1
|
Schlosserová K, Daniel O, Labská K, Jakubů V, Stárková T, Bílý J, Dresler J, Lang C, Fruth A, Flieger A, Žemličková H, Bielaszewska M, Havlíčková M. Enteroaggregative Escherichia coli: Frequent, yet underdiagnosed pathotype among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. Int J Med Microbiol 2024; 316:151628. [PMID: 38936338 DOI: 10.1016/j.ijmm.2024.151628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains including those of serogroup O111 are important causes of diarrhea in children. In the Czech Republic, no information is available on the etiological role of EAEC in pediatric diarrhea due to the lack of their targeted surveillance. To fill this gap, we determined the proportion of EAEC among E. coli O111 isolates from children with gastrointestinal disorders ≤ 2 years of age submitted to the National Reference Laboratory for E. coli and Shigella during 2013-2022. EAEC accounted for 177 of 384 (46.1 %) E. coli O111 isolates, being the second most frequent E. coli O111 pathotype. Most of them (75.7 %) were typical EAEC that carried aggR, usually with aaiC and aatA marker genes; the remaining 24.3 % were atypical EAEC that lacked aggR but carried aaiC and/or aatA. Whole genome sequencing of 11 typical and two atypical EAEC O111 strains demonstrated differences in serotypes, sequence types (ST), virulence gene profiles, and the core genomes between these two groups. Typical EAEC O111:H21/ST40 strains resembled by their virulence profiles including the presence of the aggregative adherence fimbriae V (AAF/V)-encoding cluster to such strains from other countries and clustered with them in the core genome multilocus sequence typing (cgMLST). Atypical EAEC O111:H12/ST10 strains lacked virulence genes of typical EAEC and differed from them in cgMLST. All tested EAEC O111 strains displayed stacked-brick aggregative adherence to human intestinal epithelial cells. The AAF/V-encoding cluster was located on a plasmid of 95,749 bp or 93,286 bp (pAAO111) which also carried aggR, aap, aar, sepA, and aat cluster. EAEC O111 strains were resistant to antibiotics, in particular to aminopenicillins and cephalosporins; 88.3 % produced AmpC β-lactamase, and 4.1 % extended spectrum β-lactamase. We conclude that EAEC are frequent among E. coli O111 strains isolated from children with gastrointestinal disorders in the Czech Republic. To reliably assess the etiological role of EAEC in pediatric diarrhea, a serotype-independent, PCR-based pathotype surveillance system needs to be implemented in the future.
Collapse
Affiliation(s)
- Klára Schlosserová
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Ondřej Daniel
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic
| | - Klára Labská
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Vladislav Jakubů
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Tereza Stárková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jan Bílý
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| | - Jiří Dresler
- Central Military Medical Institute, Military University Hospital, U Vojenské nemocnice 1200, Prague 160 01, Czech Republic
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, Burgstrasse 37, Wernigerode 38855, Germany
| | - Helena Žemličková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 3rd Faculty of Medicine, Charles University, Prague, Ruská 87, Prague 100 00, Czech Republic
| | - Martina Bielaszewska
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, V Úvalu 84, Prague 150 06, Czech Republic.
| | - Monika Havlíčková
- Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 48, Prague 100 00, Czech Republic
| |
Collapse
|
2
|
Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119507. [PMID: 37268022 DOI: 10.1016/j.bbamcr.2023.119507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii are amongst the highest priority drug-resistant pathogens, for which new antibiotics are urgently needed. Whilst antibiotic drug development is inherently challenging, this is particularly true for Gram-negative bacteria due to the presence of the outer membrane, a highly selective permeability barrier that prevents the ingress of several classes of antibiotic. This selectivity is largely due to an outer leaflet composed of the glycolipid lipopolysaccharide (LPS), which is essential for the viability of almost all Gram-negative bacteria. This essentiality, coupled with the conservation of the synthetic pathway across species and recent breakthroughs in our understanding of transport and membrane homeostasis has made LPS an attractive target for novel antibiotic drug development. Several different targets have been explored and small molecules developed that show promising activity in vitro. However, these endeavours have met limited success in clinical testing and the polymyxins, discovered more than 70 years ago, remain the only LPS-targeting drugs to enter the clinic thus far. In this review, we will discuss efforts to develop therapeutic inhibitors of LPS synthesis and transport and the reasons for limited success, and explore new developments in understanding polymyxin mode of action and the identification of new analogues with reduced toxicity and enhanced activity.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Ma R, Sun W, Ji Z. Antibacterial Activity of Epigallocatechin Gallate (EGCG) against Shigella flexneri. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4676. [PMID: 36981585 PMCID: PMC10048926 DOI: 10.3390/ijerph20064676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Shigella flexneri (S. flexneri), a major intestinal pathogen, is a global public health concern. The biofilms formed by S. flexneri threaten environmental safety, since they could promote the danger of environmental contamination and strengthen the disease-causing properties of bacteria. Epigallocatechin gallate (EGCG) is an important catechin in tea, which has a high antibacterial activity. However, its antibacterial mechanism is still unclear. This research aims to quantify the antibacterial function and investigate the possible mechanism of EGCG inhibition of S. flexneri. The minimum inhibitory concentration (MIC) of EGCG against planktonic S. flexneri in the investigation was measured to be 400 μg/mL. Besides, SDS-PAGE and field emission scanning electron microscopy showed that EGCG interfered with protein synthesis and changed bacteria morphology. Through controlling the expression of the mdoH gene, EGCG was found to be able to prevent an S. flexneri biofilm extracellular polysaccharide from forming, according to experiments utilizing the real-time PCR test. Additional research revealed that EGCG might stimulate the response of S. flexneri to oxidative stress and prevent bacterial growth. These findings suggest that EGCG, a natural compound, may play a substantial role in S. flexneri growth inhibition.
Collapse
Affiliation(s)
- Yini Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Yeyue Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Ruiqing Ma
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Wanting Sun
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
- International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-Environmental Health, Xi’an 710119, China
| |
Collapse
|
4
|
Zhang X, Payne M, Nguyen T, Kaur S, Lan R. Cluster-specific gene markers enhance Shigella and enteroinvasive Escherichia coli in silico serotyping. Microb Genom 2021; 7:000704. [PMID: 34889728 PMCID: PMC8767346 DOI: 10.1099/mgen.0.000704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) cause human bacillary dysentery with similar invasion mechanisms and share similar physiological, biochemical and genetic characteristics. Differentiation of Shigella from EIEC is important for clinical diagnostic and epidemiological investigations. However, phylogenetically, Shigella and EIEC strains are composed of multiple clusters and are different forms of E. coli, making it difficult to find genetic markers to discriminate between Shigella and EIEC. In this study, we identified 10 Shigella clusters, seven EIEC clusters and 53 sporadic types of EIEC by examining over 17000 publicly available Shigella and EIEC genomes. We compared Shigella and EIEC accessory genomes to identify cluster-specific gene markers for the 17 clusters and 53 sporadic types. The cluster-specific gene markers showed 99.64% accuracy and more than 97.02% specificity. In addition, we developed a freely available in silico serotyping pipeline named Shigella EIEC Cluster Enhanced Serotype Finder (ShigEiFinder) by incorporating the cluster-specific gene markers and established Shigella and EIEC serotype-specific O antigen genes and modification genes into typing. ShigEiFinder can process either paired-end Illumina sequencing reads or assembled genomes and almost perfectly differentiated Shigella from EIEC with 99.70 and 99.74% cluster assignment accuracy for the assembled genomes and read mapping respectively. ShigEiFinder was able to serotype over 59 Shigella serotypes and 22 EIEC serotypes and provided a high specificity of 99.40% for assembled genomes and 99.38% for read mapping for serotyping. The cluster-specific gene markers and our new serotyping tool, ShigEiFinder (installable package: https://github.com/LanLab/ShigEiFinder, online tool: https://mgtdb.unsw.edu.au/ShigEiFinder/), will be useful for epidemiological and diagnostic investigations.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Thanh Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Halimeh FB, Rafei R, Osman M, Kassem II, Diene SM, Dabboussi F, Rolain JM, Hamze M. Historical, current, and emerging tools for identification and serotyping of Shigella. Braz J Microbiol 2021; 52:2043-2055. [PMID: 34524650 PMCID: PMC8441030 DOI: 10.1007/s42770-021-00573-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Shigella genus includes serious foodborne disease etiologic agents, with 4 species and 54 serotypes. Identification at species and serotype levels is a crucial task in microbiological laboratories. Nevertheless, the genetic similarity between Shigella spp. and Escherichia coli challenges the correct identification and serotyping of Shigella spp., with subsequent negative repercussions on surveillance, epidemiological investigations, and selection of appropriate treatments. For this purpose, multiple techniques have been developed historically ranging from phenotype-based methods and single or multilocus molecular techniques to whole-genome sequencing (WGS). To facilitate the selection of the most relevant method, we herein provide a global overview of historical and emerging identification and serotyping techniques with a particular focus on the WGS-based approaches. This review highlights the excellent discriminatory power of WGS to more accurately elucidate the epidemiology of Shigella spp., disclose novel promising genomic targets for surveillance methods, and validate previous well-established methods.
Collapse
Affiliation(s)
- Fatima Bachir Halimeh
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223-1797, USA
| | - Seydina M Diene
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Jean-Marc Rolain
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Médecine Et de Pharmacie, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
6
|
An Integrated Approach to Hygiene, Sanitation, and Storage Practices for Improving Microbial Quality of Drinking Water Treated at Point of Use: A Case Study in Makwane Village, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126313. [PMID: 34200851 PMCID: PMC8296121 DOI: 10.3390/ijerph18126313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022]
Abstract
This study assessed the impact of sanitation practices, hygienic and storage conditions on the quality of drinking water treated at point-of-use in Makwane Village. Subsequent to implementation of low-cost Household Water Treatment Devices which are the biosand filter with zeolite-silver (BSZ-SICG) and silver-impregnated porous pot (SIPP) filters in Makwane village, a structured questionnaire was designed to collect the following information: age of caretakers, number of children under the age of five, water storage conditions, sanitation amenities, and hygiene practices. Water quality from the sources to household level was assessed using culture-based and molecular techniques. The results revealed a significant association between the presence of Escherichia coli in treated drinking water with the age group of caregivers and the number of children ofless than the age of five [OR (95% CI) = 8.4737 (0.147–3.3497), p = 0.0141923 and OR (95% CI) = 9.1667 (0.1848–3.0159); p = 0.0165830, respectively]. Moreover, significant association was noted between hygiene practices (washing of hands with/without soap) and water quality in storage containers [OR (95% CI) = 16.000 (0.6763–3.9495), p = 0.0000125]. These findings further prove that there is still a dire need for reconsidering hygiene education in rural areas as the health benefits of water treated at point of use (POU) coupled with safe-storage condition interventions might not be guaranteed without proper hygiene. The results further highlighted the importance of washing hands in improving microbial quality of drinking water, which is the key factor for fighting against infectious diseases.
Collapse
|
7
|
Chen Y, Zhang L, Xu L, Guo X, Yang H, Zhuang L, Li Y, Wang Z, Gu B. Rapid and sensitive detection of Shigella flexneri using fluorescent microspheres as label for immunochromatographic test strip. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:565. [PMID: 31807546 DOI: 10.21037/atm.2019.09.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Bacillary dysentery caused by Shigella genus is a major cause of morbidity and mortality worldwide. In China, the popular strain was mainly Shigella flexneri (S. flexneri). Therefore, fluorescent microspheres (FMs)-based immunochromatographic test strip (ICTS), as a novel, reliable, sensitive and uncomplicated method, was evaluated to detect S. flexneri. Methods Sixty-three clinical samples of S. flexneri were collected in this paper. Polymerase chain reaction (PCR) combined with FMs-ICTS based on magnetic purification assay was developed for the quantitative detection of Shigella. And the genus-specific gene of ipaH and drug resistant gene of CTX-M-9 from Shigella were selected to investigate the potential of this new method. The sensitivity and specificity of this method were demonstrated by classical microbiological methods (API Coryne System), PCR assay based on agarose gel electrophoresis (PCR-GE) and the real-time fluorescent quantitative PCR (RTFQ-PCR) method. Results Under optimized conditions, the lower detection limits of PCR-ICTS, PCR-GE and RTFQ-PCR were 2.5×10-7, 2.5×10-5 and the 3.2×10-7 ng/µL, respectively. Experiments demonstrated the PCR-ICTS has a diagnostic agreement of 100% with conventional PCR and RTFQ-PCR on detection of clinical samples and could correctly recognize Shigella and non-Shigella from different microbial samples. After the purification of PCR products with Silicon coated magnetic nanoparticles (Si-MNPs), the false positive results were removed because of the strong screening ability of the purification process. Our results showed that FM-based ICTS was promising for measurable and sensitive detection of S. flexneri within 3 h. Conclusions The results from immunochromatographic test were agreement with those from API Coryne system and RTFQ-PCR. Hence, this developed method might be useful for screening and monitoring clinical sample of S. flexneri, due to its speed, non-poisonous, simplicity and low-cost and helpful for promoting the prevention and control of communicable diseases caused by enteric pathogens such as S. flexneri.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Linyan Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling Xu
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinjian Guo
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Linlin Zhuang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Nanjing Nanoeast biotech Co., Ltd., Nanjing 210000, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenzhen Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Bing Gu
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
8
|
|
9
|
Xi D, Wang X, Ning K, Liu Q, Jing F, Guo X, Cao B. O-Antigen Gene Clusters of Plesiomonas shigelloides Serogroups and Its Application in Development of a Molecular Serotyping Scheme. Front Microbiol 2019; 10:741. [PMID: 31024508 PMCID: PMC6467956 DOI: 10.3389/fmicb.2019.00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/25/2019] [Indexed: 01/14/2023] Open
Abstract
Plesiomonas shigelloides is a Gram-negative, flagellated, rod-shaped, ubiquitous, and facultative anaerobic bacterium. It has been isolated from various sources, such as freshwater, surface water, and many wild and domestic animals. P. shigelloides is associated with diarrheal diseases of acute secretory gastroenteritis, an invasive shigellosis-like disease, and a cholera-like illness in humans. At present, 102 somatic antigens and 51 flagellar antigens of P. shigelloides have been recognized; however, very little is known about variations of O-antigens among P. shigelloides species. In this study, 12 O-antigen gene clusters of P. shigelloides, O2H1a1c (G5877), O10H41 (G5892), O12H35 (G5890), O23H1a1c (G5263), O25H3 (G5879), O26H1a1c (G5889), O32H37 (G5880), O33H38 (G5881), O34H34 (G5882), O66H3 (G5270), O75H34 (G5885), and O76H39 (G5886), were sequenced and analyzed. The genes that control O-antigen synthesis are present as chromosomal gene clusters that maps between rep and aqpZ, and most of the synthesis and translocation of OPS (O-specific polysaccharide) belongs to Wzx/Wzy pathway with the exception of O12, O25, and O66, which use the ATP-binding cassette (ABC) transporter pathway. Phylogenetic analysis of wzx and wzy show that the wzx and wzy genes are specific to individual O-antigens and can be used as targets in molecular typing. Based on the sequence data, an O-antigen specific suspension array that detects 12 distinct OPS’ has been developed. This is the first report to catalog the genetic features of P. shigelloides O-antigen variations and develop a suspension array for the molecular typing. The method has several advantages over traditional bacteriophage and serum agglutination methods and lays the foundation for easier identification and detection of additional O-antigen in the future.
Collapse
Affiliation(s)
- Daoyi Xi
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Kexin Ning
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Qian Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Fuyi Jing
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| | - Boyang Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, China.,TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Ventola E, Bogaerts B, De Keersmaecker SCJ, Vanneste K, Roosens NHC, Mattheus W, Ceyssens PJ. Shifting national surveillance of Shigella infections toward geno-serotyping by the development of a tailored Luminex assay and NGS workflow. Microbiologyopen 2019; 8:e00807. [PMID: 30924299 PMCID: PMC6692546 DOI: 10.1002/mbo3.807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
Abstract
The phylogenetically closely related Shigella species and enteroinvasive Escherichia coli (EIEC) are responsible for millions of episodes of bacterial dysenteriae worldwide. Given its distinct epidemiology and public health relevance, only Shigellae are subject to mandatory reporting and follow‐up by public health authorities. However, many clinical laboratories struggle to differentiate non‐EIEC, EIEC, and Shigella in their current workflows, leading to inaccuracies in surveillance and rising numbers of misidentified E. coli samples at the National Reference Centre (NRC). In this paper, we describe two novel tools to enhance Shigella surveillance. First, we developed a low‐cost Luminex‐based multiplex assay combining five genetic markers for species identification with 11 markers for serotype prediction for S. sonnei and S. flexneri isolates. Using a test panel of 254 clinical samples, this assay has a sensitivity of 100% in differentiation of EIEC/Shigella pathotype from non‐EIEC strains, and 68.7% success rate in distinction of Shigella and EIEC. A novel, and particularly successful marker was a Shigella‐specific deletion in the spermidine acetyltransferase gene speG, reflecting its metabolic decay. For Shigella serotype prediction, the multiplex assay scored a sensitivity and specificity of 96.6% and 98.4%, respectively. All discrepancies were analyzed with whole‐genome sequencing and shown to be related to causative mutations (stop codons, indels, and promoter mutations) in glycosyltransferase genes. This observation spurred the development of an in silico workflow which extracts the Shigella serotype from Next‐Generation Sequencing (NGS) data, taking into account gene functionality. Both tools will be implemented in the workflow of the NRC, and will play a major role in the shift from phenotypic to genotyping‐based surveillance of shigellosis in Belgium.
Collapse
Affiliation(s)
- Eleonora Ventola
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium.,Department of Biology and Biotechnology "C. Darwin", "Sapienza" Università di Roma, Rome, Italy
| | - Bert Bogaerts
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Brussels, Belgium
| | | | - Wesley Mattheus
- National Reference Centre of Salmonella and Shigella, Brussels, Belgium
| | | |
Collapse
|
11
|
In Silico Serotyping Based on Whole-Genome Sequencing Improves the Accuracy of Shigella Identification. Appl Environ Microbiol 2019; 85:AEM.00165-19. [PMID: 30709819 DOI: 10.1128/aem.00165-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria of the genus Shigella, consisting of 4 species and >50 serotypes, cause shigellosis, a foodborne disease of significant morbidity, mortality, and economic loss worldwide. Classical Shigella identification based on selective media and serology is tedious, time-consuming, expensive, and not always accurate. A molecular diagnostic assay does not distinguish Shigella at the species level or from enteroinvasive Escherichia coli (EIEC). We inspected genomic sequences from 221 Shigella isolates and observed low concordance rates between conventional designation and molecular serotyping: 86.4% and 80.5% at the species and serotype levels, respectively. Serotype determinants for 6 additional serotypes were identified. Examination of differentiation gene markers commonly perceived as characteristic hallmarks in Shigella showed high variability among different serotypes. Using this information, we developed ShigaTyper, an automated workflow that utilizes limited computational resources to accurately and rapidly determine 59 Shigella serotypes using Illumina paired-end whole-genome sequencing (WGS) reads. Shigella serotype determinants and species-specific diagnostic markers were first identified through read alignment to an in-house curated reference sequence database. Relying on sequence hits that passed a threshold level of coverage and accuracy, serotype could be unambiguously predicted within 1 min for an average-size WGS sample of ∼500 MB. Validation with WGS data from 380 isolates showed an accuracy rate of 98.2%. This pipeline is the first step toward building a comprehensive WGS-based analysis pipeline of Shigella spp. in a field laboratory setting, where speed is essential and resources need to be more cost-effectively dedicated.IMPORTANCE Shigella causes diarrheal disease with serious public health implications. However, conventional Shigella identification methods are laborious and time-consuming and can be erroneous due to the high similarity between Shigella and enteroinvasive Escherichia coli (EIEC) and cross-reactivity between serotyping antisera. Further, serotype interpretation is complicated for inexperienced users. To develop an easier method with higher accuracy based on whole-genome sequencing (WGS) for Shigella serotyping, we systematically examined genomic information of Shigella isolates from 53 serotypes to define rules for differentiation and serotyping. We created ShigaTyper, an automated pipeline that accurately and rapidly excludes non-Shigella isolates and identifies 59 Shigella serotypes using Illumina paired-end WGS reads. A serotype can be unambiguously predicted at a data processing speed of 538 MB/min with 98.2% accuracy from a regular laptop. Once it is installed, training in bioinformatics analysis and Shigella genetics is not required. This pipeline is particularly useful to general microbiologists in field laboratories.
Collapse
|
12
|
Evaluation of a Culture-Dependent Algorithm and a Molecular Algorithm for Identification of Shigella spp., Escherichia coli, and Enteroinvasive E. coli. J Clin Microbiol 2018; 56:JCM.00510-18. [PMID: 30021824 PMCID: PMC6156305 DOI: 10.1128/jcm.00510-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli (EIEC) is challenging because of their close relatedness. Distinction is vital, as infections with Shigella spp. are under surveillance of health authorities, in contrast to EIEC infections. In this study, a culture-dependent identification algorithm and a molecular identification algorithm were evaluated. Discrepancies between the two algorithms and original identification were assessed using whole-genome sequencing (WGS). After discrepancy analysis with the molecular algorithm, 100% of the evaluated isolates were identified in concordance with the original identification. However, the resolution for certain serotypes was lower than that of previously described methods and lower than that of the culture-dependent algorithm. Although the resolution of the culture-dependent algorithm is high, 100% of noninvasive E. coli, Shigella sonnei, and Shigella dysenteriae, 93% of Shigella boydii and EIEC, and 85% of Shigella flexneri isolates were identified in concordance with the original identification. Discrepancy analysis using WGS was able to confirm one of the used algorithms in four discrepant results. However, it failed to clarify three other discrepant results, as it added yet another identification. Both proposed algorithms performed well for the identification of Shigella spp. and EIEC isolates and are applicable in low-resource settings, in contrast to previously described methods that require WGS for daily diagnostics. Evaluation of the algorithms showed that both algorithms are capable of identifying Shigella species and EIEC isolates. The molecular algorithm is more applicable in clinical diagnostics for fast and accurate screening, while the culture-dependent algorithm is more suitable for reference laboratories to identify Shigella spp. and EIEC up to the serotype level.
Collapse
|
13
|
Kunstmann S, Scheidt T, Buchwald S, Helm A, Mulard LA, Fruth A, Barbirz S. Bacteriophage Sf6 Tailspike Protein for Detection of Shigella flexneri Pathogens. Viruses 2018; 10:E431. [PMID: 30111705 PMCID: PMC6116271 DOI: 10.3390/v10080431] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Tom Scheidt
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Saskia Buchwald
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Alexandra Helm
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| | - Laurence A Mulard
- Institut Pasteur, Unité de Chimie des Biomolécules, 28 rue du Roux, 75015 Paris, France.
- CNRS UMR 3523, Institut Pasteur, 75015 Paris, France.
| | - Angelika Fruth
- National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, 38855 Wernigerode, Germany.
| | - Stefanie Barbirz
- Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
14
|
Yang S, Xi D, Jing F, Kong D, Wu J, Feng L, Cao B, Wang L. Genetic diversity of K-antigen gene clusters of Escherichia coli and their molecular typing using a suspension array. Can J Microbiol 2018; 64:231-241. [PMID: 29357266 DOI: 10.1139/cjm-2017-0620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Capsular polysaccharides (CPSs), or K-antigens, are the major surface antigens of Escherichia coli. More than 80 serologically unique K-antigens are classified into 4 groups (Groups 1-4) of capsules. Groups 1 and 4 contain the Wzy-dependent polymerization pathway and the gene clusters are in the order galF to gnd; Groups 2 and 3 contain the ABC-transporter-dependent pathway and the gene clusters consist of 3 regions, regions 1, 2 and 3. Little is known about the variations among the gene clusters. In this study, 9 serotypes of K-antigen gene clusters (K2ab, K11, K20, K24, K38, K84, K92, K96, and K102) were sequenced and correlated with their CPS chemical structures. On the basis of sequence data, a K-antigen-specific suspension array that detects 10 distinct CPSs, including the above 9 CPSs plus K30, was developed. This is the first report to catalog the genetic features of E. coli K-antigen variations and to develop a suspension array for their molecular typing. The method has a number of advantages over traditional bacteriophage and serum agglutination methods and lays the foundation for straightforward identification and detection of additional K-antigens in the future.
Collapse
Affiliation(s)
- Shuang Yang
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Daoyi Xi
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Fuyi Jing
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Deju Kong
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Junli Wu
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Lu Feng
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Boyang Cao
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| | - Lei Wang
- a TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, P.R. China.,b Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, P.R. China.,c Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, P.R. China
| |
Collapse
|
15
|
Knirel YA, Sun Q, Senchenkova SN, Perepelov AV, Shashkov AS, Xu J. O-antigen modifications providing antigenic diversity of Shigella flexneri and underlying genetic mechanisms. BIOCHEMISTRY (MOSCOW) 2016; 80:901-14. [PMID: 26542003 DOI: 10.1134/s0006297915070093] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
O-Antigens (O-specific polysaccharides) of Shigella flexneri, a primary cause of shigellosis, are distinguished by a wide diversity of chemical modifications following the oligosaccharide O-unit assembly. The present review is devoted to structural, serological, and genetic aspects of these modifications, including O-acetylation and phosphorylation with phosphoethanolamine that have been identified recently. The modifications confer the host with specific immunodeterminants (O-factors or O-antigen epitopes), which accounts for the antigenic diversity of S. flexneri considered as a virulence factor of the pathogen. Totally, 30 O-antigen variants have been recognized in these bacteria, the corresponding O-factors characterized using specific antibodies, and a significant extension of the serotyping scheme of S. flexneri on this basis is suggested. Multiple genes responsible for the O-antigen modifications and the resultant serotype conversions of S. flexneri have been identified. The genetic mechanisms of the O-antigen diversification by acquisition of mobile genetic elements, including prophages and plasmids, followed occasionally by gene mobilization and inactivation have been revealed. These findings further our understanding of the genetics and antigenicity of S. flexneri and assist control of shigellosis.
Collapse
Affiliation(s)
- Y A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Jung LS, Ahn J. Evaluation of bacteriophage amplification assay for rapid detection of Shigella boydii in food systems. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
17
|
Cao B, Tian Z, Wang S, Zhu Z, Sun Y, Feng L, Wang L. Structural comparison of O-antigen gene clusters of Legionella pneumophila and its application of a serogroup-specific multiplex PCR assay. Antonie van Leeuwenhoek 2015; 108:1405-1423. [PMID: 26415652 DOI: 10.1007/s10482-015-0594-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
Abstract
The Legionella pneumophila serogroups O1, O4, O6, O7, O10 and O13 are pathogenic strains associated with pneumonia. The surface O-antigen gene clusters of L. pneumophila serogroups O4, O6, O7, O10 and O13 were sequenced and analyzed, with the function annotated on the basis of homology to that of the genes of L. pneumophila serogroup O1 (L. pneumophila subsp. pneumophila str. Philadelphia 1). The gene locus of the six L. pneumophila serogroups contains genes of yvfE, neuABCD, pseA-like for nucleotide sugar biosynthesis, wecA for sugar transfer, and wzm as well as wzt for O-antigen processing. The detection of O-antigen genes allows the fine differentiation at species and serogroup level without the neccessity of nucleotide sequencing. The O-antigen-processing genes wzm and wzt, which were found to be distinctive for different for different serogroups, have been used as the target genes for the detection and identification of L. pneumophila strains of different O serogroups. In this report, a multiplex PCR assay based on wzm or wzt that diferentiates all the six serogroups by amplicon size was developed with the newly designed specific primer pairs for O1 and O7, and the specific primer pairs for O4, O6, O10, and O13 reported previously. The array was validated by analysis of 34 strains including 15 L. pneumophila O-standard reference strains, eight reference strains of other Legionella non-pneumophila species, six other bacterial species, and five L. pneumophila environmental isolates. The detection sensitivity was one ng genomic DNA. The accurate and sensitive assay is suitable for the identification and detection of strains of these serogroups in environmental and clinical samples.
Collapse
Affiliation(s)
- Boyang Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, 300457, People's Republic of China. .,TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, People's Republic of China. .,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China.
| | - Zhenyang Tian
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, 300457, People's Republic of China.,TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, People's Republic of China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Suwei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, 300457, People's Republic of China.,TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, People's Republic of China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Zhiyan Zhu
- Basic Medical College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yamin Sun
- Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, 300457, People's Republic of China.,TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, People's Republic of China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Lei Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, 300457, People's Republic of China. .,TEDA Institue of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, People's Republic of China. .,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
18
|
Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 2015; 305:480-90. [PMID: 25998616 DOI: 10.1016/j.ijmm.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022] Open
Abstract
The study was aimed to describe the serotype, mechanisms of antimicrobial resistance, and virulence determinants in Shigella spp. isolated from Peruvian children. Eighty three Shigella spp. were serogrouped and serotyped being established the antibiotic susceptibility. The presence of 12 virulence factors (VF) and integrase 1 and 2, along with commonly found antibiotic resistance genes was established by PCR. S. flexneri was the most relevant serogroup (55 isolates, 66%), with serotype 2a most frequently detected (27 of 55, 49%), followed by S. boydii and S. sonnei at 12 isolates each (14%) and S. dysenteriae (four isolates, 5%). Fifty isolates (60%) were multi-drug resistant (MDR) including 100% of S. sonnei and 64% of S. flexneri. Resistance levels were high to trimethoprim-sulfamethoxazole (86%), tetracycline (74%), ampicillin (67%), and chloramphenicol (65%). Six isolates showed decreased azithromycin susceptibility. No isolate was resistant to nalidixic acid, ciprofloxacin, nitrofurantoin, or ceftriaxone. The most frequent resistance genes were sul2 (95%), tet(B) (92%), cat (80%), dfrA1 (47%), blaOXA-1like (40%), with intl1 and intl2 detected in 51 and 52% of the isolates, respectively. Thirty-one different VF profiles were observed, being the ipaH (100%), sen (77%), virA and icsA (75%) genes the most frequently found. Differences in the prevalence of VF were observed between species with S. flexneri isolates, particularly serotype 2a, possessing high numbers of VF. In conclusion, this study highlights the high heterogeneity of Shigella VF and resistance genes, and prevalence of MDR organisms within this geographic region.
Collapse
Affiliation(s)
- Angela Lluque
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Susan Mosquito
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maribel Riveros
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - David Durand
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | | | - María Bernal
- U.S Naval Medical Research Unit No.6, Callao, Peru
| | - Ana Prada
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Theresa J Ochoa
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru; Center for Infectious Disease, University of Texas School of Public Health, Houston, USA.
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Paauw A, Jonker D, Roeselers G, Heng JME, Mars-Groenendijk RH, Trip H, Molhoek EM, Jansen HJ, van der Plas J, de Jong AL, Majchrzykiewicz-Koehorst JA, Speksnijder AGCL. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. Int J Med Microbiol 2015; 305:446-52. [PMID: 25912807 DOI: 10.1016/j.ijmm.2015.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 11/24/2022] Open
Abstract
E. coli-Shigella species are a cryptic group of bacteria in which the Shigella species are distributed within the phylogenetic tree of E. coli. The nomenclature is historically based and the discrimination of these genera developed as a result of the epidemiological need to identify the cause of shigellosis, a severe disease caused by Shigella species. For these reasons, this incorrect classification of shigellae persists to date, and the ability to rapidly characterize E. coli and Shigella species remains highly desirable. Until recently, existing matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assays used to identify bacteria could not discriminate between E. coli and Shigella species. Here we present a rapid classification method for the E. coli-Shigella phylogroup based on MALDI-TOF MS which is supported by genetic analysis. E. coli and Shigella isolates were collected and genetically characterized by MLVA. A custom reference library for MALDI-TOF MS that represents the genetic diversity of E. coli and Shigella strains was developed. Characterization of E. coli and Shigella species is based on an approach with Biotyper software. Using this reference library it was possible to distinguish between Shigella species and E. coli. Of the 180 isolates tested, 94.4% were correctly classified as E. coli or shigellae. The results of four (2.2%) isolates could not be interpreted and six (3.3%) isolates were classified incorrectly. The custom library extends the existing MALDI-TOF MS method for species determination by enabling rapid and accurate discrimination between Shigella species and E. coli.
Collapse
Affiliation(s)
- Armand Paauw
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands.
| | - Debby Jonker
- Cluster of Infectious Diseases, Public Health Service Amsterdam, PO Box 2200, 1000 CE Amsterdam, The Netherlands
| | - Guus Roeselers
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands
| | - Jonathan M E Heng
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands
| | | | - Hein Trip
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands
| | - E Margo Molhoek
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands
| | - Hugo-Jan Jansen
- Expert Centre Force Health Protection, Ministry of Defence, PO Box 185, MPC 56A, 3940 AD, Doorn, The Netherlands
| | - Jan van der Plas
- Expert Centre Force Health Protection, Ministry of Defence, PO Box 185, MPC 56A, 3940 AD, Doorn, The Netherlands
| | - Ad L de Jong
- Department of CBRN Protection, TNO, PO Box 45, 2280 AA Rijswijk, The Netherlands
| | | | - Arjen G C L Speksnijder
- Cluster of Infectious Diseases, Public Health Service Amsterdam, PO Box 2200, 1000 CE Amsterdam, The Netherlands; Naturalis Biodiversity Centre, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
20
|
Zomorodian K, Ghadiri P, Saharkhiz MJ, Moein MR, Mehriar P, Bahrani F, Golzar T, Pakshir K, Fani MM. Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur J Microbiol 2015; 8:e17766. [PMID: 25793100 PMCID: PMC4353034 DOI: 10.5812/jjm.17766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/26/2014] [Accepted: 09/22/2014] [Indexed: 01/12/2023] Open
Abstract
Background: Over the past two decades, there has been a growing trend in using oral hygienic products originating from natural resources such as essential oils (EOs) and plant extracts. Seven aromatic plants used in this study are among popular traditional Iranian medicinal plants with potential application in modern medicine as anti-oral infectious diseases. Objectives: This study was conducted to determine the chemical composition and antimicrobial activities of essential oils from seven medicinal plants against pathogens causing oral infections. Materials and Methods: The chemical compositions of EOs distilled from seven plants were analyzed by gas chromatography/mass spectrometry (GC/MS). These plants included Satureja khuzestanica, S. bachtiarica, Ocimum sanctum, Artemisia sieberi, Zataria multiflora, Carum copticum and Oliveria decumbens. The antimicrobial activity of the essential oils was evaluated by broth micro-dilution in 96 well plates as recommended by the Clinical and Laboratory Standards Institute (CLSI) methods. Results: The tested EOs inhibited the growth of examined oral pathogens at concentrations of 0.015-16 µL/mL. Among the examined oral pathogens, Enterococcus faecalis had the highest Minimum Inhibitory Concentrations (MICs) and Minimum Microbicidal Concentrations (MMCs). Of the examined EOs, S. khuzestanica, Z. multiflora and S. bachtiarica, showed the highest antimicrobial activities, respectively, while Artemisia sieberi exhibited the lowest antimicrobial activity. Conclusions: The excellent antimicrobial activities of the tested EOs might be due to their major phenolic or alcoholic monoterpenes with known antimicrobial activities. Hence, these EOs can be possibly used as an antimicrobial agent in treatment and control of oral pathogens.
Collapse
Affiliation(s)
- Kamiar Zomorodian
- Basic Sciences in Infectious Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Pooria Ghadiri
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University, Shiraz, IR Iran
| | - Mohammad Reza Moein
- Department of Pharmacognos, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Peiman Mehriar
- Florida Institute for Advanced Dental Education, Miami, Florida, USA
- Corresponding author: Peiman Mehriar, Florida Institute for Advanced Dental Education, Miami, Florida, USA. Tel: +1-3106503034, E-mail:
| | - Farideh Bahrani
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Tahereh Golzar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Keyvan Pakshir
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Mehdi Fani
- Department of Oral Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
21
|
Vongsawan AA, Kapatral V, Vaisvil B, Burd H, Serichantalergs O, Venkatesan MM, Mason CJ. The genome of Shigella dysenteriae strain Sd1617 comparison to representative strains in evaluating pathogenesis. FEMS Microbiol Lett 2015; 362:fnv011. [PMID: 25743074 PMCID: PMC4445032 DOI: 10.1093/femsle/fnv011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We sequenced and analyzed Shigella dysenteriae strain Sd1617 serotype 1 that is widely used as model strain for vaccine design, trials and research. A combination of next-generation sequencing platforms and assembly yielded two contigs representing a chromosome size of 4.34 Mb and the large virulence plasmid of 177 kb. This genome sequence is compared with other Shigella genomes in order to understand gene complexity and pathogenic factors. The Shigella dysenteriae strain Sd1617 serotype 1 has been sequenced and analyzed. It is widely used as model strain for vaccine design, trials and research. A combination of next-generation sequencing platforms and assembly yielded two contigs representing a chromosome size of 4.34 Mb and the large virulence plasmid of 177 kb.
Collapse
Affiliation(s)
- Ajchara A Vongsawan
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | | | | | - Oralak Serichantalergs
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Malabi M Venkatesan
- Walter Reed Army Institute of Research, Division of Bacterial and Rickettsial Diseases, Silver Spring, MD 20910, USA
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Sjöling Å, Sadeghipoorjahromi L, Novak D, Tobias J. Detection of major diarrheagenic bacterial pathogens by multiplex PCR panels. Microbiol Res 2014; 172:34-40. [PMID: 25542594 DOI: 10.1016/j.micres.2014.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 02/07/2023]
Abstract
Diarrheal diseases remain a major threat to the youngest population in low- and middle-income countries. The main bacterial pathogens causing diarrhea are diarrheagenic Escherichia coli (DEC) that consists of enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enterohemorrhagic EHEC and enteroinvasive E. coli (EIEC), Salmonella, Shigella spp. (S. dysenteria, S. sonnei, S. flexneri) Campylobacter (C. coli, C. jejuni), Vibrio (V. vulnificus, V. parahaemolyticusm, V. cholerae), Yersinia enterocolitica and Aeromonas hydrophila. The aim of this study was to set up rapid multiplex PCR (mPCR) panels to identify these diarrheagenic pathogens based on their specific virulence genes. Primers against specific target genes were combined into three mPCR panels: one for diarrheal E. coli, one for pathogens causing mainly bloody diarrhea, and the third for the remaining pathogens. The panels were tested against a set of stool samples from Swedish children with diarrhea and controls and the analysis identified bacterial pathogens in 14/54 (26%) of the samples. These results show that our three developed mPCR panels can detect main bacterial diarrheagenic pathogens in clinical samples.
Collapse
Affiliation(s)
- Åsa Sjöling
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy of University of Gothenburg, Gothenburg, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leila Sadeghipoorjahromi
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy of University of Gothenburg, Gothenburg, Sweden
| | - Daniel Novak
- Department of Pediatrics, Queen Silvia Children's Hospital Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joshua Tobias
- University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy of University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Shigella Species. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 867] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
25
|
Development of a DNA microarray method for detection and identification of all 15 distinct O-antigen forms of Legionella pneumophila. Appl Environ Microbiol 2013; 79:6647-54. [PMID: 23974134 DOI: 10.1128/aem.01957-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella is ubiquitous in many environments. At least 50 species and 70 serogroups of the Gram-negative bacterium have been identified. Of the 50 species, 20 are pathogenic, and Legionella pneumophila is responsible for the great majority (approximately 90%) of the Legionnaires' disease cases that occur. Furthermore, of the 15 L. pneumophila serogroups identified, O1 alone causes more than 84% of the Legionnaires' disease cases that occur worldwide. Rapid and reliable assays for the detection and identification of L. pneumophila in water, environmental, and clinical samples are in great demand. L. pneumophila bacteria are traditionally identified by their O antigens by immunological methods. We have recently developed an O serogroup-specific DNA microarray for the detection of all 15 distinct O-antigen forms of L. pneumophila, including serogroups O1 to O15. A total of 35 strains were used to verify the specificity of the microarray, including 15 L. pneumophila O-antigen standard reference strains and seven L. pneumophila clinical isolates as target strains, seven reference strains of other non-pneumophila Legionella species as closely related strains, and six non-Legionella bacterial species as nonrelated strains. The detection sensitivity was 1 ng of genomic DNA or 0.4 CFU/ml in water samples with filter enrichment and plate culturing. This study demonstrated that the microarray allows specific, sensitive, and reproducible detection of L. pneumophila serogroups. To the best of our knowledge, this is the first report of a microarray serotyping method for all 15 distinct O-antigen forms of L. pneumophila.
Collapse
|
26
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2013; 38:56-89. [PMID: 23848592 DOI: 10.1111/1574-6976.12034] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences.
Collapse
Affiliation(s)
- Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Hu D, Liu B, Dijkshoorn L, Wang L, Reeves PR. Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One 2013; 8:e70329. [PMID: 23922982 PMCID: PMC3726653 DOI: 10.1371/journal.pone.0070329] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
We have sequenced the gene clusters for type strains of the Acinetobacter baumannii serotyping scheme developed in the 1990s, and used the sequences to better understand diversity in surface polysaccharides of the genus. We obtained genome sequences for 27 available serovar type strains, and identified 25 polysaccharide gene cluster sequences. There are structures for 12 of these polysaccharides, and in general the genes present are appropriate to the structure where known. This greatly facilitates interpretation. We also find 53 different glycosyltransferase genes, and for 7 strains can provisionally allocate specific genes to all linkages. We identified primers that will distinguish the 25 sequence forms by PCR or microarray, or alternatively the genes can be used to determine serotype by “molecular serology”. We applied the latter to 190 Acinetobacter genome-derived gene-clusters, and found 76 that have one of the 25 gene-cluster forms. We also found novel gene clusters and added 52 new gene-cluster sequence forms with different wzy genes and different gene contents. Altogether, the strains that have one of the original 25 sequence forms include 98 A. baumannii (24 from our strains) and 5 A. nosocomialis (3 from our strains), whereas 32 genomes from 12 species other than A. baumannii or A. nosocomialis, all have new sequence forms. One of the 25 serovar type sequences is found to be in European clone I (EC I), 2 are in EC II but none in EC III. The public genome strains add an additional 52 new sequence forms, and also bring the number found in EC I to 5, in EC II to 9 and in EC III to 2.
Collapse
Affiliation(s)
- Dalong Hu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin, China
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
28
|
Benedec D, Vlase L, Oniga I, Mot AC, Damian G, Hanganu D, Duma M, Silaghi-Dumitrescu R. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 2013; 18:8725-39. [PMID: 23887715 PMCID: PMC6270183 DOI: 10.3390/molecules18088725] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to study the chemical composition, antioxidant and antibacterial properties of Achillea distans Waldst. et Kit. subsp. distans and Achillea distans Waldst. et Kit. subsp. alpina Rochel, from the Rodna Mountains (Romania). The identification and quantification of major phenolic compounds was performed by a HPLC-MS method. The total polyphenolic and flavonoid content was determined spectrophotometrically. The antioxidant activity was evaluated using the DPPH bleaching method, trolox equivalent antioxidant capacity assay (TEAC), hemoglobin ascorbate peroxidase activity inhibition (HAPX) assay, and an Electron Paramagnetic Resonance (EPR) spectroscopy method. A data indicated that A. distans subsp. alpina extract has more antioxidant activity than A. distans subsp. distans extract. Luteolin, apigenin, quercetin, caffeic and chlorogenic acids were present in the two extracts of A. distans, but in different amounts. Three flavonoids were detected only in A. distans subsp. alpina. The polyphenol-richer A. distans subsp. alpina extract showed a higher antioxidant activity than A.distans subsp. distans extract. A.distans subsp. distans extract showed inhibitory activity for Gram-positive bacteria, as evaluated with four species. The quantitative and qualitative differences between the two subspecies of Achillea distans could be used as a potential taxonomic marker in order to distinguish the species.
Collapse
Affiliation(s)
- Daniela Benedec
- Department of Pharmacognosy “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, Cluj-Napoca 400010, Romania; E-Mails: (D.B.); (I.O.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, 12 I. Creanga Street, Cluj-Napoca 400010, Romania; E-Mail:
| | - Ilioara Oniga
- Department of Pharmacognosy “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, Cluj-Napoca 400010, Romania; E-Mails: (D.B.); (I.O.)
| | - Augustin C. Mot
- Department of Chemistry and Chemical Engineering ”Babes-Bolyai”University, 11 A. Janos Street, Cluj-Napoca 400028, Romania; E-Mails: (A.C.M.); (R.S.-D.)
| | - Grigore Damian
- Department of Physics, ”Babes-Bolyai”University, 11 A. Janos Street, Cluj-Napoca 400028, Romania; E-Mail:
| | - Daniela Hanganu
- Department of Pharmacognosy “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, Cluj-Napoca 400010, Romania; E-Mails: (D.B.); (I.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +40-74200-9682
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piata Marasti Street, Cluj-Napoca 400609, Romania; E-Mail:
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering ”Babes-Bolyai”University, 11 A. Janos Street, Cluj-Napoca 400028, Romania; E-Mails: (A.C.M.); (R.S.-D.)
| |
Collapse
|
29
|
Gormez A, Bozari S, Yanmis D, Gulluce M, Agar G, Sahin F. Antibacterial activity and chemical composition of essential oil obtained fromNepeta nudaagainst phytopathogenic bacteria. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2012.751060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Işcan G, Köse YB, Demirci B, Başer KHC. Anticandidal activity of the essential oil of Nepeta transcaucasica Grossh. Chem Biodivers 2012; 8:2144-8. [PMID: 22083927 DOI: 10.1002/cbdv.201100091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrodistallation of the aerial parts of Nepeta transcaucasica Grossh. (Lamiaceae), collected in Ağrı, Doğubayazıt Province, afforded an essential oil that was characterized by GC and GC/MS analyses. Twenty-seven compounds, representing 97.69% of the total oil composition, were identified, and 4aα,7α,7aβ-nepetalactone (1; 39%), 4aα,7α,7aα-nepetalactone (2; 28%), and germacrene D (3; 15%) constituted the major components. The anticandidal effects of the oil were evaluated against seven Candida strains by using the broth microdilution method. The oil showed good inhibitory effects against C. glabrata and C. tropicalis at minimal inhibitory concentrations (MICs) of 0.09 and 0.375 mg/ml, respectively.
Collapse
Affiliation(s)
- Gökalp Işcan
- Department of Pharmacognosy, Anadolu University, Faculty of Pharmacy, Eskişehir.
| | | | | | | |
Collapse
|
31
|
Hong Y, Cunneen MM, Reeves PR. The Wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity. Mol Microbiol 2012; 84:620-30. [PMID: 22497246 DOI: 10.1111/j.1365-2958.2012.08048.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most Gram-negative bacteria have an O antigen, a polysaccharide with many repeats of a short oligosaccharide that is a part of the lipopolysaccharide, the major lipid in the outer leaflet of the outer membrane. Lipopolysaccharide is variable with 46 forms in Salmonella enterica that underpin the serotyping scheme. Repeat units are assembled on a lipid carrier that is embedded in the cell membrane, and are then translocated by the Wzx translocase from the cytoplasmic face to the outer face of the cell membrane, followed by polymerization. The O antigen is then incorporated into lipopolysaccharide and exported to the outer membrane. The Wzx translocase is widely thought to be specific only for the first sugar of the repeat unit, despite extensive variation in both O antigens and Wzx translocases. However, we found for S. enterica groups B, D2 and E that Wzx translocation exhibits significant specificity for the repeat-unit structure, as variants with single sugar differences are translocated with lower efficiency and little long-chain O antigen is produced. It appears that Wzx translocases are specific for their O antigen for normal levels of translocation.
Collapse
Affiliation(s)
- Yaoqin Hong
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
32
|
Nair A, Korres H, Verma NK. Topological characterisation and identification of critical domains within glucosyltransferase IV (GtrIV) of Shigella flexneri. BMC BIOCHEMISTRY 2011; 12:67. [PMID: 22188643 PMCID: PMC3259042 DOI: 10.1186/1471-2091-12-67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022]
Abstract
Background The three bacteriophage genes gtrA, gtrB and gtr(type) are responsible for O-antigen glucosylation in Shigella flexneri. Both gtrA and gtrB have been demonstrated to be highly conserved and interchangeable among serotypes while gtr(type) was found to be specific to each serotype, leading to the hypothesis that the Gtr(type) proteins are responsible for attaching glucosyl groups to the O-antigen in a site- and serotype- specific manner. Based on the confirmed topologies of GtrI, GtrII and GtrV, such interaction and attachment of the glucosyl groups to the O-antigen has been postulated to occur in the periplasm. Results In this study, the topology of GtrIV was experimentally determined by creating different fusions between GtrIV and a dual-reporter protein, PhoA/LacZ. This study shows that GtrIV consists of 8 transmembrane helices, 2 large periplasmic loops, 2 small cytoplasmic N- and C- terminal ends and a re-entrant loop that occurs between transmembrane helices III and IV. Though this topology differs from that of GtrI, GtrII, GtrV and GtrX, it is very similar to that of GtrIc. Furthermore, both the N-terminal periplasmic and the C-terminal periplasmic loops are important for GtrIV function as shown via a series of loop deletion experiments and the creation of chimeric proteins between GtrIV and its closest structural homologue, GtrIc. Conclusion The current study provides the basis for elucidating the structure and mechanism of action of this important O-antigen modifying glucosyltransferase.
Collapse
Affiliation(s)
- Anesh Nair
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
33
|
Formisano C, Rigano D, Senatore F. Chemical Constituents and Biological Activities of Nepeta Species. Chem Biodivers 2011; 8:1783-818. [DOI: 10.1002/cbdv.201000191] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Hayford AE, Mammel MK, Lacher DW, Brown EW. Single nucleotide polymorphism (SNP)-based differentiation of Shigella isolates by pyrosequencing. INFECTION GENETICS AND EVOLUTION 2011; 11:1761-8. [PMID: 21839856 DOI: 10.1016/j.meegid.2011.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/17/2022]
Affiliation(s)
- Alice E Hayford
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | | | |
Collapse
|
35
|
Development of a multiplex PCR assay targeting O-antigen modification genes for molecular serotyping of Shigella flexneri. J Clin Microbiol 2011; 49:3766-70. [PMID: 21880974 DOI: 10.1128/jcm.01259-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri is the major Shigella species that causes diarrheal disease in developing countries. It is further subdivided into 15 serotypes based on O-antigen structure. Serotyping of S. flexneri is important for epidemiological purposes. In this study, we developed a multiplex PCR assay targeting the O-antigen synthesis gene wzx and the O-antigen modification genes gtrI, gtrIC, gtrII, oac, gtrIV, gtrV, and gtrX for molecular serotyping of S. flexneri. The multiplex PCR assay contained eight sets of specific PCRs in a single tube and can identify 14 of the 15 serotypes (the exception being serotype Xv) of S. flexneri recognized thus far. A nearly perfect concordance (97.8%) between multiplex PCR assay and slide agglutination was observed when 358 S. flexneri strains of various serotypes were analyzed, except that 8 strains were carrying additional cryptic and/or defective serotype-specific genes. The multiplex PCR assay provides a rapid and specific method for the serotype identification of S. flexneri.
Collapse
|
36
|
Lang G, Buchbauer G. A review on recent research results (2008-2010) on essential oils as antimicrobials and antifungals. A review. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2082] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gudrun Lang
- Faculty of Life Sciences, Clinical Pharmacy & Diagnostics; University of Vienna; Vienna; Austria
| | - Gerhard Buchbauer
- Faculty of Life Sciences, Clinical Pharmacy & Diagnostics; University of Vienna; Vienna; Austria
| |
Collapse
|
37
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
38
|
Xing Y, Xu Q, Che Z, Li X, Li W. Effects of chitosan-oil coating on blue mold disease and quality attributes of jujube fruits. Food Funct 2011; 2:466-74. [DOI: 10.1039/c1fo10073d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Peng J, Yang J, Jin Q. Research progress in Shigella in the postgenomic era. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1284-90. [DOI: 10.1007/s11427-010-4089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/20/2009] [Indexed: 01/01/2023]
|
40
|
Ramiscal RR, Tang SS, Korres H, Verma NK. Structural and functional divergence of the newly identified GtrIc from its Gtr family of conserved Shigella flexneri serotype-converting glucosyltransferases. Mol Membr Biol 2010; 27:114-22. [PMID: 20095950 DOI: 10.3109/09687680903552250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosyltransferases (Gtrs) and O-acetyltransferase (Oac) are integral membrane proteins embedded within the cytoplasmic membrane of Shigella flexneri. Gtrs and Oac are responsible for unidirectional host serotype conversion by altering the epitopic properties of the bacterial surface lipopolysaccharide (LPS) O-antigen. In this study, we present the membrane topology of a recently recognized Gtr, GtrIc, which is known to mediate S. flenxeri serotype switching from 1a to 1c. The GtrIc topology is shown to deviate from those typically seen in S. flexneri Gtrs. GtrIc has 11 hydrophilic loops, 10 transmembrane helices, a double intramembrane dipping loop 5, and a cytoplasmic N- and C-terminus. Along with a unique membrane topology, the identification of non-critical Gtr-conserved peptide motifs within large periplasmic loops (N-terminal D/ExD/E and C-terminal KK), which have previously been proven essential for the activity of other Gtrs, challenge current opinions of a similar mechanism for enzyme function between members of the S. flexneri Gtr family.
Collapse
Affiliation(s)
- Roybel R Ramiscal
- Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
41
|
Navarro A, Eslava C, Perea LM, Inzunza A, Delgado G, Morales-Espinosa R, Cheasty T, Cravioto A. New enterovirulent Escherichia coli serogroup 64474 showing antigenic and genotypic relationships to Shigella boydii 16. J Med Microbiol 2010; 59:453-461. [PMID: 20075111 DOI: 10.1099/jmm.0.015602-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies based on the analysis of housekeeping genes indicate that Escherichia coli and all Shigella species, except for Shigella boydii type 13, belong to a single species. This study analysed the phenotypic and genotypic characteristics of 23 E. coli strains isolated in different countries from faecal specimens taken from children with diarrhoea. Strains were identified using the VITEK system and typed with rabbit sera obtained against 186 somatic and 53 flagellar E. coli antigens and against 45 Shigella somatic antigens. Biochemical analysis of these strains showed a typical E. coli profile with a defined reaction against both E. coli O179 and S. boydii 16 somatic antisera. Agglutination assays for flagellar antigens showed a response against H2 in 7 (30 %) strains, H10 in 2 (9 %) strains, H32 in 12 (52 %) strains and H34 in 2 (9 %) strains, demonstrating 4 serotypes associated with this new somatic antigen 64474. A serum against one of these E. coli strains (64474) was prepared. Absorption assays of S. boydii 16 and E. coli 64474 antisera with E. coli O179 antigen removed the agglutination response against this O179 antigen completely, while the agglutination titres against both S. boydii 16 and E. coli 64474 remained the same. Four (17 %) E. coli strains showed antimicrobial resistance to piperacillin only, one (4 %) to piperacillin and trimethoprim/sulfamethoxazole, one (4 %) to ciprofloxacin, nitrofurantoin and piperacillin, and two (9 %) strains were resistant to ciprofloxacin, norfloxacin, ofloxacin, piperacillin and trimethoprim/sulfamethoxazole. With regards to PCR assays, one (4 %) of the strains was positive for Shigella gene ipaH, one (4 %) for ipaA, two (9 %) for ipaB, one (4 %) for ipaD, two (9 %) for sepA and three (13 %) for ospF. The rfb gene cluster in the E. coli strains was analysed by RFLP and compared with the gene cluster obtained from S. boydii 16. The rfb-RFLP patterns for all 23 E. coli strains were similar to those obtained for S. boydii 16. The results from PCR tests to detect rfb genes wzx (encoding O unit flippase) and wzy (encoding polymerase) belonging to a cluster related to the biosynthesis of the S. boydii 16-specific O antigen were positive in 21 (91 %) and 22 (96 %) of the strains, respectively. PCR assays to detect E. coli virulence genes were also performed. These assays detected enterotoxigenic E. coli genes ltA1 in 12 of the strains (52 %), st1a in 4 (17 %), cfa1 in 6 (26 %), cs1 in 1 (4 %), cs3 in 3 (13 %), cs13 in 9 (39 %) and cs14 in 5 (22 %) of the strains. Results from the PFGE analyses confirmed the wide geographical distribution of these strains suggesting that 64474 : H2, 64474 : H10, 64474 : H32 and 64474 : H34 are new serotypes of E. coli strains with a defined virulence capacity, and share a common O antigen with S. boydii 16.
Collapse
Affiliation(s)
- Armando Navarro
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Carlos Eslava
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Luis Manuel Perea
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Alma Inzunza
- Departamento de Salud Pública, Facultad deMedicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Mexico City DF 04510, Mexico
| | - Gabriela Delgado
- Microbiología y Parasitología, Facultadde Medicina, Universidad Nacional Autónoma de México, CiudadUniversitaria, Mexico City DF 04510, Mexico
| | - Rosario Morales-Espinosa
- Microbiología y Parasitología, Facultadde Medicina, Universidad Nacional Autónoma de México, CiudadUniversitaria, Mexico City DF 04510, Mexico
| | - Thomas Cheasty
- Laboratory of Gastrointestinal Pathogens, HealthProtection Agency, London NW9 5EQ, UK
| | - Alejandro Cravioto
- International Centre for Diarrhoeal Disease Research,Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
42
|
A new multiplex PCR for differential identification ofShigella flexneriandShigella sonneiand detection ofShigellavirulence determinants. Epidemiol Infect 2009; 138:525-33. [DOI: 10.1017/s0950268809990823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SUMMARYMost of the multiplex PCR (mPCR) used to identifyShigellado not discriminate betweenShigellaspecies or serotypes. We designed a mPCR to differentiate betweenS. flexneriandS. sonneistrains based on the detection of markers associated with theshepathogenicity island described inShigella. In addition, specific primers were included to detect theShigellavirulence determinants ShET-1 and ShET-2 enterotoxin genes. The analysis of 304Shigellastrains from Chile and 79Shigellastrains from other geographic locations indicated that the mPCR described here detected allShigellaspecies and specifically differentiatedS. flexneriandS. sonnei. The technique was sensitive, reproducible, specific and simple to perform, providing a new tool with the potential to be employed for epidemiological and diagnostic purposes.
Collapse
|