1
|
Chen YY, Tan L, Su XL, Chen NX, Liu Q, Feng YZ, Guo Y. NOD2 contributes to Parvimonas micra-induced bone resorption in diabetic rats with experimental periodontitis. Mol Oral Microbiol 2024; 39:446-460. [PMID: 38757737 DOI: 10.1111/omi.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) may affect the oral microbial community, exacerbating periodontal inflammation; however, its pathogenic mechanisms remain unclear. As nucleotide-binding oligomerization domain 2 (NOD2) plays a crucial role in the activation during periodontitis (PD), it is hypothesized that changes in the oral microbial community due to diabetes enhance periodontal inflammation through the activation of NOD2. METHODS We collected subgingival plaque from 180 subjects who were categorized into two groups based on the presence or absence of T2DM. The composition of oral microbiota was detected by 16S rRNA high-throughput sequencing. In animal models of PD with or without T2DM, we assessed alveolar bone resorption by micro-computerized tomography and used immunohistochemistry to detect NOD2 expression in alveolar bone. Primary osteoblasts were cultured in osteogenic induction medium with high or normal glucose and treated with inactivated bacteria. After 24 h of inactivated bacteria intervention, the osteogenic differentiation ability was detected by alkaline phosphatase (ALP) staining, and the expressions of NOD2 and interleukin-12 (IL-6) were detected by western blot. RESULTS The relative abundance of Parvimonas and Filifactor in the T2DM group was increased compared to the group without T2DM. In animal models, alveolar bone mass was decreased in PD, particularly in T2DM with PD (DMPD) group, compared to controls. Immunohistochemistry revealed NOD2 in osteoblasts from the alveolar bone in both the PD group and DMPD group, especially in the DMPD group. In vitro, intervention with inactivated Parvimonas significantly reduced ALP secretion of primary osteoblasts in high glucose medium, accompanied by increased expression of NOD2 and IL-6. CONCLUSIONS The results suggest that T2DM leading to PD may be associated with the activation of NOD2 by Parvimonas.
Collapse
MESH Headings
- Animals
- Nod2 Signaling Adaptor Protein/metabolism
- Periodontitis/microbiology
- Periodontitis/metabolism
- Rats
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/microbiology
- Diabetes Mellitus, Type 2/metabolism
- Alveolar Bone Loss/microbiology
- Alveolar Bone Loss/metabolism
- Male
- Osteoblasts/metabolism
- Humans
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/microbiology
- Interleukin-6/metabolism
- Female
- Disease Models, Animal
- Middle Aged
- Osteogenesis
- Rats, Sprague-Dawley
- X-Ray Microtomography
- RNA, Ribosomal, 16S
- Dental Plaque/microbiology
- Adult
- Interleukin-12/metabolism
Collapse
Affiliation(s)
- Ying-Yi Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Stomatology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences(Qingdao Central Hospital), Qingdao, China
| | - Li Tan
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Lin Su
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning-Xin Chen
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Zhi Feng
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Hunan Provincial Clinical Research Center for Oral Diseases, Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Mills EL, Avila YI, Beasock D, Radwan Y, Suptela SR, Marriott I, Afonin KA, Johnson MB. Immunostimulatory nucleic acid nanoparticles (NANPs) augment protective osteoblast and osteoclast type I interferon responses to Staphylococcus aureus. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102762. [PMID: 38866196 PMCID: PMC11297679 DOI: 10.1016/j.nano.2024.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Recalcitrant staphylococcal osteomyelitis may be due, in part, to the ability of Staphylococcus aureus to invade bone cells. However, osteoclasts and osteoblasts are now recognized to shape host responses to bacterial infection and we have recently described their ability to produce IFN-β following S. aureus infection and limit intracellular bacterial survival/propagation. Here, we have investigated the ability of novel, rationally designed, nucleic acid nanoparticles (NANPs) to induce the production of immune mediators, including IFN-β, following introduction into bone cells. We demonstrate the successful delivery of representative NANPs into osteoblasts and osteoclasts via endosomal trafficking when complexed with lipid-based carriers. Their delivery was found to differentially induce immune responses according to their composition and architecture via discrete cytosolic pattern recognition receptors. Finally, the utility of this nanoparticle technology was supported by the demonstration that immunostimulatory NANPs augment IFN-β production by S. aureus infected bone cells and reduce intracellular bacterial burden.
Collapse
Affiliation(s)
- Erin L Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Yelixza I Avila
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Damian Beasock
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA, 28223.
| |
Collapse
|
3
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
4
|
Johnson MB, Suptela SR, Sipprell SE, Marriott I. Substance P Exacerbates the Inflammatory and Pro-osteoclastogenic Responses of Murine Osteoclasts and Osteoblasts to Staphylococcus aureus. Inflammation 2023; 46:256-269. [PMID: 36040535 PMCID: PMC10314328 DOI: 10.1007/s10753-022-01731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus infections of bone tissue are associated with inflammatory bone loss. Resident bone cells, including osteoblasts and osteoclasts, can perceive S. aureus and produce an array of inflammatory and pro-osteoclastogenic mediators, thereby contributing to such damage. The neuropeptide substance P (SP) has been shown to exacerbate microbially induced inflammation at sites such as the gut and the brain and has previously been shown to affect bone cell differentiation and activity. Here we demonstrate that the interaction of SP with its high affinity receptor, neurokinin-1 receptor (NK-1R), expressed on murine osteoblasts and osteoclasts, augments the inflammatory responses of these cells to S. aureus challenge. Additionally, SP alters the production of pro- and anti-osteoclastogenic factors by bacterially challenged bone cells and their proteolytic functions in a manner that would be anticipated to exacerbate inflammatory bone loss at sites of infection. Furthermore, we have demonstrated that the clinically approved NK-1R antagonist, aprepitant, attenuates local inflammatory and pro-osteoclastogenic mediator expression in an in vivo mouse model of post-traumatic staphylococcal osteomyelitis. Taken together, these results indicate that SP/NK-1R interactions could play a significant role in the initiation and/or progression of damaging inflammation in S. aureus bone infections and suggest that the repurposing of currently approved NK-1R antagonists might represent a promising new adjunct therapy for such conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
5
|
Johnson MB, Furr KH, Suptela SR, Leach W, Marriott I. Induction of protective interferon-β responses in murine osteoblasts following Staphylococcus aureus infection. Front Microbiol 2022; 13:1066237. [PMID: 36532419 PMCID: PMC9757064 DOI: 10.3389/fmicb.2022.1066237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction The refractory and recurrent nature of chronic staphylococcal osteomyelitis may be due, at least in part, to the ability of Staphylococcus aureus to invade and persist within bone-forming osteoblasts. However, osteoblasts are now recognized to respond to S. aureus infection and produce numerous immune mediators and bone regulatory factors that can shape the host response. Type I interferons (IFNs) are best known for their antiviral effects, but it is becoming apparent that they impact host susceptibility to a wide range of pathogens including S. aureus. Methods Here, we have assessed the local expression of IFN-β by specific capture ELISA in an established in vivo mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis, specific capture ELISAs, and/or immunoblot analyses, were then used to assess the expression of type I IFNs and select IFN stimulated genes (ISGs) in S. aureus infected primary murine osteoblasts. The effect of IFN-β on intracellular S. aureus burden was assessed in vitro following recombinant cytokine treatment by serial colony counts of liberated bacteria. Results We report the presence of markedly elevated IFN-β levels in infected bone tissue in a mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis of S. aureus infected osteoblasts showed enrichment of genes associated with type I IFN signaling and ISGs, and elevated expression of mRNA encoding IFN-β and ISG products. IFN-β production was confirmed with the demonstration that S. aureus induces its rapid and robust release by osteoblasts in a dose-dependent manner. Furthermore, we showed increased protein expression of the ISG products IFIT1 and IFIT3 by infected osteoblasts and demonstrate that this occurs secondary to the release of IFN-β by these cells. Finally, we have determined that exposure of S. aureus-infected osteoblasts to IFN-β markedly reduces the number of viable bacteria harbored by these cells. Discussion Together, these findings indicate an ability of osteoblasts to respond to bacteria by producing IFN-β that can act in an autocrine and/or paracrine manner to elicit ISG expression and mitigate S. aureus infection.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Kelli H. Furr
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
6
|
He X, Liu J, Liang C, Badshah SA, Zheng K, Dang L, Guo B, Li D, Lu C, Guo Q, Fan D, Bian Y, Feng H, Xiao L, Pan X, Xiao C, Zhang B, Zhang G, Lu A. Osteoblastic PLEKHO1 contributes to joint inflammation in rheumatoid arthritis. EBioMedicine 2019; 41:538-555. [PMID: 30824383 PMCID: PMC6442230 DOI: 10.1016/j.ebiom.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022] Open
Abstract
Background Osteoblasts participating in the inflammation regulation gradually obtain concerns. However, its role in joint inflammation of rheumatoid arthritis (RA) is largely unknown. Here, we investigated the role of osteoblastic pleckstrin homology domain-containing family O member 1 (PLEKHO1), a negative regulator of osteogenic lineage activity, in regulating joint inflammation in RA. Methods The level of osteoblastic PLEKHO1 in RA patients and collagen-induced arthritis (CIA) mice was examined. The role of osteoblastic PLEKHO1 in joint inflammation was evaluated by a CIA model and a K/BxN serum-transfer arthritis (STA) model which were induced in osteoblast-specific Plekho1 conditional knockout mice and mice expressing high Plekho1 exclusively in osteoblasts, respectively. The effect of osteoblastic PLEKHO1 inhibition was explored in a CIA mice model and a non-human primate arthritis model. The mechanism of osteoblastic PLEKHO1 in regulating joint inflammation were performed by a series of in vitro studies. Results PLEKHO1 was highly expressed in osteoblasts from RA patients and CIA mice. Osteoblastic Plekho1 deletion ameliorated joint inflammation, whereas overexpressing Plekho1 only within osteoblasts exacerbated local inflammation in CIA mice and STA mice. PLEKHO1 was required for TRAF2-mediated RIP1 ubiquitination to activate NF-κB for inducing inflammatory cytokines production in osteoblasts. Moreover, osteoblastic PLEKHO1 inhibition diminished joint inflammation and promoted bone formation in CIA mice and non-human primate arthritis model. Conclusions These data strongly suggest that the highly expressed PLEKHO1 in osteoblasts contributes to joint inflammation in RA. Targeting osteoblastic PLEKHO1 may exert dual therapeutic action of alleviating joint inflammation and promoting bone formation in RA.
Collapse
Affiliation(s)
- Xiaojuan He
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Shaikh Atik Badshah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Kang Zheng
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Baosheng Guo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Defang Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Guo
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqin Bian
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Hui Feng
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital/Shanghai University of TCM, Shanghai, China
| | - Xiaohua Pan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Orthopaedics and Traumatology, Bao-an Hospital Affiliated to Southern Medical University & Shenzhen 8th People Hospital, Shenzhen, China
| | - Cheng Xiao
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - BaoTing Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Institute of Precision Medicine and Innovative Drug Discovery, Hong Kong Baptist University, Hong Kong, China; School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate Immunity to Staphylococcus aureus: Evolving Paradigms in Soft Tissue and Invasive Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3871-3880. [PMID: 29866769 PMCID: PMC6028009 DOI: 10.4049/jimmunol.1701574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus causes a wide range of diseases that together embody a significant public health burden. Aided by metabolic flexibility and a large virulence repertoire, S. aureus has the remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, abscesses, simultaneously denote the powerful innate immune responses to tissue invasion as well as the ability of staphylococci to persist within these lesions. In this article, we review the innate immune responses to S. aureus during infection of skin and bone, which serve as paradigms for soft tissue and bone disease, respectively.
Collapse
Affiliation(s)
- Stephanie L Brandt
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nicole E Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
8
|
Bader-Meunier B, Van Nieuwenhove E, Breton S, Wouters C. Bone involvement in monogenic autoinflammatory syndromes. Rheumatology (Oxford) 2017; 57:606-618. [DOI: 10.1093/rheumatology/kex306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Brigitte Bader-Meunier
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, France
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmunity, Imagine Institut, Paris, France
| | - Erika Van Nieuwenhove
- Department of Microbiology and Immunology, KUL – University of Leuven, Belgium
- VIB Centre for Brain and Disease Research, KUL – University of Leuven, Belgium
- Laboratory of Pediatric Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Sylvain Breton
- Pediatric Radiology Department, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Carine Wouters
- Department of Microbiology and Immunology, KUL – University of Leuven, Belgium
- Laboratory of Pediatric Immunology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Saint-Pastou Terrier C, Gasque P. Bone responses in health and infectious diseases: A focus on osteoblasts. J Infect 2017; 75:281-292. [PMID: 28778751 DOI: 10.1016/j.jinf.2017.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Historically, bone was thought to be immunologically inactive with the sole function of supporting locomotion and ensuring stromaness functions as a major lymphoid organ. However, a myriad of pathogens (bacteria such as staphylococcus as well as viruses including alphaviruses, HIV or HCV) can invade the bone. These pathogens can cause apoptosis, autophagy and necrosis of osteoblasts and lead to lymphopenia and immune paralysis. There are now several detailed studies on how osteoblasts contribute to innate immune and inflammatory responses; indeed, osteoblasts in concert with resident macrophages can engage an armory of defense mechanisms capable of detecting and controlling pathogen evasion mechanisms. Osteoblasts can express the so-called pattern recognition receptors such as TOLL-like receptors involved in the detection for example of lipids and unique sugars (polysaccharides and polyriboses) expressed by bacteria or viruses (e.g. LPS and RNA respectively). Activated osteoblasts can produce interferon type I, cytokines, chemokines and interferon-stimulated proteins through autocrine and paracrine mechanisms to control for viral replication and to promote phagocytosis or lysis of bacteria for example by defensins. Uncontrolled and sustained innate immune activation of infected osteoblasts will also lead to an imbalance in the production of osteoclastogenic factors such as RANKL and osteoprotegerin involved in bone repair.
Collapse
Affiliation(s)
- Cécile Saint-Pastou Terrier
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France; Laboratoire de Biologie, secteur Laboratoire d'immunologie clinique et expérimentale ZOI (LICE OI), CHU La Réunion site Félix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
10
|
Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis. Front Cell Infect Microbiol 2015; 5:85. [PMID: 26636047 PMCID: PMC4660271 DOI: 10.3389/fcimb.2015.00085] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.
Collapse
Affiliation(s)
- Jérôme Josse
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux, Pôle Santé, Université de Reims Champagne-Ardenne Reims, France
| |
Collapse
|
11
|
Inflammatory mediator release from primary rhesus microglia in response to Borrelia burgdorferi results from the activation of several receptors and pathways. J Neuroinflammation 2015; 12:60. [PMID: 25889406 PMCID: PMC4396743 DOI: 10.1186/s12974-015-0274-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In previous studies, neurons were documented to undergo apoptosis in the presence of microglia and live Borrelia burgdorferi, but not with either agent alone. Microscopy showed that several Toll-like receptors (TLRs) were upregulated in microglia upon B. burgdorferi exposure. It was hypothesized that the inflammatory milieu generated by microglia in the presence of B. burgdorferi results in neuronal apoptosis and that this inflammation was likely generated through TLR pathways. METHODS In this study, we explored the role of several TLR and nucleotide-binding oligomerization domain containing 2 (NOD2)-dependent pathways in inducing inflammation in the presence of B. burgdorferi, using ribonucleic acid interference (RNAi) and/or inhibitors, in primary non-human primate (NHP) microglia. We also used several inhibitors for key mitogen-activated protein kinase (MAPK) pathways to determine the role of downstream pathways in inflammatory mediator release. RESULTS The results show that the TLR2 pathway plays a predominant role in inducing inflammation, as inhibition of TLR2 with either small interfering RNA (siRNA) or inhibitor, in the presence of B. burgdorferi, significantly downregulated interleukin 6 (IL-6), chemokine (C-X-C) motif ligand 8 (CXCL8), chemokine (C-C) motif ligand 2 (CCL2), and tumor necrosis factor (TNF) production. This was followed by TLR5, the silencing of which significantly downregulated IL-6 and TNF. The role of TLR4 was inconclusive as a TLR4-specific inhibitor and TLR4 siRNA had opposing effects in the presence of B. burgdorferi. Silencing of NOD2 by siRNA in the presence of B. burgdorferi significantly upregulated IL-6, CCL2, and TNF. Downstream signaling involved the adaptor molecule myeloid differentiation primary response 88 (MyD88), as expected, as well as the MAPK pathways, with extracellular signal-regulated kinase (ERK) being predominant, followed by Jun N-terminal kinase (JNK) and p38 pathways. CONCLUSIONS Several receptors and pathways, with both positive and negative effects, mediate inflammation of primary microglia in response to B. burgdorferi, resulting in a complex, tightly regulated immune network.
Collapse
|
12
|
Prates TP, Taira TM, Holanda MC, Bignardi LA, Salvador SL, Zamboni DS, Cunha FQ, Fukada SY. NOD2 contributes to Porphyromonas gingivalis-induced bone resorption. J Dent Res 2014; 93:1155-62. [PMID: 25239844 DOI: 10.1177/0022034514551770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The NOD-like receptors are cytoplasmic proteins that sense microbial by-products released by invasive bacteria. Although NOD1 and NOD2 are functionally expressed in cells from oral tissues and play a role triggering immune responses, the role of NOD2 receptor in the bone resorption and in the modulation of osteoclastogenesis is still unclear. We show that in an experimental model of periodontitis with Porphyromonas gingivalis W83, NOD2(-/-) mice showed lower bone resorption when compared to wild type. Quantitative polymerase chain reaction analysis revealed that wild-type infected mice showed an elevated RANKL/OPG ratio when compared to NOD2(-/-) infected mice. Moreover, the expression of 2 osteoclast activity markers-cathepsin K and matrix metalloproteinase 9-was significantly lower in gingival tissue from NOD2(-/-) infected mice compared to WT infected ones. The in vitro study reported an increase in the expression of the NOD2 receptor 24 hr after stimulation of hematopoietic bone marrow cells with M-CSF and RANKL. We also evaluated the effect of direct activation of NOD2 receptor on osteoclastogenesis, by the activation of this receptor in preosteoclasts culture, with different concentrations of muramyl dipeptide. The results show no difference in the number of TRAP-positive cells. Although it did not alter the osteoclasts differentiation, the activation of NOD2 receptor led to a significant increase of cathepsin K expression. We confirm that this enzyme was active, since the osteoclasts resorption capacity was enhanced by muramyl dipeptide stimulation, evaluated in osteoassay plate. These results show that the lack of NOD2 receptor impairs the bone resorption, suggesting that NOD2 receptor could contribute to the progression of bone resorption in experimental model of periodontitis. The stimulation of NOD2 by its agonist, muramyl dipeptide, did not affect osteoclastogenesis, but it does favor the bone resorption capacity identified by increased osteoclast activity.
Collapse
Affiliation(s)
- T P Prates
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - T M Taira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - M C Holanda
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - L A Bignardi
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - S L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| | - D S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo
| | - F Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo
| | - S Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo
| |
Collapse
|
13
|
Marriott I. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis. Front Cell Infect Microbiol 2013; 3:101. [PMID: 24392356 PMCID: PMC3867676 DOI: 10.3389/fcimb.2013.00101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 01/18/2023] Open
Abstract
The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
14
|
Swain B, Basu M, Samanta M. NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): Inductive expression and downstream signalling in ligand stimulation and bacterial infections. J Biosci 2013; 38:533-48. [DOI: 10.1007/s12038-013-9330-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Shi SF, Zhang XL, Zhu C, Chen DES, Guo YY. Ultrasonically enhanced rifampin activity against internalized Staphylococcus aureus. Exp Ther Med 2012; 5:257-262. [PMID: 23251279 PMCID: PMC3524287 DOI: 10.3892/etm.2012.758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is the principle causative agent of osteomyelitis, accounting for 80% of all human cases. S. aureus internalized in osteoblasts escapes immune response, including engulfment by phagocytes. It also escapes the action of a number of antibiotics. Ultrasound increases cell membrane permeability to a number of drugs. Following an internalization assay, we used low-frequency, low-power ultrasound combined with the antibiotic rifampin to target S. aureus internalized in human osteoblasts. Tryptic soy agar (TSA) was used to quantitate the antibacterial effect of rifampin combined with low-frequency ultrasound. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell viability following exposure to ultrasound. Our data revealed that rifampin successfully penetrates into osteoblasts and kills internalized S. aureus in osteoblasts, while low-frequency ultrasound promotes this process. Ultrasound had a negative impact on the cell viability of osteoblasts; however, this damage was slight and reversible. Ultrasound-enhanced antibiotic efficiency to bacteria internalized in the osteoblasts may contribute to the control of chronic infection to reduce recurrence.
Collapse
Affiliation(s)
- Si-Feng Shi
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | | | | | | | | |
Collapse
|
16
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Rosenzweig HL, Galster K, Vance EE, Ensign-Lewis J, Nunez G, Davey MP, Rosenbaum JT. NOD2 deficiency results in increased susceptibility to peptidoglycan-induced uveitis in mice. Invest Ophthalmol Vis Sci 2011; 52:4106-12. [PMID: 21296813 DOI: 10.1167/iovs.10-6263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The innate immune receptor NOD2 is a genetic cause of uveitis (Blau syndrome). Intriguingly, in the intestine where polymorphisms of NOD2 predispose to Crohn's disease, NOD2 reportedly suppresses inflammation triggered by the bacterial cell wall component, peptidoglycan (PGN). Whether NOD2 exerts a similar capacity in the regulation of ocular inflammation to PGN has not been explored. METHODS NOD2, NOD1, or MyD88 knockout (KO) mice and their wild-type (WT) controls were administered an intravitreal injection of PGN (a metabolite of which is the NOD2 agonist, muramyl dipeptide), or synthetic TLR2/1 and TLR2/6 agonists, Pam₃CSK4 and FSL-1. Ocular inflammation was assessed by intravital microscopy and histopathology. Cytokine production in eye tissue homogenates was measured by ELISA. RESULTS PGN triggered uveitis in mice. This inflammation was abolished in the absence of the TLR signaling mediator MyD88. NOD2 exerted a negative regulatory role because PGN-triggered eye inflammation was exacerbated in NOD2 KO mice. Increased intravascular response coincided with enhanced leukocytes within the aqueous and vitreous humors. The enhanced susceptibility of NOD2 KO mice to PGN uveitis coincided with increased cytokine production of IL-12p40, IL-17, and IL-23 but not IL-12p70, TNFα, or IFNγ. NOD1 deficiency did not result in the same sensitivity to PGN. Ocular inflammation induced by synthetic TLR2 agonists required MyD88 but not NOD2 or NOD1. CONCLUSIONS NOD2 may serve differential roles in the eye to promote inflammation while also tempering cell responses to PGN akin to what has been reported in colitis.
Collapse
Affiliation(s)
- Holly L Rosenzweig
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lecat A, Piette J, Legrand-Poels S. The protein Nod2: an innate receptor more complex than previously assumed. Biochem Pharmacol 2010; 80:2021-31. [PMID: 20643110 DOI: 10.1016/j.bcp.2010.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 02/08/2023]
Abstract
For almost 10 years, Nod2 has been known as a cytosolic innate receptor able to sense peptidoglycan from Gram-positive and -negative bacteria and to trigger RIP2- and NF-κB-mediated pro-inflammatory and antibacterial response. Mutations in the gene encoding Nod2 in humans have been associated with Crohn's disease (CD). Mechanisms by which Nod2 variants can lead to CD development are still under investigation. The most admitted hypothesis suggests that the impaired function of Nod2 variants in intestinal epithelial and phagocytic cells results in deficiencies in epithelial-barrier function which subsequently lead to increased bacterial invasion and inflammation at intestinal sites. Very recent results have just reinforced this hypothesis by demonstrating that Nod2 wild-type (unlike Nod2 variants) could mediate autophagy, allowing an efficient bacterial clearance and adaptative immune response. Other recent data have attributed new roles to Nod2. Indeed, Nod2 has been shown to activate antiviral innate immune responses involving IRF3-dependent IFN-β production after viral ssRNA recognition through a RIP2-independent mechanism requiring the mitochondrial adaptor protein MAVS. Recently, Nod2 has been also shown to be exquisitely tuned to detect mycobacterial infections and mount a protective immunity against these pathogens.
Collapse
Affiliation(s)
- Aurore Lecat
- Laboratory of Virology and Immunology, GIGA-Research, GIGA B34, University of Liège, 4000 Liège, Belgium
| | | | | |
Collapse
|