1
|
Dispersal of Aphanoascus keratinophilus by the rook Corvus frugilegus during breeding in East Poland. Sci Rep 2022; 12:2142. [PMID: 35136194 PMCID: PMC8826369 DOI: 10.1038/s41598-022-06227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The process of dispersal of the potentially disease-causing, geophilic and keratinolytic fungal strain Aphanoascus keratinophilus (the perfect, sexual stage of Chrysosporium keratinophilum) by the rook Corvus frugilegus was studied. The source of A. keratinophilus strains was pellets of the rook, thus far not considered a carrier of this particular opportunistic pathogen. Pellets collected from breeding colonies of rooks were analysed in terms of the occurrence of keratinolytic fungi with the application of the native keratin bait method. Among the 83 rook pellets analysed, 24 (29%) were infected by keratinophilic fungi. Pure cultures of the fungi were identified to species based on traditional morphological features. Traditional mycological identification was verified by the PCR–RFLP molecular identification method as well as DNA sequencing. The obtained results showed the presence of 90 Aphanoascus keratinophilus strains, 6 Chrysosporium tropicum strains, and 3 Chrysosporium pannicola strains. The PCR melting profile (PCR-MP) method was used to identify intraspecies variations of the 90 analysed A. keratinophilus strains. The dispersal of genotypes and possible pathways of A. keratinophilus dispersal and infection via rook pellets were analysed.
Collapse
|
2
|
Gnat S, Łagowski D, Nowakiewicz A, Osińska M, Kopiński Ł. Population differentiation, antifungal susceptibility, and host range of Trichophyton mentagrophytes isolates causing recalcitrant infections in humans and animals. Eur J Clin Microbiol Infect Dis 2020; 39:2099-2113. [PMID: 32607909 PMCID: PMC7561545 DOI: 10.1007/s10096-020-03952-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 02/05/2023]
Abstract
The major problems in determining the causative factors of the high prevalence of dermatophytoses include the lack of a well-standardized antifungal susceptibility testing method, the low consistency of in vitro and clinical minimal inhibitory concentration values, the high genomic diversity of the population, and the unclear mechanism of pathogenicity. These factors are of particular importance when the disease is recalcitrant and relapses. Herein, we identified and characterized Trichophyton mentagrophytes isolates obtained from therapy-resistant cases in humans and animals. We used genomic diversity analysis of 17 human and 27 animal clinical isolates with the MP-PCR technique, determined their phenotypic enzymatic activity and host range, and performed antifungal susceptibility testing to currently available antifungal drugs from various chemical groups. Genomic diversity values of 35.3% and 33.3% were obtained for clinical isolates from humans and animals, respectively, yet without any relationship to the host species or antifungal drug to which resistance in therapy was revealed. The highest activity of keratinase enzymes was recorded for fox, guinea pig, and human hairs. These hosts can be considered as the main species in the host range of these isolates. A phenyl morpholine derivative, i.e. amorolfine, exhibited superior activity against strains obtained from both humans and animals with the lowest MIC50. Interestingly, high compliance of terbinafine in vitro resistance with clinical problems in the treatment with this substance was shown as well. The high resistance of dermatophytes to drugs is the main cause of the recalcitrance of the infection, whereas the other features of the fungus are less important.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Łukasz Kopiński
- Faculty of Agrobioengineering, Department of Management and Marketing, University of Life Sciences, Dobrzanskiego 37, 20-626, Lublin, Poland
| |
Collapse
|
3
|
Ansari S, Ahmadi B, Norouzi M, Ansari Z, Afsarian MH, Lotfali E, Rezaei-Matehkolaei A. Epidermophyton floccosum: nucleotide sequence analysis and antifungal susceptibility testing of 40 clinical isolates. J Med Microbiol 2019; 68:1655-1663. [PMID: 31573466 DOI: 10.1099/jmm.0.001074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose. Epidermophyton floccosum is an anthropophilic dermatophyte species, which is one of the common causative agents of dermatophytosis in different parts of the world. The aim of the present investigation was to evaluate the genetic diversity of E. floccosum strains isolated from different parts of Iran and to define the in vitro susceptibility profiles of seven antifungal drugs against these clinical isolates.Methodology. Forty clinical strains of E. floccosum isolated from 40 patients with dermatophytosis were subjected to DNA extraction and PCR amplification of the ITS rDNA region using universal primers ITS1 and ITS4. The in vitro activities of griseofulvin, itraconazole, voriconazole, posaconazole, caspofungin, ketoconazole and terbinafine were determined using a broth microdilution method according to the CLSI-M-38A2 protocol.Results. A mean genetic similarity of 99.5 % was found between E. floccosum strains, with intraspecies differences ranging from 0 to 3 nt. The geometric mean (GM) MICs and minimum effective concentrations (MECs) across all isolates were, in increasing order, as follows: terbinafine (GM=0.018 mg l-1), posaconazole (GM=0.022 mg l-1), itraconazole (GM=0.034 mg l-1) and voriconazole (GM=0.045 mg l-1), which had low MICs against all tested strains, whereas caspofungin (GM=0.22 mg l-1), ketoconazole (GM=0.41 mg l-1) and griseofulvin (GM=0.62 mg l-1) demonstrated higher MICs.Conclusion. Our study showed low intraspecies variation within strains of E. floccosum. Furthermore, terbinafine, posaconazole, itraconazole and voriconazole were shown to be the most potent antifungal drugs against E. floccosum strains.
Collapse
Affiliation(s)
- Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Ahmadi
- Department of Medical Laboratory Sciences, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Norouzi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ansari
- Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hosein Afsarian
- Department of Medical Mycology and Parasitology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rezaei-Matehkolaei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Chajęcka-Wierzchowska W, Zadernowska A, Zarzecka U, Zakrzewski A, Gajewska J. Enterococci from ready-to-eat food - horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1172-1179. [PMID: 30047163 DOI: 10.1002/jsfa.9285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the possibility of the horizontal transfer of genes encoding resistance to aminoglycosides (aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(4')-Ia and ant(6')-Ia), tetracyclines (tetM, tetL, tetK, tetO and tetW), and macrolides (ermA, ermB, ermC, msrC, mefAB) in Enterococcus strains isolated from ready-to-eat dishes purchased in bars and restaurants in Olsztyn, Poland. RESULTS It was found that 74% of tested strains were able to conjugal transfer at least one of the antibiotic resistance genes. Transfer of resistance to tetracyclines in strains was observed with a frequency ranging from 1.3 × 10-6 to 8.7 × 10-7 transconjugants/donor. The int gene and the tetM gene were transferred simultaneously, which indicated that a transposon of the Tn916/Tn1545 also participated in the conjugation process. The frequency of transferring genes of resistance to macrolides ranged from 3.2 × 10-6 to 2.4 × 10-8 transconjugants/donor. The ermB gene was transferred the most frequently. The frequency of acquisition of genes encoding aminoglycosides in strains isolated from food ranged from 1.7 × 10-6 to 3,2 × 10-8 transconjugants/donor. Transfer of the aac(6')-Ie-aph(2″) gene was the most frequent. In all reactions, the clonal character of transconjugants and recipients was confirmed by the polymerase chain reaction melting profile (PCR MP) method, which is an alternative to the pulsed field gel electrophoresis (PFGE) method. CONCLUSION The findings of this study indicate that Enterococcus isolated from ready-to-eat food is able to horizontally transfer genes encoding various antibiotic resistance mechanisms. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Arkadiusz Zakrzewski
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Gajewska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
Gnat S, Łagowski D, Nowakiewicz A, Zięba P. Tinea corporisbyMicrosporum canisin mycological laboratory staff: Unexpected results of epidemiological investigation. Mycoses 2018; 61:945-953. [DOI: 10.1111/myc.12832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary MedicineInstitute of Biological Bases of Animal DiseasesSub‐Department of Veterinary MicrobiologyUniversity of Life Sciences Lublin Poland
| | - Dominik Łagowski
- Faculty of Veterinary MedicineInstitute of Biological Bases of Animal DiseasesSub‐Department of Veterinary MicrobiologyUniversity of Life Sciences Lublin Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary MedicineInstitute of Biological Bases of Animal DiseasesSub‐Department of Veterinary MicrobiologyUniversity of Life Sciences Lublin Poland
| | | |
Collapse
|
6
|
Gnat S, Łagowski D, Nowakiewicz A, Trościańczyk A, Zięba P. Infection ofTrichophyton verrucosumin cattle breeders, Poland: A 40-year retrospective study on the genomic variability of strains. Mycoses 2018; 61:681-690. [DOI: 10.1111/myc.12791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine; Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; University of Life Sciences; Lublin Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine; Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; University of Life Sciences; Lublin Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine; Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; University of Life Sciences; Lublin Poland
| | - Aleksandra Trościańczyk
- Faculty of Veterinary Medicine; Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; University of Life Sciences; Lublin Poland
| | | |
Collapse
|
7
|
Ontañon OM, Fernandez M, Agostini E, González PS. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16111-16120. [PMID: 29594905 DOI: 10.1007/s11356-018-1764-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Chromium pollution is a problem that affects different areas worldwide and, therefore, must be solved. Bioremediation is a promising alternative to treat environmental contamination, but finding bacterial strains able to tolerate and remove different contaminants is a major challenge, since most co-polluted sites contain mixtures of organic and inorganic substances. In the present work, Bacillus sp. SFC 500-1E, isolated from the bacterial consortium SFC 500-1 native to tannery sediments, showed tolerance to various concentrations of different phenolic compounds and heavy metals, such as Cr(VI). This strain was able to efficiently remove Cr(VI), even in the presence of phenol. The detection of the chrA gene suggested that Cr(VI) extrusion could be a mechanism that allowed this strain to tolerate the heavy metal. However, reduction through cytosolic NADH-dependent chromate reductases may be the main mechanism involved in the remediation. The information provided in this study about the mechanisms through which Bacillus sp. SFC 500-1E removes Cr(VI) should be taken into account for the future application of this strain as a possible candidate to remediate contaminated environments.
Collapse
Affiliation(s)
- Ornella M Ontañon
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
8
|
Multiple-strainTrichophyton mentagrophytesinfection in a silver fox (Vulpes vulpes) from a breeding farm. Med Mycol 2018. [DOI: 10.1093/mmy/myy011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Rubel MH, Robin AHK, Natarajan S, Vicente JG, Kim HT, Park JI, Nou IS. Whole-Genome Re-Alignment Facilitates Development of Specific Molecular Markers for Races 1 and 4 of Xanthomonas campestris pv. campestris, the Cause of Black Rot Disease in Brassica oleracea. Int J Mol Sci 2017; 18:E2523. [PMID: 29186799 PMCID: PMC5751126 DOI: 10.3390/ijms18122523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a seed borne disease of Brassicaceae. Eleven pathogenic races have been identified based on the phenotype interaction pattern of differential brassica cultivars inoculated with different strains. Race 1 and 4 are the two most frequent races found in Brassica oleracea crops. In this study, a PCR molecular diagnostic tool was developed for the identification of Xcc races 1 and 4 of this pathogen. Whole genomic sequences of races 1, 3, 4 and 9 and sequences of three other Xanthomonas pathovars/species (X. campestris pv. incanae (Xci), X. campestris pv. raphani (Xcr) and X.euvesicatoria (Xev) were aligned to identify variable regions among races. To develop specific markers for races 1 and 4, primers were developed from a region where sequences were dissimilar in other races. Sequence-characterized amplified regions (SCAR) and insertion or deletion of bases (InDel) were used to develop each specific set of primers. The specificity of the selected primers was confirmed by PCR tests using genomic DNA of seven different Xcc races, two strains of X. campestris pathovars and other species of bacteria. Bacterial samples of the races 1 and 4 isolates were collected from artificially inoculated cabbage leaves to conduct bio-PCR. Bio-PCR successfully detected the two Xcc isolates. By using our race-specific markers, a potential race 1 strain from the existing Korean Xcc collection was identified. The Xcc race 1 and 4-specific markers developed in this study are novel and can potentially be used for rapid detection of Xcc races through PCR.
Collapse
Affiliation(s)
- Mehede Hassan Rubel
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| | - Arif Hasan Khan Robin
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| | - Sathishkumar Natarajan
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| | - Joana G. Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick CV35 9EF, UK;
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea; (M.H.R.); (A.H.K.R.); (S.N.); (H.-T.K.)
| |
Collapse
|
10
|
Gnat S, Nowakiewicz A, Ziółkowska G, Trościańczyk A, Majer-Dziedzic B, Zięba P. Evaluation of growth conditions and DNA extraction techniques used in the molecular analysis of dermatophytes. J Appl Microbiol 2017; 122:1368-1379. [DOI: 10.1111/jam.13427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Affiliation(s)
- S. Gnat
- Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; Faculty of Veterinary Medicine; University of Life Sciences; Lublin Poland
| | - A. Nowakiewicz
- Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; Faculty of Veterinary Medicine; University of Life Sciences; Lublin Poland
| | - G. Ziółkowska
- Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; Faculty of Veterinary Medicine; University of Life Sciences; Lublin Poland
| | - A. Trościańczyk
- Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; Faculty of Veterinary Medicine; University of Life Sciences; Lublin Poland
| | - B. Majer-Dziedzic
- Sub-Department of Veterinary Microbiology; Institute of Biological Bases of Animal Diseases; Faculty of Veterinary Medicine; University of Life Sciences; Lublin Poland
| | - P. Zięba
- State Veterinary Laboratory; Lublin Poland
| |
Collapse
|
11
|
Koc AN, Atalay MA, Inci M, Sariguzel FM, Sav H. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey. Mycoses 2017; 60:348-354. [PMID: 28220547 DOI: 10.1111/myc.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 11/27/2022]
Abstract
Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR.
Collapse
Affiliation(s)
- A Nedret Koc
- Department of Microbiology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Mustafa A Atalay
- Department of Microbiology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Melek Inci
- Department of Medical Microbiology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Fatma M Sariguzel
- Department of Microbiology, Kayseri Research and Training Hospital, Kayseri, Turkey
| | - Hafize Sav
- Department of Microbiology, Cerrahpaşa Medical Faculty, İstanbul, Turkey
| |
Collapse
|
12
|
Kałużna M, Albuquerque P, Tavares F, Sobiczewski P, Puławska J. Development of SCAR markers for rapid and specific detection of Pseudomonas syringae pv. morsprunorum races 1 and 2, using conventional and real-time PCR. Appl Microbiol Biotechnol 2016; 100:3693-711. [PMID: 26830104 PMCID: PMC4803819 DOI: 10.1007/s00253-016-7295-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/16/2015] [Accepted: 12/26/2015] [Indexed: 11/18/2022]
Abstract
Specific primers were developed to detect the causal agent of stone fruit bacterial canker using conventional and real-time polymerase chain reaction (PCR) methods. PCR melting profile (PCR MP) used for analysis of diversity of Pseudomonas syringae strains, allowed to pinpoint the amplified fragments specific for P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2), which were sequenced. Using obtained data, specific sequence characterised amplified region (SCAR) primers were designed. Conventional and real-time PCRs, using genomic DNA isolated from different bacterial strains belonging to the Pseudomonas genus, confirmed the specificity of selected primers. Additionally, the specificity of the selected DNA regions for Psm1 and Psm2 was confirmed by dot blot hybridisation. Conventional and real-time PCR assays enabled accurate detection of Psm1 and Psm2 in pure cultures and in plant material. For conventional PCR, the detection limits were the order of magnitude ~10(0) cfu/reaction for Psm1 and 10(1) cfu/reaction for Psm2 in pure cultures, while in plant material were 10(0)-10(1) cfu/reaction using primers for Psm1 and 3 × 10(2) cfu/reaction using primers for Psm2. Real-time PCR assays with SYBR Green I showed a higher limit of detection (LOD) - 10(0) cfu/reaction in both pure culture and in plant material for each primer pairs designed, which corresponds to 30-100 and 10-50 fg of DNA of Psm1 and Psm2, respectively. To our knowledge, this is the first PCR-based method for detection of the causal agents of bacterial canker of stone fruit trees.
Collapse
Affiliation(s)
- Monika Kałużna
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Pedro Albuquerque
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Faculdade de Ciencias, Departamento de Biologia, Universidade do Porto, Edifício FC4, Via Panoramica No. 36, 4150-564, Porto, Portugal
| | - Fernando Tavares
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Faculdade de Ciencias, Departamento de Biologia, Universidade do Porto, Edifício FC4, Via Panoramica No. 36, 4150-564, Porto, Portugal
| | - Piotr Sobiczewski
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Joanna Puławska
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| |
Collapse
|
13
|
Ontañon OM, González PS, Agostini E. Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13014-13023. [PMID: 25916475 DOI: 10.1007/s11356-015-4571-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Bioremediation has emerged as an environmental friendly strategy to deal with environmental pollution. Since the majority of polluted sites contain complex mixtures of inorganic and organic pollutants, it is important to find bacterial strains that can cope with multiple contaminants. In this work, a bacterial strain isolated from tannery sediments was identified as Acinetobacter guillouiae SFC 500-1A. This strain was able to simultaneously remove high phenol and Cr(VI) concentrations, and the mechanisms involved in such process were evaluated. The phenol biodegradation was catalized by a phenol-induced catechol 1,2-dioxygenase through an ortho-cleavage pathway. Also, NADH-dependent chromate reductase activity was measured in the cytosolic fraction. The ability of this strain to reduce Cr(VI) to Cr(III) was corroborated by detection of Cr(III) in cellular biomass after the removal process. While phenol did not affect significantly the chromate reductase activity, Cr(VI) was a major disruptor of catechol dioxygenase activity. Nevertheless, this activity was high even in presence of high Cr(VI) concentrations. Our results suggest the potential application of A. guillouiae SFC 500-1A for wastewaters treatment, and the obtained data provide the insights into the removal mechanisms, dynamics, and possible limitations of the bioremediation.
Collapse
Affiliation(s)
- Ornella M Ontañon
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36 Km 601. CP 5800, Río Cuarto, Córdoba, Argentina,
| | | | | |
Collapse
|
14
|
Bacillus dabaoshanensis sp. nov., a Cr(VI)-tolerant bacterium isolated from heavy-metal-contaminated soil. Arch Microbiol 2015; 197:513-20. [PMID: 25603996 DOI: 10.1007/s00203-015-1082-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/03/2015] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
Abstract
A Cr(VI)-tolerant, Gram-staining-positive, rod-shaped, endospore-forming and facultative anaerobic bacterium, designated as GSS04(T), was isolated from a heavy-metal-contaminated soil. Strain GSS04(T) was Cr(VI)-tolerant with a minimum inhibitory concentration of 600 mg l(-1) and was capable of reducing Cr(VI) under both aerobic and anaerobic conditions. Growth occurred with presence of 0-3 % (w/v) NaCl (optimum 1 %), at pH 5.5-10.0 (optimum pH 7.0) and 15-50 °C (optimum 30-37 °C). The main respiratory quinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C15:0. The DNA G+C content was 41.1 mol%. The predominant polar lipid was diphosphatidylglycerol. Based on 16S rRNA gene sequence similarity, the closest phylogenetic relative was Bacillus shackletonii DSM 18868(T) (97.6 %). The DNA-DNA hybridization between GSS04(T) and its closest relatives revealed low relatedness (<70 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS04(T) represents a novel species of the genus Bacillus, for which the name Bacillus dabaoshanensis sp. nov. is proposed. The type strain is GSS04(T) (=CCTCC AB 2013260(T) = KCTC 33191(T)).
Collapse
|
15
|
Stojowska K, Krawczyk B. A new double digestion ligation mediated suppression PCR method for simultaneous bacteria DNA-typing and confirmation of species: an Acinetobacter sp. model. PLoS One 2014; 9:e115181. [PMID: 25522278 PMCID: PMC4270756 DOI: 10.1371/journal.pone.0115181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.
Collapse
Affiliation(s)
- Karolina Stojowska
- Department of Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Beata Krawczyk
- Department of Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
- * E-mail:
| |
Collapse
|
16
|
Highly discriminatory variable-number tandem-repeat markers for genotyping of Trichophyton interdigitale strains. J Clin Microbiol 2014; 52:3290-6. [PMID: 24989614 DOI: 10.1128/jcm.00828-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichophyton interdigitale is the second most frequent cause of superficial fungal infections of various parts of the human body. Studying the population structure and genotype differentiation of T. interdigitale strains may lead to significant improvements in clinical practice. The present study aimed to develop and select suitable variable-number tandem-repeat (VNTR) markers for 92 clinical strains of T. interdigitale. On the basis of an analysis of four VNTR markers, four to eight distinct alleles were detected for each marker. The marker with the highest discriminatory power had eight alleles and a D value of 0.802. The combination of all four markers yielded a D value of 0.969 with 29 distinct multilocus genotypes. VNTR typing revealed the genetic diversity of the strains, identifying three populations according to their colonization sites. A correlation between phenotypic characteristics and multilocus genotypes was observed. Seven patients harbored T. interdigitale strains with different genotypes. Typing of clinical T. interdigitale samples by VNTR markers displayed excellent discriminatory power and 100% reproducibility.
Collapse
|
17
|
Ciesielska A, Bohacz J, Korniłłowicz-Kowalska T, Stączek P. Microsatellite-primed PCR for intra-species genetic relatedness in Trichophyton ajelloi strains isolated in poland from various soil samples. Microbes Environ 2014; 29:178-83. [PMID: 24859370 PMCID: PMC4103524 DOI: 10.1264/jsme2.me13160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trichophyton ajelloi is a geophilic dermatophyte that specializes in the decomposition of native keratin. It exists in soil with a permanent influx of keratin matter. In the present study, two PCR-based methods were used for the identification and intra-species differentiation of T. ajelloi strains isolated from 3 types of soils with different physicochemical properties. The first method, employed for molecular identification, was PCR amplification of the 5.8S rRNA gene and its flanking regions encoding internal transcribed spacers (ITSs), followed by restriction enzyme digestion using endonuclease HinfI. The second method, employed for molecular differentiation, was microsatellite-primed PCR (MSP-PCR) using the repetitive oligonucleotide (GACA)4. All the T. ajelloi strains were also identified using a traditional culture method. Our results showed that molecular identification using the PCR-restriction fragment length polymorphism (PCR-RFLP) method agreed with the identification made using the traditional approach. On the other hand, PCR-RFLP results showed no strain differentiation, while MSP-PCR using the (GACA)4 primer identified different varieties among the T. ajelloi strains. The reasons for the intra-species differentiation of T. ajelloi have been discussed.
Collapse
|
18
|
Zasada AA, Formińska K, Wołkowicz T, Badell E, Guiso N. The utility of the PCR melting profile technique for typing Corynebacterium diphtheriae isolates. Lett Appl Microbiol 2014; 59:292-8. [PMID: 24749659 DOI: 10.1111/lam.12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Selection of appropriate typing method depends on a number of factors, including the scale of the investigation, the rapidity required of the results and the financial and technical resources available. Several typing methods have been applied to Corynebacterium diphtheriae genotyping, but most are laborious and time-consuming or require expensive equipment. We report an evaluation of the utility of the PCR melting profile technique for simple and easy-to-perform genotyping of C. diphtheriae. We compared the method with ribotyping-the 'gold standard' for C. diphtheriae typing-and PFGE, MLST, AFLP, RAPD and spoligotyping. SIGNIFICANCE AND IMPACT OF THE STUDY Occurrence of Corynebacterium diphtheriae infections-in the form of diphtheria in endemic countries and in the form of invasive infections in countries with high antidiphtheria vaccination coverage-indicates the need for maintenance of ability to genotype this pathogen by laboratories. Application of an appropriate typing method is essential not only in outbreak investigations for understanding and predicting epidemics but also in monitoring of the evolution and spread of epidemic clones of C. diphtheriae. The PCR melting profile method presented in the study is a good alternative for C. diphtheriae typing.
Collapse
Affiliation(s)
- A A Zasada
- Department of Bacteriology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | | | | | | | | |
Collapse
|
19
|
Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0373-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Cafarchia C, Iatta R, Latrofa MS, Gräser Y, Otranto D. Molecular epidemiology, phylogeny and evolution of dermatophytes. INFECTION GENETICS AND EVOLUTION 2013; 20:336-51. [PMID: 24060735 DOI: 10.1016/j.meegid.2013.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022]
Abstract
Dermatophytes are fungi that invade and propagate in the keratinized skin of mammals, including humans, often causing contagious infections. The species of medical concern belong to the genera Microsporum, Trichophyton, Epidermophyton (in their anamorphic state) and Arthroderma (in their telomorphic state), which were traditionally identified based on their morphology and biochemical characters. Nonetheless, limitations linked to the differentiation of closely related agents at species and strains level have been recently overcome by molecular studies. Indeed, an accurate identification of dermatophytes is pivotal for the establishment of effective control and prevention programs as well as for determining the most appropriate and effective antifungal therapies to be applied. This article reviews the DNA techniques and the molecular markers used to identify and to characterize dermatophyte species, as well as aspects of their phylogeny and evolution. The applications of typing molecular strain to both basic and applied research (e.g., taxonomy, ecology, typing of infection, antifungal susceptibility) have also been discussed.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università di Bari, Str. prov. le per Casamassima Km 3, 70010 Valenzano, Bari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Spesso MF, Nuncira CT, Burstein VL, Masih DT, Dib MD, Chiapello LS. Microsatellite-primed PCR and random primer amplification polymorphic DNA for the identification and epidemiology of dermatophytes. Eur J Clin Microbiol Infect Dis 2013; 32:1009-15. [DOI: 10.1007/s10096-013-1839-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
22
|
Hryncewicz-Gwóźdź A, Jagielski T, Kalinowska K, Baczyńska D, Plomer-Niezgoda E, Bielecki J. Stability of tandemly repetitive subelement PCR patterns in Trichophyton rubrum over serial passaging and with respect to drug pressure. Mycopathologia 2012; 174:383-8. [PMID: 22814817 PMCID: PMC3496550 DOI: 10.1007/s11046-012-9565-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/29/2012] [Indexed: 12/02/2022]
Abstract
Trichophyton rubrum is the most significant agent of dermatomycoses worldwide, primarily causing tinea pedis and tinea unguium. PCR analysis of tandemly repetitive subelements (TRS) within the rDNA nontranscribed spacer region is a major tool for molecular typing of T. rubrum. The aim of this study was to investigate the stability of TRS PCR patterns by analyzing isogenic strains of T. rubrum. Twenty-seven groups of isogenic T. rubrum strains were examined, each composed of an original clinical isolate and its 3 subcultures, maintained on a drug-free medium, a medium containing fluconazole and itraconazole. TRS typing was performed for the original strains and their subcultures grown after 12 passages, at 4-week intervals, on respective media. To add more objectivity to the results, TRS typing for each of the isogenic strain was performed three times, using DNA isolated from three different colonies. Among 27 groups of isogenic strains, all but one were exclusively composed of strains with identical TRS-1 and TRS-2 PCR patterns. In one group, 3 isolates from the last, twelfth passage had identical TRS-1 PCR profiles (type 1), yet different TRS-2 PCR profiles, as compared with the original strain (type I vs. type II). The mechanism underlying the genotype switch was a deletion of a single repeat unit in the TRS-2 locus, as evidenced by sequence analysis. In the interpretation of TRS typing results, microevolutionary events need to be taken into account, urging drawing epidemiological conclusions with caution and in conjunction with other genotyping data and traditional contact tracing information.
Collapse
Affiliation(s)
- Anita Hryncewicz-Gwóźdź
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Recent advances in the molecular diagnostics of dermatophytosis may improve speed, specificities and sensitivities. This review provides an update on the current available molecular techniques for the diagnosis of dermatophytosis. RECENT FINDINGS Molecular diagnostics of dermatophytosis relate to the direct detection of dermatophyte DNA in clinical specimens. Important challenges have been associated with the DNA extraction procedures, which despite improvement still lack consensus, and the fact that phenotypic species classification not always translates into distinct molecular taxonomic entities. Molecular methods are divided into conventional PCR, real-time PCR and post-PCR techniques. The former benefits from simplicity and being less expensive to implement, real-time PCR is less laborious, may enable a broader spectrum of simultaneous species detections and the closed system reduces contamination risk, whereas post-PCR strategies may increase the number of species identified but prolong the turnaround time, and the processing of PCR products increases the laboratory contamination risk. SUMMARY Current molecular methods are on the verge of overcoming most of the early challenges regarding dermatophyte taxonomy, DNA extraction procedures and species specificity, and thus may lead to an increased adoption of such methods. This may point towards a novel consensus in which molecular methods supplement or even replace classical diagnosis of dermatophytosis.
Collapse
|