics and mechanism of resistant-bacteria induced by clinically recommended and prophylactic dose drugs remain largely unclear. This study aimed to observe the trends of drug resistance of the bacitracin-susceptible Staphylococcus aureus strain FS127 under exposure to bacitracin (BAC), which were induced in vitro and in chicken gut. Antimicrobial susceptibility testing was used to detect the susceptibility of S. aureus induced in vitro and in the chicken gut to gentamicin, chloramphenicol, tetracycline, doxycycline, penicillin and chloramphenicol. The research results showed that bacitracin could induce drug resistance in S. aureus both in vitro and in vivo. The bacitracin-resistance rate of S. aureus isolated from chicken gut was positively correlated with the dose and time of bacitracin administration. The findings revealed that bacitracin-resistant S. aureus induced in vivo had enhanced susceptibility to chloramphenicol but no such change in vitro. Meanwhile, RT-qPCR assay was used to detect the expression levels of vraD, braD, braR and bacA in typical strains with different bacitracin-resistance levels. It was found that BacA may play a key role in the bacitracin resistance of S. aureus. In conclusion, this work reveals the characteristics and mechanism of bacitracin-resistant S. aureus induced by bacitracin in vivo and in vitro respectively.
Collapse
Affiliation(s)
- Fan Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangjia Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xijing Sheng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengzheng Cao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghua Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Wong BC, Law SKK, Md Zoqratt MZH, Ayub Q, Tan HS. Adaptation of a fluoroquinolone-sensitive Shigella sonnei to norfloxacin exposure. ROYAL SOCIETY OPEN SCIENCE 2024; 11:232025. [PMID: 39100177 PMCID: PMC11296047 DOI: 10.1098/rsos.232025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Shigella causes shigellosis that requires antibiotic treatment in severe cases. Sublethal antibiotic concentrations can promote resistance, but their effect on antibiotic-sensitive bacteria before resistance development is unclear. This study investigated the effects of sublethal norfloxacin (NOR) challenges on a NOR-sensitive strain, Shigella sonnei UKMCC1015. Firstly, the whole genome of S. sonnei UKMCC1015 was assembled, and 45 antimicrobial resistance (AMR) genes were identified. Interestingly, transcriptomic analysis showed that low NOR levels do not change either the expression of the AMR genes or NOR targets such as gyrA. Instead, multiple ribosomal protein genes were downregulated, which could be attributed to decreased ribosomal protein promoter activity, modulated by elevated guanosine pentaphosphate and tetraphosphate (ppGpp) levels. This alarmone is involved in the bacterial stringent response during environmental stress, and it is mainly produced from the ppGpp synthetase (relA). Additionally, we observed that a relA overexpression (prolonged period of elevated ppGpp levels) may negatively affect the NOR tolerance of the bacteria. In conclusion, this study revealed that a NOR-sensitive strain responds differently to sublethal NOR than commonly reported in resistant strains.
Collapse
Affiliation(s)
- Bao Chi Wong
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Soffi Kei Kei Law
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Monash University Malaysia Genomics Platform, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Monash University Malaysia Genomics Platform, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Wang Y, Wang G, Zhu L, Li X, Li J, Li Z. Inappropriate prescription of intravenous antibiotics at a tertiary children's hospital in China. Minerva Pediatr (Torino) 2024; 76:161-166. [PMID: 34098708 DOI: 10.23736/s2724-5276.21.05902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Antibiotics are one of the most frequently prescribed medication classes worldwide. Inappropriate prescription of antibiotics has increased the risk of drug-resistant infections and associated mortality. The aim of this study was to examine the patterns of intravenous antibiotics prescribing in emergency and outpatient departments of a tertiary children's hospital in China. METHODS Data on intravenous prescriptions dispensed by the emergency and outpatient department from January 1, 2015 to May 31, 2016 were extracted from the information system of the Children's Hospital of Fudan University. Prevalence of intravenous antibiotics use and the suitability of intravenous antibiotic prescription were evaluated on the basis of a completed microbiological examination, antibiotics susceptibility testing, and dose prescribed for patients diagnosed with pneumonia, acute bronchitis, fever, and acute upper respiratory infection (AURI) patients. The prescription rate was expressed as the number of intravenous antibiotic prescriptions per total number of prescriptions. RESULTS Overall, 94.2% of pediatric patients and 78.5% of issued intravenous prescriptions were for antibiotics. beta-lactam antibacterial (90.5%) and macrolides (18.5%) were the most commonly used categories of antibiotics, while cefuroxime (28.8%) was the most used antibiotic. Besides, pneumonia (31.3%), acute bronchitis (14.1%), fever (6.5%), and AURI (5.5%) were the most commonly recorded infections. However, in these four diseases, the rate of conducting microbiological examination was 0.3%, 0.2%, 2.1%, and 2.8%, respectively. Approximately, 52.1%, 40.0%, 40.4%, and 30.5% of intravenous antibiotic prescriptions were inappropriately used in pneumonia, acute bronchitis, fever, and AURI, respectively. Doses higher and lower than the recommended were often for each of these four diseases. CONCLUSIONS The frequency of intravenous antibiotic prescription was high in pediatric emergency and outpatient departments. Inappropriate use of intravenous antibiotics commonly occurred in pneumonia, acute bronchitis, fever, and AURI. Appropriate interventions and prevention strategies need to be developed to curtail inappropriate prescribing of antibiotics.
Collapse
Affiliation(s)
- Yan Wang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
- Key Laboratory of Tropical Translational Medicine of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Zhu
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoxia Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China -
| |
Collapse
|
5
|
Yang G, Wang G, Li Z, Deng L, Wang N, Wang X, Zhou T, Zhang J, Lei Y, Wang T, Wang Y, Shao H, Chen M, Zhang K, Zhou M, Wang X, Liu X, Ju S. Efficacy and pharmacoeconomic advantages of Fufang Huangbai Fluid hydropathic compress in diabetic foot infections: a comparative clinical study with antimicrobial calcium alginate wound dressing. Front Pharmacol 2024; 15:1285946. [PMID: 38318142 PMCID: PMC10839075 DOI: 10.3389/fphar.2024.1285946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Objective: To compare the intervention effects and pharmacoeconomic advantages of Fufang Huangbai Fluid (FFHB) hydropathic compress versus Antimicrobial Calcium Alginate Wound Dressing (ACAWD) in the treatment of diabetic foot infections (DFI). Methods: Patients with DF who were hospitalized in the peripheral vascular Department of Dongzhimen Hospital of Beijing University of Chinese Medicine from December 2020 to February 2022 and met the inclusion and excluding criteria were allocated into the experimental group and control group through minimization randomization. The experimental group was treated with FFHB hydropathic compress for 2 weeks, while the control group was treated with ACAWD for the same duration. The wound healing of both groups was monitored for 1 month post-discharge. Clinical data from all eligible patients were collected, and differences in various indices between cohorts were analyzed. Results: 22 in the experimental group (including two fell off) and 20 in the control group. After the treatment, the negative rate of wound culture in the experimental group was 30% and that in the control group was 10%, There was no significant difference in the negative rate of wound culture and change trend of minimum inhibitory concentration (MIC) value of drug sensitivity (p > 0.05). The infection control rate of the experimental group was 60%, and that of the control group was 25%. The difference between the two groups was statistically significant (χ2 = 5.013, p = 0.025). The median wound healing rate of the experimental group was 34.4% and that of the control group was 33.3%. There was no significant difference between the two groups (p > 0.05). During the follow-up 1 month later, the wound healing rate in the experimental group was higher, and the difference was statistically significant (p = 0.047). Pharmacoeconomic evaluations indicated that the experimental group had greater cost-effectiveness compared to the control group. Conclusion: In the preliminary study, FFHB demonstrated comparable pathogenic and clinical efficacy to ACAWD in the treatment of mild DF infection, and exhibited superior pharmacoeconomic advantages. With the aid of infection control, the wound healing rate in the FFHB group showed notable improvement. Nevertheless, due to the limited sample size, larger-scale studies are warranted to further validate these findings. Clinical Trial Registration: (https://www.chictr.org.cn/showproj.aspx?proj=66175), identifier (ChiCTR2000041443).
Collapse
Affiliation(s)
- Guangyao Yang
- Beijing Hepingli Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gang Wang
- Department of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Lijuan Deng
- Beijing University of Chinese Medicine, Beijing, China
| | - Ning Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuewan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Yin Lei
- Beijing Hepingli Hospital, Beijing, China
| | - Tao Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Shao
- Beijing University of Chinese Medicine, Beijing, China
| | - Mingya Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Keren Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiangbao Wang
- Department of Interventional Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Shang Ju
- Department of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
D’Aquila P, De Rango F, Paparazzo E, Passarino G, Bellizzi D. Epigenetic-Based Regulation of Transcriptome in Escherichia coli Adaptive Antibiotic Resistance. Microbiol Spectr 2023; 11:e0458322. [PMID: 37184386 PMCID: PMC10269836 DOI: 10.1128/spectrum.04583-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Zhang J, Xu J, Lei H, Liang H, Li X, Li B. The development of variation-based rifampicin resistance in Staphylococcus aureus deciphered through genomic and transcriptomic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130112. [PMID: 36303348 DOI: 10.1016/j.jhazmat.2022.130112] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Rifampicin (RIF) resistance imposes a challenge on the antimicrobial treatment of pathogen infections. Figuring out the development mechanism of RIF resistance is critical to improving antimicrobial therapy strategy in clinics and biological treatment strategy of RIF polluted sewage in environmental engineering. The RIF resistance development of Staphylococcus aureus (S. aureus) with exposure to RIF at sub-inhibitory concentrations was comprehensively investigated via genomic and transcriptomic approaches in this study. RIF minimal inhibitory concentration (MIC) for S. aureus rapidly increased from 0.032 to 256 mg/L. Membrane permeability decrease, biofilm formation enhancement, and ROS production increase associated with RIF resistance were observed in RIF-induced strains. Through comparative genomic analysis, mutations in rpoB and rpoC were considered to be associated with RIF resistance in S. aureus mutants. Pan-genome-wide single-nucleotide variant analysis indicated that mutations at rpoB-1412, rpoB-1451, and rpoB-1457 were prevalent in 13849 public genomes of S. aureus, while mutations at rpoB-2256, and rpoC-3092 were first discovered in this study. The panorama of adaptative alteration of cellular physiological processes was observed via transcriptomic analysis. The oxidation pressure responses, metabolism, transporters, virulence factors, and multiple steps of DNA and RNA machinery were found to be perturbed by RIF in S. aureus.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jie Xu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Huaxin Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
The effect of nickel ions on the susceptibility of bacteria to ciprofloxacin and ampicillin. Folia Microbiol (Praha) 2022; 67:649-657. [PMID: 35353362 DOI: 10.1007/s12223-022-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/19/2022] [Indexed: 11/04/2022]
Abstract
To explore the interaction effects of ciprofloxacin and ampicillin with nickel on the growth of bacteria, Staphylococcus aureus strain ATCC 29213, Enterococcus faecalis ATCC 29212 and Escherichia coli ATCC 25922 were used. Minimum inhibitory concentrations (MICs) were determined for nickel, ciprofloxacin and ampicillin, and the checkerboard method was used to assess their cumulative effects on bacterial growth. The interactions between the metal and antibiotics were assessed by the fractional inhibitory concentration (FIC). The MICs for ciprofloxacin and ampicillin were 0.31 and 1 mg/L for E. faecalis, 0.62 and 1 mg/L for S. aureus and 0.005 and 2.5 for E. coli, respectively. The MIC for nickel was 1000 mg/L for all bacteria. The FIC results for ciprofloxacin and nickel demonstrated an antagonistic effect of the two agents on the growth of E. coli and E. faecalis and an additive effect on S. aureus. The FICs for ampicillin and nickel demonstrated a synergistic effect on the growth of E. faecalis and E. coli. Different interactions of metals and antibiotics were observed depending on the bacteria and the type of antibiotic.
Collapse
|
9
|
Gordon O, Lee DE, Liu B, Langevin B, Ordonez AA, Dikeman DA, Shafiq B, Thompson JM, Sponseller PD, Flavahan K, Lodge MA, Rowe SP, Dannals RF, Ruiz-Bedoya CA, Read TD, Peloquin CA, Archer NK, Miller LS, Davis KM, Gobburu JVS, Jain SK. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med 2021; 13:eabl6851. [PMID: 34851697 PMCID: PMC8693472 DOI: 10.1126/scitranslmed.abl6851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major human pathogen causing serious implant–associated infections. Combination treatment with rifampin (10 to 15 mg/kg per day), which has dose-dependent activity, is recommended to treat S. aureus orthopedic implant–associated infections. Rifampin, however, has limited bone penetration. Here, dynamic 11C-rifampin positron emission tomography (PET) performed in prospectively enrolled patients with confirmed S. aureus bone infection (n = 3) or without orthopedic infection (n = 12) demonstrated bone/plasma area under the concentration-time curve ratio of 0.14 (interquartile range, 0.09 to 0.19), exposures lower than previously thought. PET-based pharmacokinetic modeling predicted rifampin concentration-time profiles in bone and facilitated studies in a mouse model of S. aureus orthopedic implant infection. Administration of high-dose rifampin (human equipotent to 35 mg/kg per day) substantially increased bone concentrations (2 mg/liter versus <0.2 mg/liter with standard dosing) in mice and achieved higher bacterial killing and biofilm disruption. Treatment for 4 weeks with high-dose rifampin and vancomycin was noninferior to the recommended 6-week treatment of standard-dose rifampin with vancomycin in mice (risk difference, −6.7% favoring high-dose rifampin regimen). High-dose rifampin treatment ameliorated antimicrobial resistance (0% versus 38%; P = 0.04) and mitigated adverse bone remodeling (P < 0.01). Last, whole-genome sequencing demonstrated that administration of high-dose rifampin in mice reduced selection of bacterial mutations conferring rifampin resistance (rpoB) and mutations in genes potentially linked to persistence. These data suggest that administration of high-dose rifampin is necessary to achieve optimal bone concentrations, which could shorten and improve treatments for S. aureus orthopedic implant infections.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald E. Lee
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Bessie Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alvaro A. Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Babar Shafiq
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John M. Thompson
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul D. Sponseller
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Flavahan
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin A. Lodge
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Steven P. Rowe
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo A. Ruiz-Bedoya
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Immunology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jogarao V. S. Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sanjay K. Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Paleczny J, Junka A, Brożyna M, Dydak K, Oleksy-Wawrzyniak M, Ciecholewska-Juśko D, Dziedzic E, Bartoszewicz M. The High Impact of Staphylococcus aureus Biofilm Culture Medium on In Vitro Outcomes of Antimicrobial Activity of Wound Antiseptics and Antibiotic. Pathogens 2021; 10:pathogens10111385. [PMID: 34832540 PMCID: PMC8626063 DOI: 10.3390/pathogens10111385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
The staphylococcal biofilm-based infections of wounds still pose a significant therapeutical challenge. Treated improperly, they increase the risk of limb amputation or even death of the patient. The present algorithms of infected wound treatment include, among others, the application of antiseptic substances. In vitro wound biofilm models are applied in order to scrutinize their activity. In the present work, using a spectrum of techniques, we showed how the change of a single variable (medium composition) in the standard in vitro model translates not only to shift in staphylococcal biofilm features but also to the change of efficacy of clinically applied wound antimicrobials such as octenidine, polyhexamethylene biguanide, chlorhexidine, hypochlorite solutions, and locally applied gentamycin. The data presented in this study may be of a pivotal nature, taking into consideration the fact that results of in vitro analyses are frequently used to propagate application of specific antimicrobials in hospitals and ambulatory care units.
Collapse
Affiliation(s)
- Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
- Correspondence:
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Ewelina Dziedzic
- Faculty of Medicine, Lazarski University, 02-662 Warszawa, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (M.B.); (K.D.); (M.O.-W.); (M.B.)
| |
Collapse
|
11
|
Guo K, Zhao Y, Cui L, Cao Z, Zhang F, Wang X, Feng J, Dai M. The Influencing Factors of Bacterial Resistance Related to Livestock Farm: Sources and Mechanisms. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.650347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial resistance is a complex scientific issue. To manage this issue, we need to deeply understand the influencing factors and mechanisms. Based on the background of livestock husbandry, this paper reviews the factors that affect the acquisition of bacterial resistance. Meanwhile, the resistance mechanism is also discussed. “Survival of the fittest” is the result of genetic plasticity of bacterial pathogens, which brings about specific response, such as producing adaptive mutation, gaining genetic material or changing gene expression. To a large extent, bacterial populations acquire resistance genes directly caused by the selective pressure of antibiotics. However, mobile resistance genes may be co-selected by other existing substances (such as heavy metals and biocides) without direct selection pressure from antibiotics. This is because the same mobile genetic elements as antibiotic resistance genes can be co-located by the resistance determinants of some of these compounds. Furthermore, environmental factors are a source of resistance gene acquisition. Here, we describe some of the key measures that should be taken to mitigate the risk of antibiotic resistance. We call on the relevant governments or organizations around the world to formulate and improve the monitoring policies of antibiotic resistance, strengthen the supervision, strengthen the international cooperation and exchange, and curb the emergence and spread of drug-resistant strains.
Collapse
|
12
|
Casciaro B, Cappiello F, Verrusio W, Cacciafesta M, Mangoni ML. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Curr Top Med Chem 2021; 20:1264-1273. [PMID: 32338221 DOI: 10.2174/1568026620666200427090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023]
Abstract
The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science @ Sapienza, Italian Institute of Technology, Rome 00161, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Walter Verrusio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Mauro Cacciafesta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
13
|
El-Salamouni NS, Gowayed MA, Seiffein NL, Abdel-Moneim RA, Kamel MA, Labib GS. Valsartan solid lipid nanoparticles integrated hydrogel: A challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. Int J Pharm 2021; 592:120091. [PMID: 33197564 DOI: 10.1016/j.ijpharm.2020.120091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
The article presents an experimental study on the possible repurposed use of valsartan (Val), in the local treatment of uncontrolled diabetic foot ulcer. Solid lipid nanoparticles (SLN), loaded with Val were prepared by applying 32 full factorial design using modified high shear homogenization method. The lipid phase composed of Precirol® ATO 5 (P ATO 5) and/or Gelucire 50/13 (G 50/13) in different ratios and a nonionic emulsifier, Pluronic 188 (P188), was used in different percentages. Optimized formulation was further integrated in hydroxyl propyl methyl cellulose (HPMC) gel for the ease of administration. In-vitro and in-vivo characterizations were investigated. The prepared nanoparticles showed small particle size, high entrapment efficiency and sustained drug release. Microbiologically, Val-SLN showed a prominent decrease in the biofilm mass formation for both gram-positive and gram-negative bacteria, as well as a comparable minimum inhibitory concentration level to levofloxacin alone. Diabetes was induced in 32 neonatal Sprague-Dawley rats. At 8 weeks of age, rats with blood sugar level >160 were subjected to surgically induced ulcer. Treatment with Val-SLN for 12 days revealed enhanced healing characteristics through cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nitric oxide (NO), transforming growth factor-beta (TGF-β), matrix metalloproteinase (MMPs) and vascular endothelial growth factor (VEGF) pathways. Histological examination revealed re-epithelization in Val-SLN treated ulcer, as well as decrease in collagen using trichrome histomorphometric analysis.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Nevine L Seiffein
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Rehab A Abdel-Moneim
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Egypt.
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Egypt.
| | - Gihan S Labib
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10010039. [PMID: 33401579 PMCID: PMC7823975 DOI: 10.3390/antibiotics10010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are notoriously complicated by the ability of the organism to grow in biofilms and are difficult to eradicate with antimicrobial therapy. The purpose of the current study was to clarify the influence of sub-inhibitory concentrations (sub-MICs) of daptomycin and tigecycline antibiotics on biofilm adhesion factors and exoproteins expressions by S. aureus clinical isolates. Six clinical isolates representing positive biofilm S. aureus clones (3 methicillin-sensitive S. aureus (MSSA) and 3 methicillin-resistant S. aureus (MRSA)) were grown with sub-MICs (0.5 MIC) of two antibiotics (daptomycin and tigecycline) for 12 h of incubation. RNA extracted from culture pellets was used via relative quantitative real-time-PCR (qRT-PCR) to determine expression of specific adhesion (fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno) and biofilm (icaADBC) genes. To examine the effect of sub-MIC of these antibiotics on the expression of extracellular proteins, samples from the culture supernatants of six isolates were collected after 12 h of treatment with or without tigecycline in order to profile protein production via 2D gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D gel-SDS-PAGE). Sub-MIC treatment of all clinical MRSA and MSSA strains with daptomycin or tigecycline dramatically induced or suppressed fnbA, fnbB, clfA, clfB, fib, ebps, cna, eno, and icaADBC gene expression. Furthermore, sub-MIC use of tigecycline significantly reduced the total number of separated protein spots across all the isolates, as well as decreasing production of certain individual proteins. Collectively, this study showed very different responses in terms of both gene expression and protein secretion across the various isolates. In addition, our results suggest that sub-MIC usage of daptomycin and tigecycline could signal virulence induction by S. aureus via the regulation of biofilm adhesion factor genes and exoproteins. If translating findings to the clinical treatment of S. aureus, the therapeutic regimen should be adapted depending on antibiotic, the virulence factor and strain type.
Collapse
|
15
|
Antibiotic resistance related to biofilm formation in Streptococcus suis. Appl Microbiol Biotechnol 2020; 104:8649-8660. [PMID: 32897417 DOI: 10.1007/s00253-020-10873-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic agent, which seriously impacts the pig industry and human health in various countries. Biofilm formation is likely contributing to the virulence and drug resistance in S. suis. A better knowledge of biofilm formation as well as to biofilm-dependent drug resistance mechanisms in S. suis can be of great significance for the prevention and treatment of S. suis infections. This literature review updates the latest scientific data related to biofilm formation in S. suis and its impact on drug tolerance and resistance.Key points• Biofilm formation is the important reasons for drug resistance of SS infections.• The review includes the regulatory mechanism of SS biofilm formation.• The review includes the drug resistance mechanisms of SS biofilm.
Collapse
|
16
|
Goneau LW, Delport J, Langlois L, Poutanen SM, Razvi H, Reid G, Burton JP. Issues beyond resistance: inadequate antibiotic therapy and bacterial hypervirulence. FEMS MICROBES 2020; 1:xtaa004. [PMID: 37333955 PMCID: PMC10117437 DOI: 10.1093/femsmc/xtaa004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 10/15/2023] Open
Abstract
The administration of antibiotics while critical for treatment, can be accompanied by potentially severe complications. These include toxicities associated with the drugs themselves, the selection of resistant organisms and depletion of endogenous host microbiota. In addition, antibiotics may be associated with less well-recognized complications arising through changes in the pathogens themselves. Growing evidence suggests that organisms exposed to antibiotics can respond by altering the expression of toxins, invasins and adhesins, as well as biofilm, resistance and persistence factors. The clinical significance of these changes continues to be explored; however, it is possible that treatment with antibiotics may inadvertently precipitate a worsening of the clinical course of disease. Efforts are needed to adjust or augment antibiotic therapy to prevent the transition of pathogens to hypervirulent states. Better understanding the role of antibiotic-microbe interactions and how these can influence disease course is critical given the implications on prescription guidelines and antimicrobial stewardship policies.
Collapse
Affiliation(s)
- Lee W Goneau
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
| | - Johannes Delport
- Department of Pathology, London Health Sciences Center - Victoria Hospital, 800 Commissioners Rd E, London, Ontario, Canada N6A 5W9
| | - Luana Langlois
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Susan M Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto,1 King's College Cir, Toronto, ON M5S 1A8 Ontario, Canada
- Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, ON M5S 1A8 Toronto, Ontario, Canada
- Department of Microbiology, University Health Network and Sinai Health, 190 Elizabeth St. Toronto, ON M5G 2C4, Ontario, Canada
| | - Hassan Razvi
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Gregor Reid
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| | - Jeremy P Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, 268 Grosvenor St, London, Ontario, N6A 4V2 Canada
- Division of Urology, Department of Surgery, Western University, 1151 Richmond St, London, Ontario, N6A 3K7 Canada
| |
Collapse
|
17
|
Bandyopadhyay D, Mukherjee M. Reactive oxygen species and uspA overexpession: an alternative bacterial response toward selection and maintenance of multidrug resistance in clinical isolates of uropathogenic E. coli. Eur J Clin Microbiol Infect Dis 2020; 39:1753-1760. [PMID: 32399681 DOI: 10.1007/s10096-020-03903-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Emergence of multidrug resistance (MDR) in uropathogenic E. coli (UPEC) demands alternative therapeutic interventions. Bactericidal antibiotics at their sub-inhibitory concentration stimulate production of reactive oxygen species (ROS) that results in oxidative stress, generates mutations, and alters transcription of different genes. Sub-inhibitory concentration of antibiotics facilitates selection of highly resistant population. Universal stress protein A (uspA) overexpression in MDR-UPEC at sub-inhibitory bactericidal antibiotics concentration was investigated to explore alternative survival strategy against them. Fifty clinical UPEC isolates were screened. Minimum inhibitory concentration (MIC) against three different bactericidal antibiotics (ciprofloxacin, CIP; ceftazidime, CAZ; gentamycin, GEN) was determined by broth dilution method; ROS production by DCFDA and overexpression of uspA by real-time PCR were determined at the sub-inhibitory concentration of antibiotics. DNA ladder formation and SEM studies were performed with drug untreated and treated samples. Statistical analysis was done by Student's t test and Pearson's correlation analysis; 25 out of 50 UPEC exhibited high MIC against CIP (> 200 μg/ml), CAZ (> 500 μg/ml), GEN (> 500 μg/ml), with varied ROS production (p ≤ 0.001) in treated than untreated controls. DNA ladder formation confirmed ROS production in drug-treated samples. SEM analysis revealed unaltered cell morphology in both untreated and drug-treated bacteria. uspA was universally overexpressed in all 25 UPEC. A significant correlation (p ≤ 0.001) between ROS production and uspA overexpression was observed in 19 out of 25 MDR isolates at sub-inhibitory doses of the bactericidal antibiotics. Therefore, this study highlights an alternative strategy that the MDR isolates may acquire when exposed to sub-inhibitory drug concentration for their survival.
Collapse
Affiliation(s)
- Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
18
|
Xi J, Wei G, Wu Q, Xu Z, Liu Y, Han J, Fan L, Gao L. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater Sci 2020; 7:4131-4141. [PMID: 31328742 DOI: 10.1039/c9bm00705a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial infection and the issue of antibiotic resistance have become one of the major public health problems worldwide. Thus, searching for new antibacterial agents is urgently required. Hydrogen peroxide, H2O2, as a traditional bactericide, is applied widely for medical treatments. However, the relatively high concentration of H2O2 used in a clinical setting usually inhibits wound healing and even damages normal tissues during disinfection. Here, we synthesized N-doped sponge-like carbon spheres (N-SCSs), which showed excellent mimicking activities for multiple enzymes, including peroxidase, oxidase, superoxide dismutase, and catalase. We then utilized the peroxidase-like activity of the N-SCSs to convert low-concentration H2O2 into radical oxygen species to resist bacteria. The data showed that the antibacterial performance of H2O2 against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and multidrug-resistant bacteria was improved through the peroxidase-like catalytic reaction of N-SCSs. Importantly, besides generating heat against bacteria, near-infrared laser exposure also promoted the peroxidase activity of N-SCSs, to further generate radical oxygen species to kill bacteria. In addition, this catalytic-photothermal antibacterial strategy demonstrated accelerated recovery of infected wounds in an animal model. Thus, our work provides a new synergetic anti-infection strategy, and further expands the application of carbon-based nanozymes in biomedicine.
Collapse
Affiliation(s)
- Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu S, Mai B, Jia M, Lin D, Zhang J, Liu Q, Wang P. Synergistic antimicrobial effects of photodynamic antimicrobial chemotherapy and gentamicin on Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101703. [PMID: 32151763 DOI: 10.1016/j.pdpdt.2020.101703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bacterial resistance to antibiotics is generally increasing, which has become a great challenge for treating infectious diseases caused by microbes. Photodynamic antibacterial chemotherapy (PACT) has been considered as a promising method for inactivating bacteria. The combination of antimicrobial agent with PACT may provide efficient way against drug-resistant microbe. This study aims to investigate the synergistic effects of PACT mediated by toluidine blue (TB), combined with gentamicin (GEN) on common pathogens Staphylococcus aureus (S. aureus) and multidrug-resistant S. aureus (MDR S. aureus). METHODS Alkaline lysis was used to detect the uptake of TB by S. aureus and MDR S. aureus. Plate counting was applied to evaluate the inhibition efficiency of GEN alone, TB-PACT alone, and work together. Flow cytometry and fluorescence microscopy were performed to examine the permeability of bacterial membranes after different treatments. Intracellular and extracellular reactive oxygen species (ROS) were assessed with the assist of H2DCF-DA and SOSG probes. RESULTS TB-PACT combined with GEN led to more pronounced antibacterial effects in S. aureus and MDR S. aureus, as compared with either alone. TB-PACT treatment permeabilized the bacterial membranes, promoted GEN cellular accumulation and augmented the antibacterial efficiency. The intracellular ROS generation by the combination of TB-PACT and GEN was much higher than that of single treatment groups. CONCLUSIONS TB-PACT decreased the GEN cytotoxic threshold and usage, and the synergy of them significantly enhanced the sterilization of S. aureus and MDR S. aureus.
Collapse
Affiliation(s)
- Shupei Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bingjie Mai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Mengqi Jia
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingdan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
20
|
Liu L, Shen X, Yu J, Cao X, Zhan Q, Guo Y, Yu F. Subinhibitory Concentrations of Fusidic Acid May Reduce the Virulence of S. aureus by Down-Regulating sarA and saeRS to Reduce Biofilm Formation and α-Toxin Expression. Front Microbiol 2020; 11:25. [PMID: 32117092 PMCID: PMC7033611 DOI: 10.3389/fmicb.2020.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/08/2020] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is an important pathogen in hospital and community infections. Fusidic acid is particularly effective in treating skin and wound infections caused by staphylococci. The purpose of our study was to clarify the effect of fusidic acid on the biofilm formation and α-toxin expression of S. aureus at subinhibitory concentrations [1/64, 1/32, and 1/16 × minimum inhibitory concentration (MIC)]. A total of 504 genes greater than a twofold or less than twofold change in expression of S. aureus effected by subinhibitory concentrations of fusidic acid were found, including 232 up-regulated genes and 272 down-regulated genes, which were determined by transcriptome sequencing. Our results showed subinhibitory concentrations of fusidic acid significantly inhibited the expression of hla, spa, icaA, and cidA at the mRNA level in clinical S. aureus strains tested. And subinhibitory concentrations of fusidic acid can significantly reduce the hemolysis activity and α-toxin production of S. aureus. In addition, the subinhibitory concentrations of fusidic acid significantly inhibited biofilm formation, autolysis, cell aggregation, and polysaccharide intercellular adhesin (PIA) production of S. aureus. Moreover, fusidic acid effectively reduces the damage of mouse skin lesion area. Furthermore, fusidic acid reduced the expression of the two-component regulatory system saeRS and staphylococcal accessory gene regulator (sarA). In conclusion, our results suggested that the subinhibitory concentrations of fusidic acid may reduce the virulence of S. aureus by down-regulating sarA and saeRS to reduce biofilm formation and α-toxin expression, which will provide a theoretical basis for the clinical treatment of S. aureus infection. This is the first report that fusidic acid has an inhibitory effect on the virulence of S. aureus, and this broadens the clinical application of fusidic acid.
Collapse
Affiliation(s)
- Li Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofei Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingyi Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingwei Cao
- Jiangxi Provincial Key Laboratory of Medicine, Clinical Laboratory of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Zhan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Mechesso AF, Park SC. Tylosin exposure reduces the susceptibility of Salmonella Typhimurium to florfenicol and tetracycline. BMC Vet Res 2020; 16:22. [PMID: 31992283 PMCID: PMC6986020 DOI: 10.1186/s12917-020-2246-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/16/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Antibiotics exposure has been implicated in the emergence of bacterial strains that are resistant to structurally related or unrelated antibiotics. Tylosin is a macrolide antibiotic that has been administered to treat respiratory pathogenic bacteria in swine. Thus, this study was undertaken to evaluate the impact of exposure to a constant (3 μg/mL) and decreasing concentrations of tylosin on the susceptibility of Salmonella enterica serovar Typhimurium to various antibiotics. RESULTS S. Typhimurium strains exposed to tylosin for 12 and 24 h in the in vitro dynamic model demonstrated at least an eight-fold increase in the minimum inhibitory concentrations (MICs) of florfenicol and tetracycline. Exposure to tylosin extended the lag-time of the growth curve and enhanced the generation of reactive oxygen species. Gene expression analysis demonstrated up-regulation of the acrAB and tolC Salmonella efflux pump genes and its global regulators (marA and soxS). Besides, the expression of ompC gene was down-regulated in tylosin exposed S. Typhimurium. CONCLUSION Exposure to decreasing concentrations of tylosin could reduce the susceptibility of S. Typhimurium to florfenicol and tetracycline.
Collapse
Affiliation(s)
- Abraham Fikru Mechesso
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566 South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566 South Korea
| |
Collapse
|
22
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
23
|
Dolzani L, Milan A, Scocchi M, Lagatolla C, Bressan R, Benincasa M. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. J Med Microbiol 2019; 68:1253-1265. [PMID: 31215857 DOI: 10.1099/jmm.0.001028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Acinetobacter baumannii is one of the most important nosocomial pathogens, mainly due to its ability to accumulate antibiotic-resistances and to persist in the hospital environment - characteristics related to biofilm production. It is well-known that A. baumannii is inhibited by the proline-rich peptide Bac7(1-35), but its putative effects at sub-MICs were never considered. AIMS We examined the sub-MIC effect of Bac7(1-35) on the growth rate, resistance induction and some A. baumannii features linked to virulence. METHODOLOGY Growth kinetics in the presence of sub-MICs of Bac7(1-35) were evaluated spectrophotometrically. Peptide uptake was quantified by cytometric analysis. The ability of Bac7(1-35) to interfere with biofilm production was investigated by the crystal violet method and confocal microscopy. Bacterial motility was observed at the interphase between a layer of a semi-solid medium and the polystyrene bottom of a Petri dish. The induction of resistance was evaluated after serial passages with sub-MICs of the peptide. RESULTS Although the MIC of Bac7(1-35) was between 2-4 µM for all tested strains, its effect on the growth rate at sub-MICs was strain-dependent and correlated with the amount of peptide internalized by each strain. Sub-MICs of Bac7(1-35) induced a strongly strain-dependent effect on biofilm formation and reduced motility in almost all strains, but interestingly the peptide did not induce resistance. CONCLUSION Bac7(1-35) is internalized into A. baumannii and is able to inhibit biofilm formation and bacterial motility, without inducing resistance. This study stresses the importance of considering possible effects that antimicrobials could have at sub-MICs, mimicking a common condition during antibiotic treatment.
Collapse
Affiliation(s)
- Lucilla Dolzani
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Milan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Raffaela Bressan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
24
|
Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. mBio 2019; 10:mBio.02637-18. [PMID: 30647159 PMCID: PMC6336426 DOI: 10.1128/mbio.02637-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stress factors experienced during space include microgravity, sleep deprivation, radiation, isolation, and microbial contamination, all of which can promote immune suppression (1, 2). Under these conditions, the risk of infection from opportunistic pathogens increases significantly, particularly during long-term missions (3). If infection occurs, it is important that the infectious agent should not be antibiotic resistant. Minimizing the occurrence of antibiotic resistance is, therefore, highly desirable. To facilitate this, it is important to better understand the long-term response of bacteria to the microgravity environment. This study demonstrated that the use of antibiotics as a preventive measure could be counterproductive and would likely result in persistent resistance to that antibiotic. In addition, unintended resistance to other antimicrobials might also occur as well as permanent genome changes that might have other unanticipated and undesirable consequences. The long-term response of microbial communities to the microgravity environment of space is not yet fully understood. Of special interest is the possibility that members of these communities may acquire antibiotic resistance. In this study, Escherichia coli cells were grown under low-shear modeled microgravity (LSMMG) conditions for over 1,000 generations (1000G) using chloramphenicol treatment between cycles to prevent contamination. The results were compared with data from an earlier control study done under identical conditions using steam sterilization between cycles rather than chloramphenicol. The sensitivity of the final 1000G-adapted strain to a variety of antibiotics was determined using Vitek analysis. In addition to resistance to chloramphenicol, the adapted strain acquired resistance to cefalotin, cefuroxime, cefuroxime axetil, cefoxitin, and tetracycline. In fact, the resistance to chloramphenicol and cefalotin persisted for over 110 generations despite the removal of both LSMMG conditions and trace antibiotic exposure. Genome sequencing of the adapted strain revealed 22 major changes, including 3 transposon-mediated rearrangements (TMRs). Two TMRs disrupted coding genes (involved in bacterial adhesion), while the third resulted in the deletion of an entire segment (14,314 bp) of the genome, which includes 14 genes involved with motility and chemotaxis. These results are in stark contrast with data from our earlier control study in which cells grown under the identical conditions without antibiotic exposure never acquired antibiotic resistance. Overall, LSMMG does not appear to alter the antibiotic stress resistance seen in microbial ecosystems not exposed to microgravity.
Collapse
|
25
|
Rajamanickam K, Yang J, Sakharkar MK. Gallic Acid Potentiates the Antimicrobial Activity of Tulathromycin Against Two Key Bovine Respiratory Disease (BRD) Causing-Pathogens. Front Pharmacol 2019; 9:1486. [PMID: 30662404 PMCID: PMC6328469 DOI: 10.3389/fphar.2018.01486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 12/02/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most common infectious disease in dairy and beef cattle. It is associated with significant morbidity and mortality and causes a huge economic loss each year. In western Canada, a one-time injection of tulathromycin is commonly used as a metaphylactic procedure to reduce BRD incidence and eliminate potential BRD outbreak. With increased global concern on antimicrobial usage in dairy and beef products and bacterial resistance to antimicrobials, it is important to develop a novel strategy to eliminate the usage or decrease the dosage of antimicrobials. In this study, we showed that gallic acid was active against both Mannheimia haemolytica and Pasteurella multocida, two key BRD associated-pathogens, with the minimum inhibitory concentration (MIC) measured at 250 and 500 μg/mL, respectively. Co-administration of tulathromycin and gallic acid exhibited a strong additive or weak synergistic effect toward both M. haemolytic and P. multocida. Tulathromycin, gallic acid and their combination were also effective against the mixed culture of M. haemolytic and P. multocida. Furthermore, we showed that pre-exposure to tulathromycin generated bacterial resistance to the antimicrobial in M. haemolytica but not in P. multocida.
Collapse
Affiliation(s)
- Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
She P, Luo Z, Chen L, Wu Y. Efficacy of levofloxacin against biofilms of Pseudomonas aeruginosa isolated from patients with respiratory tract infections in vitro. Microbiologyopen 2018; 8:e00720. [PMID: 30183143 PMCID: PMC6528602 DOI: 10.1002/mbo3.720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
Microbial biofilms are formed in a variety of clinical situations and increase antibiotic resistance of the pathogen by almost ~1,000 times. The effect of levofloxacin (OFLX) on the biofilms of Pseudomonas aeruginosa strain PAO1 and the clinical isolates was investigated by crystal violet staining and confocal laser scanning microscope. The transcriptional alteration in the PAO1 biofilms upon OFLX treatment was also analyzed by RNA sequencing (RNA‐seq). We found that while OFLX significantly inhibited P. aeruginosa biofilm formation in a dose‐dependent manner, it could not completely eradicate preformed biofilms even at higher concentrations. RNA‐seq revealed that PAO1 genes related to metabolism, formation of secondary metabolites, and quorum sensing biosynthesis were differentially expressed in the biofilms treated with OFLX. Our data might be useful in determining the optimum OFLX concentration needed for P. aeruginosa biofilm inhibition and eradication in patients with respiratory tract infections.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Lu J, Jin M, Nguyen SH, Mao L, Li J, Coin LJM, Yuan Z, Guo J. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. ENVIRONMENT INTERNATIONAL 2018; 118:257-265. [PMID: 29902774 DOI: 10.1016/j.envint.2018.06.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 05/07/2023]
Abstract
Antibiotic resistance poses a major threat to public health. Overuse and misuse of antibiotics are generally recognized as the key factors contributing to antibiotic resistance. However, whether non-antibiotic, anti-microbial (NAAM) chemicals can directly induce antibiotic resistance is unclear. We aim to investigate whether the exposure to a NAAM chemical triclosan (TCS) has an impact on inducing antibiotic resistance on Escherichia coli. Here, we report that at a concentration of 0.2 mg/L TCS induces multi-drug resistance in wild-type Escherichia coli after 30-day TCS exposure. The oxidative stress induced by TCS caused genetic mutations in genes such as fabI, frdD, marR, acrR and soxR, and subsequent up-regulation of the transcription of genes encoding beta-lactamases and multi-drug efflux pumps, together with down-regulation of genes related to membrane permeability. The findings advance our understanding of the potential role of NAAM chemicals in the dissemination of antibiotic resistance in microbes, and highlight the need for controlling biocide applications.
Collapse
Affiliation(s)
- Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Min Jin
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jie Li
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Sathiya Deepika M, Thangam R, Sakthidhasan P, Arun S, Sivasubramanian S, Thirumurugan R. Combined effect of a natural flavonoid rutin from Citrus sinensis and conventional antibiotic gentamicin on Pseudomonas aeruginosa biofilm formation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist 2018; 11:567-576. [PMID: 29731645 PMCID: PMC5926076 DOI: 10.2147/idr.s142397] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infections caused by drug-resistant pathogens are a global public health problem. The introduction of a new antimicrobial strategy is an unavoidable option for the management of drug-resistant pathogens. Induction of high levels of reactive oxygen species (ROS) by several procedures has been extensively studied for the treatment of infections. In this article, the general aspects of ROS production and the common procedures that exert their antimicrobial effects due to ROS formation are reviewed. ROS generation is the antimicrobial mechanism of nanoparticles, hyperbaric oxygen therapy, medical honey, and photodynamic therapy. In addition, it is an alternative bactericidal mechanism of clinically traditional antibiotics. The development of ROS delivery methods with a desirable selectivity for pathogens without side effects for the host tissue may be a promising approach for the treatment of infections, especially those caused by drug-resistant organisms.
Collapse
Affiliation(s)
| | - Reza Ghotaslou
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Faculity of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Saravolatz LD, Pawlak J, Martin H, Saravolatz S, Johnson L, Wold H, Husbyn M, Olsen WM. Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett Appl Microbiol 2017; 65:410-413. [PMID: 28802058 DOI: 10.1111/lam.12792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
The development of new synthetic antimicrobial peptides like LTX-109 provides a new class of drugs for the treatment of Staphylococcus aureus infections. We evaluated LTX-109 and mupirocin for pharmacodynamic parameters against 10 methicillin-resistant S. aureus isolates. The postantibiotic effect (PAE) is defined as the length of time that bacterial growth is suppressed following a brief exposure to an antibiotic. We also determined the sub-MIC effect (SME) which measures the direct effect of subinhibitory levels on strains that have not previously been exposed to antibiotics. The postantibiotic sub-MIC effect (PA-SME) is a combination of the PAE and SME. LTX-109 had an average PAE of 5·51 h vs 1·04 h for mupirocin. The PA-SME of LTX-109 ranged from 2·51 to 9·33 h as the concentration increased from 0·2 to 0·4 times the minimal inhibitory concentration (MIC). The PA-SME range for mupirocin was 0·93-2·58 h. LTX-109, as compared to mupirocin, demonstrated prolonged time of effect for these pharmacodynamic parameters, which supports persistent activity for several hours after the drug is no longer present or is below the MIC. The pharmacodynamic parameters studied here suggest that LTX-109 is less likely than mupirocin to generate resistance to S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY Resistant bacterial infections continue to be a challenge for clinicians. Identification of antibiotics with pharmacodynamic advantages may be beneficial in the treatment of these infections. An antibiotic with a longer postantibiotic effect may be able to be administered less frequently resulting in improved adherence. In this study, a new synthetic antimicrobial peptide, LTX-109, demonstrated a more prolonged time for LTX-109 than mupirocin against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- L D Saravolatz
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - J Pawlak
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - H Martin
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - S Saravolatz
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - L Johnson
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - H Wold
- Lytix Biopharma AS, Oslo, Norway
| | - M Husbyn
- Lytix Biopharma AS, Oslo, Norway
| | | |
Collapse
|