1
|
Naish E, Wood AJT, Stewart AP, Routledge M, Morris AC, Chilvers ER, Lodge KM. The formation and function of the neutrophil phagosome. Immunol Rev 2023; 314:158-180. [PMID: 36440666 PMCID: PMC10952784 DOI: 10.1111/imr.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neutrophils are the most abundant circulating leukocyte and are crucial to the initial innate immune response to infection. One of their key pathogen-eliminating mechanisms is phagocytosis, the process of particle engulfment into a vacuole-like structure called the phagosome. The antimicrobial activity of the phagocytic process results from a collaboration of multiple systems and mechanisms within this organelle, where a complex interplay of ion fluxes, pH, reactive oxygen species, and antimicrobial proteins creates a dynamic antimicrobial environment. This complexity, combined with the difficulties of studying neutrophils ex vivo, has led to gaps in our knowledge of how the neutrophil phagosome optimizes pathogen killing. In particular, controversy has arisen regarding the relative contribution and integration of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived antimicrobial agents and granule-delivered antimicrobial proteins. Clinical syndromes arising from dysfunction in these systems in humans allow useful insight into these mechanisms, but their redundancy and synergy add to the complexity. In this article, we review the current knowledge regarding the formation and function of the neutrophil phagosome, examine new insights into the phagosomal environment that have been permitted by technological advances in recent years, and discuss aspects of the phagocytic process that are still under debate.
Collapse
Affiliation(s)
- Emily Naish
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Alexander JT Wood
- Medical SchoolUniversity of Western AustraliaPerthAustralia
- Department of Critical CareUniversity of MelbourneMelbourneAustralia
| | | | - Matthew Routledge
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Andrew Conway Morris
- Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
| | - Edwin R Chilvers
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
2
|
Grigorieva DV, Gorudko IV, Grudinina NA, Panasenko OM, Semak IV, Sokolov AV, Timoshenko AV. Lactoferrin modified by hypohalous acids: Partial loss in activation of human neutrophils. Int J Biol Macromol 2022; 195:30-40. [PMID: 34863835 DOI: 10.1016/j.ijbiomac.2021.11.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Previously we have shown that lactoferrin (LTF), a protein of secondary neutrophilic granules, can be efficiently modified by hypohalous acids (HOCl and HOBr), which are produced at high concentrations during inflammation and oxidative/halogenative stress by myeloperoxidase, an enzyme of azurophilic neutrophilic granules. Here we compared the effects of recombinant human lactoferrin (rhLTF) and its halogenated derivatives (rhLTF-Cl and rhLTF-Br) on functional responses of neutrophils. Our results demonstrated that after halogenative modification, rhLTF lost its ability to induce mobilization of intracellular calcium, actin cytoskeleton reorganization, and morphological changes in human neutrophils. Moreover, both forms of the halogenated rhLTF prevented binding of N-acetylglucosamine-specific plant lectin Triticum vulgaris agglutinin (WGA) to neutrophils and, in contrast to native rhLTF, inhibited respiratory burst of neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine and by two plant lectins (WGA and PHA-L). However, we observed no differences between the effects of rhLTF, rhLTF-Cl, and rhLTF-Br on respiratory burst of neutrophils induced by phorbol 12-myristate 13-acetate (PMA), digitonin, and number of plant lectins with different glycan-binding specificity. Furthermore, all rhLTF forms interfered with PMA- and ionomycin-induced formation of neutrophil extracellular traps. Thus, halogenative modification of LTF is one of the mechanisms involved in modulating a variety of signaling pathways in neutrophils to control their pro-inflammatory activity.
Collapse
Affiliation(s)
- Daria V Grigorieva
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk 220030, Belarus
| | - Irina V Gorudko
- Department of Biophysics, Faculty of Physics, Belarusian State University, Minsk 220030, Belarus.
| | - Natalia A Grudinina
- Laboratory of Biochemical Genetics, Department of Molecular Genetics, FSBRI "Institute of Experimental Medicine", St. Petersburg 197376, Russia
| | - Oleg M Panasenko
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Igor V Semak
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Minsk 220030, Belarus
| | - Alexey V Sokolov
- Laboratory of Biochemical Genetics, Department of Molecular Genetics, FSBRI "Institute of Experimental Medicine", St. Petersburg 197376, Russia; Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | | |
Collapse
|
3
|
Valadez-Cosmes P, Raftopoulou S, Mihalic ZN, Marsche G, Kargl J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther 2021; 236:108052. [PMID: 34890688 DOI: 10.1016/j.pharmthera.2021.108052] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase is a heme-peroxidase which makes up approximately 5% of the total dry cell weight of neutrophils where it is predominantly found in the primary (azurophilic) granules. Other cell types, such as monocytes and certain macrophage subpopulations also contain myeloperoxidase, but to a much lesser extent. Initially, the function of myeloperoxidase had been mainly associated with its ability as a catalyzer of reactive oxidants that help to clear pathogens. However, over the past years non-canonical functions of myeloperoxidase have been described both in health and disease. Attention has been specially focused on inflammatory diseases, in which an exacerbate infiltration of leukocytes can favor a poorly-controlled production and release of myeloperoxidase and its oxidants. There is compelling evidence that myeloperoxidase derived oxidants contribute to tissue damage and the development and propagation of acute and chronic vascular inflammation. Recently, neutrophils have attracted much attention within the large diversity of innate immune cells that are part of the tumor microenvironment. In particular, neutrophil-derived myeloperoxidase may play an important role in cancer development and progression. This review article aims to provide a comprehensive overview of the roles of myeloperoxidase in the development and progression of cancer. We propose future research approaches and explore prospects of inhibiting myeloperoxidase as a strategy to fight against cancer.
Collapse
Affiliation(s)
- Paulina Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Potter M, Najer A, Klöckner A, Zhang S, Holme MN, Nele V, Che J, Massi L, Penders J, Saunders C, Doutch JJ, Edwards AM, Ces O, Stevens MM. Controlled Dendrimersome Nanoreactor System for Localized Hypochlorite-Induced Killing of Bacteria. ACS NANO 2020; 14:17333-17353. [PMID: 33290039 PMCID: PMC7760217 DOI: 10.1021/acsnano.0c07459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a serious global health problem necessitating new bactericidal approaches such as nanomedicines. Dendrimersomes (DSs) have recently become a valuable alternative nanocarrier to polymersomes and liposomes due to their molecular definition and synthetic versatility. Despite this, their biomedical application is still in its infancy. Inspired by the localized antimicrobial function of neutrophil phagosomes and the versatility of DSs, a simple three-component DS-based nanoreactor with broad-spectrum bactericidal activity is presented. This was achieved by encapsulation of glucose oxidase (GOX) and myeloperoxidase (MPO) within DSs (GOX-MPO-DSs), self-assembled from an amphiphilic Janus dendrimer, that possesses a semipermeable membrane. By external addition of glucose to GOX-MPO-DS, the production of hypochlorite (-OCl), a highly potent antimicrobial, by the enzymatic cascade was demonstrated. This cascade nanoreactor yielded a potent bactericidal effect against two important multidrug resistant pathogens, Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), not observed for H2O2 producing nanoreactors, GOX-DS. The production of highly reactive species such as -OCl represents a harsh bactericidal approach that could also be cytotoxic to mammalian cells. This necessitates the development of strategies for activating -OCl production in a localized manner in response to a bacterial stimulus. One option of locally releasing sufficient amounts of substrate using a bacterial trigger (released toxins) was demonstrated with lipidic glucose-loaded giant unilamellar vesicles (GUVs), envisioning, e.g., implant surface modification with nanoreactors and GUVs for localized production of bactericidal agents in the presence of bacterial growth.
Collapse
Affiliation(s)
- Michael Potter
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Klöckner
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Shaodong Zhang
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Margaret N. Holme
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Valeria Nele
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Junyi Che
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Lucia Massi
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - James J. Doutch
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Source, STFC, Didcot OX11 ODE, U.K.
| | - Andrew M. Edwards
- MRC
Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K.
| | - Oscar Ces
- Department
of Chemistry and Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
6
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
7
|
Lodge KM, Cowburn AS, Li W, Condliffe AM. The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host. Int J Mol Sci 2020; 21:ijms21041183. [PMID: 32053993 PMCID: PMC7072819 DOI: 10.3390/ijms21041183] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation.
Collapse
Affiliation(s)
- Katharine M. Lodge
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Andrew S. Cowburn
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Wei Li
- Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK
- Correspondence:
| |
Collapse
|
8
|
Photoactivated resveratrol controls intradermal infection by Staphylococcus aureus in mice: a pilot study. Lasers Med Sci 2020; 35:1341-1347. [PMID: 31900691 DOI: 10.1007/s10103-019-02942-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
Staphylococcus aureus is one of the main causative agent of infections acquired in both community and hospital environment. In this context, photodynamic therapy (PDT) consists in using a photosensitizer that, activated by light, evokes the formation of reactive oxygen species (ROS), which lead to the death of microorganisms due to oxidative damage; it is useful tool since this action, harmful to pathogens, does not significantly injure human cells. In view of this, this work proposes a more in-depth study on the use of resveratrol (RSV) as a possible photosensitizer. It was observed, in the intradermal infection model in animals' ear dermis, that photoactivated resveratrol promotes an increase in myeloperoxidase expression with reduced bacterial load in the draining lymph node. Besides that, the draining lymph node of the animals treated with photoactivated RSV controls inflammation through IL-10 production. These are pioneers data and this work being a pilot study; then, other works must be conducted with the objective of elucidate the photoactivated resveratrol mechanism of action.
Collapse
|
9
|
Hajdamowicz NH, Hull RC, Foster SJ, Condliffe AM. The Impact of Hypoxia on the Host-Pathogen Interaction between Neutrophils and Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20225561. [PMID: 31703398 PMCID: PMC6888323 DOI: 10.3390/ijms20225561] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are key to host defence, and impaired neutrophil function predisposes to infection with an array of pathogens, with Staphylococcus aureus a common and sometimes life-threatening problem in this setting. Both infiltrating immune cells and replicating bacteria consume oxygen, contributing to the profound tissue hypoxia that characterises sites of infection. Hypoxia in turn has a dramatic effect on both neutrophil bactericidal function and the properties of S. aureus, including the production of virulence factors. Hypoxia thereby shapes the host-pathogen interaction and the progression of infection, for example promoting intracellular bacterial persistence, enabling local tissue destruction with the formation of an encaging abscess capsule, and facilitating the establishment and propagation of bacterial biofilms which block the access of host immune cells. Elucidating the molecular mechanisms underlying host-pathogen interactions in the setting of hypoxia will enable better understanding of persistent and recalcitrant infections due to S. aureus and may uncover novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Natalia H Hajdamowicz
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Rebecca C Hull
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Simon J Foster
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
- Correspondence:
| |
Collapse
|
10
|
Atosuo J, Suominen E. A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system. Mol Immunol 2019; 116:38-44. [PMID: 31593870 DOI: 10.1016/j.molimm.2019.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/27/2019] [Accepted: 09/14/2019] [Indexed: 12/23/2022]
Abstract
Mammals have evolved a special cellular mechanism for killing invading microbes, which is called the phagocytosis. Neutrophils are the first phagocytosing cells that migrate into the site of infection. In these cells, hypochlorite (HOCl) and other hypohalites, generated in the myeloperoxidase (MPO)-hydrogen peroxide (H2O2)-halide system is primarily responsible for oxidative killing. Here, we present a method for assessing these oxidative mechanisms in an in vitro cell-free system in a kinetical real-time-based manner by utilizing a bioluminescent bacterial probe called Escherichia coli-lux. The E. coli-lux method provides a practical tool for assessing the effects of various elementary factors in the MPO-H2O2-halide system. Due to the reported versatile intracellular pH and halide concentration during the formation of the phagolysosome and respiratory burst, the antimicrobial activity of the MPO-H2O2-halide system undergoes extensive alterations. Here, we show that at a physiological pH or lower, the antimicrobial activity of MPO is high, and the system effectively enhances the H2O2-dependent oxidative killing of E. coli by chlorination. The HOCl formed in this reaction is a prominent microbe killer. During the respiratory burst, there is a shift to a more alkaline environment. At pH 7.8, the chlorinating activity of MPO was shown to be absent, and the activity of the HOCl decreased. At this higher pH, the activity of H2O2 is enhanced and high enough to kill E. coli without the participation of MPO, and the lowered chloride concentration seemed still to enhance the H2O2-dependent killing capacity.
Collapse
Affiliation(s)
- Janne Atosuo
- Department of Biochemistry/Laboratory of Immunochemistry, Clinical Department/Clinical Research Unit TROSSI University of Turku Biocity, Tykistökatu 6, 6th floor, 20250 Turku Finland.
| | - Eetu Suominen
- Department of Biochemistry/Laboratory of Immunochemistry, Clinical Department/Clinical Research Unit TROSSI University of Turku Biocity, Tykistökatu 6, 6th floor, 20250 Turku Finland.
| |
Collapse
|
11
|
Green JN, Chapman ALP, Bishop CJ, Winterbourn CC, Kettle AJ. Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide. Free Radic Biol Med 2017; 113:363-371. [PMID: 29055823 DOI: 10.1016/j.freeradbiomed.2017.10.343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
The neutrophil enzyme, myeloperoxidase, by converting hydrogen peroxide (H2O2) and chloride to hypochlorous acid (HOCl), provides important defense against ingested micro-organisms. However, there is debate about how efficiently HOCl is produced within the phagosome and whether its reactions with phagosomal constituents influence the killing mechanism. The phagosome is a small space surrounding the ingested organism, into which superoxide, H2O2 and high concentrations of proteins from cytoplasmic granules are released. Previous studies imply that HOCl is produced in the phagosome, but a large proportion should react with proteins before reaching the microbe. To mimic these conditions, we subjected neutrophil granule extract to sequential doses of H2O2. Myeloperoxidase in the extract converted all the H2O2 to HOCl, which reacted with the granule proteins. 3-Chlorotyrosine, protein carbonyls and large amounts of chloramines were produced. At higher doses of H2O2, the extract developed potent bactericidal activity against Staphylococcus aureus. This activity was due to ammonia monochloramine, formed as a secondary product from protein chloramines and dichloramines. Isolated myeloperoxidase and elastase also became bactericidal when modified with HOCl and antibacterial activity was seen with a range of species. Comparison of levels of protein modification in the extract and in phagosomes implies that a relatively low proportion of phagosomal H2O2 would be converted to HOCl, but there should be sufficient for substantial protein chloramine formation and some breakdown to ammonia monochloramine. It is possible that HOCl could kill ingested bacteria by an indirect mechanism involving protein oxidation and monochloramine formation.
Collapse
Affiliation(s)
- Jessie N Green
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Anna L P Chapman
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Cynthia J Bishop
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
12
|
The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole. Microbiol Spectr 2017; 4. [PMID: 27726789 DOI: 10.1128/microbiolspec.mchd-0018-2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review is devoted to a consideration of the way in which the NADPH oxidase of neutrophils, NOX2, functions to enable the efficient killing of bacteria and fungi. It includes a critical examination of the current dogma that its primary purpose is the generation of hydrogen peroxide as substrate for myeloperoxidase-catalyzed generation of hypochlorite. Instead, it is demonstrated that NADPH oxidase functions to optimize the ionic and pH conditions within the vacuole for the solubilization and optimal activity of the proteins released into this compartment from the cytoplasmic granules, which kill and digest the microbes. The general role of other NOX systems as electrochemical generators to alter the pH and ionic composition in compartments on either side of a membrane in plants and animals will also be examined.
Collapse
|
13
|
Bicalho MLS, Machado VS, Higgins CH, Lima FS, Bicalho RC. Genetic and functional analysis of the bovine uterine microbiota. Part I: Metritis versus healthy cows. J Dairy Sci 2017; 100:3850-3862. [PMID: 28259404 DOI: 10.3168/jds.2016-12058] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/14/2017] [Indexed: 12/21/2022]
Abstract
Metritis is a uterine disease that affects 10 to 30% of all lactating dairy cows and has detrimental effects on reproductive performance, milk production, and survival. Data regarding the identity and abundance of bacterial genes governing traits such as virulence, antibiotic resistance, and stress responses could enable identification of previously unknown agents that play a role in metritis pathogenesis. Moreover, such knowledge could lead to the development of improved treatments or preventive methods. Therefore, the objectives of this study were to characterize the uterine microbial population and to differentiate, for the first time, the microbial functional diversity in cows with metritis versus healthy cows. In addition, we aimed to identify relationships between microbial genes and postpartum uterine health. Uterine swabs were collected from 24 cows within 3 to 12 d in milk; 12 cows were diagnosed with metritis and the other 12 were healthy. Metritis was defined as a watery, reddish or brownish uterine discharge having a fetid smell, and rectal temperature greater than 39.5°C. Cows with a clear and viscous uterine discharge, not fetid or mucopurulent, were classified as healthy. Microbial metagenomic DNA from uterine swab samples was subjected to whole-genome shotgun sequencing on the Illumina MiSeq platform (Illumina Inc., San Diego, CA). The MG-RAST server (metagenomic rapid annotations using subsystems technology; http://metagenomics.anl.gov/) and STAMP software (http://kiwi.cs.dal.ca/Software/STAMP) were used to detect statistically significant differences in the abundance of taxonomic and functional features between the uterine microbial metagenomes of metritic and healthy cows. Our results showed an increased abundance of Fusobacteria and Bacteroidetes in metritic cows, confirming the potential role of those 2 taxa in the pathogenesis of metritis. The MG-RAST analysis revealed a significantly higher abundance of genes for protein transport across the cytoplasmic membrane and type VI bacterial secretion systems in the metritic microbiota. Additionally, genes coding for resistance to acid stress were exclusive to the metritis microbiota, suggesting that microbial resistance to acid stress is important for microbial survival in the infected uterus. On the other hand, genes coding for adhesion molecules, bacteriocins, and antibacterial peptides were significantly associated with the uterine microbiota of healthy cows, as was tolerance to colicin E2.
Collapse
Affiliation(s)
- M L S Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - V S Machado
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - C H Higgins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - F S Lima
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
14
|
Mainnemare A, Mégarbane B, Soueidan A, Daniel A, Chapple ILC. Hypochlorous Acid and Taurine-N-Monochloramine in Periodontal Diseases. J Dent Res 2016; 83:823-31. [PMID: 15505230 DOI: 10.1177/154405910408301101] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic periodontitis is a multi-factorial disease involving anaerobic bacteria and the generation of an inflammatory response, including the production of metalloproteinases, pro-inflammatory cytokines, and eicosanoids. Hypochlorous acid (HOCl) and taurine-N-monochloramine (TauCl) are the end-products of the neutrophilic polymorphonuclear leukocyte (PMN) respiratory burst. They act synergistically to modulate the inflammatory response. In the extracellular environment, HOCl and TauCl may directly neutralize interleukin 6 (IL-6) and several metalloproteinases, while HOCl increases the capacity of α2-macroglobulin to bind Tumor Necrosis Factor-alpha, IL-2, and IL-6, and facilitates the release of various growth factors. TauCl inhibits the production of inflammatory mediators, prostaglandins, and nitric oxide. HOCl activates tyrosine kinase signaling cascades, generating an increase in the production of extracellular matrix components, growth factors, and inflammatory mediators. Thus, HOCl and TauCl appear to play a crucial role in the periodontal inflammatory process. Taken together, these findings may offer opportunities for the development of novel host-modulating therapies for the treatment of periodontitis.
Collapse
Affiliation(s)
- A Mainnemare
- UFR d'Odontologie, Service de Parodontologie, 1 Place Alexis Ricordeau, BP 84215, 44 042 Nantes, Cedex 1, France
| | | | | | | | | |
Collapse
|
15
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Segal AW. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 2016; 6:160028. [PMID: 27249799 PMCID: PMC4892433 DOI: 10.1098/rsob.160028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion.
Collapse
Affiliation(s)
- Anthony W Segal
- Division of Medicine, UCL, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
17
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
18
|
Chavali B, Masquelin T, Nilges MJ, Timm DE, Stout SL, Matter WF, Jin N, Jadhav PK, Deng GG. ESR and X-ray Structure Investigations on the Binding and Mechanism of Inhibition of the Native State of Myeloperoxidase with Low Molecular Weight Fragments. APPLIED MAGNETIC RESONANCE 2015; 46:853-873. [PMID: 26224994 PMCID: PMC4515242 DOI: 10.1007/s00723-015-0698-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/01/2015] [Indexed: 03/24/2024]
Abstract
As an early visitor to the injured loci, neutrophil-derived human Myeloperoxidase (hMPO) offers an attractive protein target to modulate the inflammation of the host tissue through suitable inhibitors. We describe a novel methodology of using low temperature ESR spectroscopy (6 K) and FAST™ technology to screen a diverse series of small molecules that inhibit the peroxidase function through reversible binding to the native state of MPO. Our initial efforts to profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide (AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but spurious inhibitors that either do not bind to the heme pocket in the enzyme or retain high (>50 %) anti oxidant potential. Such molecules when taken forward for X-ray did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct binding to the native state enzyme, by measuring the binding-induced shift in the electronic parameter g to rank order the molecules. Molecules with a higher rank order-those with g-shift Rrelative ≥15-yielded well-formed protein-bound crystals (n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals that the chlorophenyl group projects away from the heme along the edges of the Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access to the heme by the substrates like H2O2. Both ESR and antioxidant screens were used to derive the mechanism of action (reversibility, competitive substrate inhibition, and percent antioxidant potential). In conclusion, our results point to a viable path forward to target the native state of MPO to tame local inflammation.
Collapse
Affiliation(s)
- Balagopalakrishna Chavali
- />Division of Tailored Therapeutics and Imaging, Lilly Corporate Center, Eli Lilly and Company, Bldg.87/C04, Column S17 DC 1940, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Thierry Masquelin
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Mark J. Nilges
- />School of Molecular and Cellular Biology and Illinois EPR Research Center, Illinois EPR Research Center, 506 S. Mathews St., Urbana, IL 61801 USA
| | - David E. Timm
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Stephanie L. Stout
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - William F. Matter
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Najia Jin
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Prabhakar K. Jadhav
- />Discovery Chemistry Research and Technologies, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| | - Gary G. Deng
- />Division of Endocrine and Cardiovascular Research, Lilly Corporate Center, Eli Lilly and Company, 893 S Delaware Street, Indianapolis, IN 46285 USA
| |
Collapse
|
19
|
Oxidative stress: dual pathway induction in cardiorenal syndrome type 1 pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:391790. [PMID: 25821554 PMCID: PMC4364374 DOI: 10.1155/2015/391790] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023]
Abstract
Cardiorenal Syndrome Type 1 (Type 1) is a specific condition which is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Even though its pathophysiology is complex and not still completely understood, oxidative stress seems to play a pivotal role. In this study, we examined the putative role of oxidative stress in the pathogenesis of CRS Type 1. Twenty-three patients with acute heart failure (AHF) were included in the study. Subsequently, 11 patients who developed AKI due to AHF were classified as CRS Type 1. Quantitative determinations for IL-6, myeloperoxidase (MPO), nitric oxide (NO), copper/zinc superoxide dismutase (Cu/ZnSOD), and endogenous peroxidase activity (EPA) were performed. CRS Type 1 patients displayed significant augmentation in circulating ROS and RNS, as well as expression of IL-6. Quantitative analysis of all oxidative stress markers showed significantly lower oxidative stress levels in controls and AHF compared to CRS Type 1 patients (P < 0.05). This pilot study demonstrates the significantly heightened presence of dual oxidative stress pathway induction in CRS Type 1 compared to AHF patients. Our findings indicate that oxidative stress is a potential therapeutic target, as it promotes inflammation by ROS/RNS-linked pathogenesis.
Collapse
|
20
|
Green JN, Kettle AJ, Winterbourn CC. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic Biol Med 2014; 77:49-56. [PMID: 25236747 DOI: 10.1016/j.freeradbiomed.2014.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/06/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
Neutrophils ingest and kill bacteria within phagocytic vacuoles. We investigated where they produce hypochlorous acid (HOCl) following phagocytosis by measuring conversion of protein tyrosine residues to 3-chlorotyrosine. We also examined how varying chloride availability affects the relationship between HOCl formation in the phagosome and bacterial killing. Phagosomal proteins, isolated following ingestion of opsonized magnetic beads, contained 11.4 Cl-Tyr per thousand tyrosine residues. This was 12 times higher than the level in proteins from the rest of the neutrophil and ~6 times higher than previously recorded for protein from ingested bacteria. These results indicate that HOCl production is largely localized to the phagosomes and a substantial proportion reacts with phagosomal protein before reaching the microbe. This will in part detoxify the oxidant but should also form chloramines which could contribute to the killing mechanism. Neutrophils were either suspended in chloride-free gluconate buffer or pretreated with formyl-Met-Leu-Phe, a procedure that has been reported to deplete intracellular chloride. These treatments, alone or in combination, decreased both chlorination in phagosomes and killing of Staphylococcus aureus by up to 50%. There was a strong positive correlation between the two effects. Killing was predominantly oxidant and myeloperoxidase dependent (88% inhibition by diphenylene iodonium and 78% by azide). These results imply that lowering the chloride concentration limits HOCl production and oxidative killing. They support a role for HOCl generation, rather than an alternative myeloperoxidase activity, in the killing process.
Collapse
Affiliation(s)
- Jessie N Green
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Anthony J Kettle
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand
| | - Christine C Winterbourn
- Department of Pathology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, New Zealand.
| |
Collapse
|
21
|
Adam M, Gajdova S, Kolarova H, Kubala L, Lau D, Geisler A, Ravekes T, Rudolph V, Tsao PS, Blankenberg S, Baldus S, Klinke A. Red blood cells serve as intravascular carriers of myeloperoxidase. J Mol Cell Cardiol 2014; 74:353-63. [PMID: 24976018 DOI: 10.1016/j.yjmcc.2014.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/23/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022]
Abstract
Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme.
Collapse
Affiliation(s)
- Matti Adam
- Stanford University, Division of Cardiovascular Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford, CA, USA.
| | - Silvie Gajdova
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | - Hana Kolarova
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic
| | - Lukas Kubala
- Academy of Sciences of the Czech Republic, Institute of Biophysics, Brno, Czech Republic; International Clinical Research Center-CBCE, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Denise Lau
- University of Hamburg, Heart Center, Department of Cardiovascular Medicine, Hamburg, Germany
| | - Anne Geisler
- University of Hamburg, Heart Center, Department of Cardiovascular Medicine, Hamburg, Germany
| | - Thorben Ravekes
- Heart Center, Department of Cardiology and Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Heart Center, Department of Cardiology and Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Philip S Tsao
- Stanford University, Division of Cardiovascular Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Stefan Blankenberg
- University of Hamburg, Heart Center, Department of Cardiovascular Medicine, Hamburg, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology and Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Heart Center, Department of Cardiology and Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
23
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
24
|
Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 2013; 18:642-60. [PMID: 22881869 DOI: 10.1089/ars.2012.4827] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE When neutrophils kill microorganisms, they ingest them into phagosomes and bombard them with a burst of reactive oxygen species. RECENT ADVANCES This review focuses on what oxidants are produced and how they kill. The neutrophil NADPH oxidase is activated and shuttles electrons from NADPH in the cytoplasm to oxygen in the phagosomal lumen. Superoxide is generated in the narrow space between the ingested organism and the phagosomal membrane and kinetic modeling indicates that it reaches a concentration of around 20 μM. Degranulation leads to a very high protein concentration with up to millimolar myeloperoxidase (MPO). MPO has many substrates, but its main phagosomal reactions should be to dismutate superoxide and, provided adequate chloride, catalyze efficient conversion of hydrogen peroxide to hypochlorous acid (HOCl). Studies with specific probes have shown that HOCl is produced in the phagosome and reacts with ingested bacteria. The amount generated should be high enough to kill. However, much of the HOCl reacts with phagosomal proteins. Generation of chloramines may contribute to killing, but the full consequences of this are not yet clear. CRITICAL ISSUES Isolated neutrophils kill most of the ingested microorganisms rapidly by an MPO-dependent mechanism that is almost certainly due to HOCl. However, individuals with MPO deficiency rarely have problems with infection. A possible explanation is that HOCl provides a frontline response that kills most of the microorganisms, with survivors killed by nonoxidative processes. The latter may deal adequately with low-level infection but with high exposure, more efficient HOCl-dependent killing is required. FUTURE DIRECTIONS Better quantification of HOCl and other oxidants in the phagosome should clarify their roles in antimicrobial action.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | | |
Collapse
|
25
|
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 2013; 93:185-98. [PMID: 23066164 PMCID: PMC3545676 DOI: 10.1189/jlb.0712349] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023] Open
Abstract
Successful immune defense requires integration of multiple effector systems to match the diverse virulence properties that members of the microbial world might express as they initiate and promote infection. Human neutrophils--the first cellular responders to invading microbes--exert most of their antimicrobial activity in phagosomes, specialized membrane-bound intracellular compartments formed by ingestion of microorganisms. The toxins generated de novo by the phagocyte NADPH oxidase and delivered by fusion of neutrophil granules with nascent phagosomes create conditions that kill and degrade ingested microbes. Antimicrobial activity reflects multiple and complex synergies among the phagosomal contents, and optimal action relies on oxidants generated in the presence of MPO. The absence of life-threatening infectious complications in individuals with MPO deficiency is frequently offered as evidence that the MPO oxidant system is ancillary rather than essential for neutrophil-mediated antimicrobial activity. However, that argument fails to consider observations from humans and KO mice that demonstrate that microbial killing by MPO-deficient cells is less efficient than that of normal neutrophils. We present evidence in support of MPO as a major arm of oxidative killing by neutrophils and propose that the essential contribution of MPO to normal innate host defense is manifest only when exposure to pathogens overwhelms the capacity of other host defense mechanisms.
Collapse
Affiliation(s)
| | - Anthony J. Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand; and
| | - Henry Rosen
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christine C. Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand; and
| | - William M. Nauseef
- Iowa Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Coralville, Iowa, USA
| |
Collapse
|
26
|
Zhang YS, He L, Liu B, Li NS, Luo XJ, Hu CP, Ma QL, Zhang GG, Li YJ, Peng J. A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion. Basic Res Cardiol 2012; 107:266. [DOI: 10.1007/s00395-012-0266-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/13/2012] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
|
27
|
Comesaña P, Casas SM, Cao A, Abollo E, Arzul I, Morga B, Villalba A. Comparison of haemocytic parameters among flat oyster Ostrea edulis stocks with different susceptibility to bonamiosis and the Pacific oyster Crassostrea gigas. J Invertebr Pathol 2012; 109:274-86. [DOI: 10.1016/j.jip.2011.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 01/09/2023]
|
28
|
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:2605-41. [PMID: 21391902 DOI: 10.1089/ars.2010.3547] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic inflammatory disease is a condition characterized by persistent inflammation. A number of human pathologies fall into this category, and a great deal of research has been conducted to learn more about their characteristics and underlying mechanisms. In many cases, a genetic component has been identified, but also external factors like food, smoke, or environmental pollutants can significantly contribute to worsen their symptoms. Accumulated evidence clearly shows that chronic inflammatory diseases are subjected to a redox control. Here, we shall review the identity, source, regulation, and biological activity of redox molecules, to put in a better perspective their key-role in cancer, diabetes, cardiovascular diseases, atherosclerosis, chronic obstructive pulmonary diseases, and inflammatory bowel diseases. In addition, the impact of redox species on autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, psoriasis, and celiac disease) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) will be discussed, along with their potential therapeutic implications as novel drugs to combat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | | |
Collapse
|
29
|
Lam GY, Huang J, Brumell JH. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Semin Immunopathol 2010; 32:415-30. [DOI: 10.1007/s00281-010-0221-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/08/2010] [Indexed: 12/27/2022]
|
30
|
Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92-106. [DOI: 10.1016/j.abb.2010.04.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 12/12/2022]
|
31
|
Ahmed AESI, Wardell JN, Thumser AE, Avignone-Rossa CA, Cavalli G, Hay JN, Bushell ME. Metabolomic profiling can differentiate between bactericidal effects of free and polymer bound halogen. J Appl Polym Sci 2010. [DOI: 10.1002/app.32731] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Ryu JH, Ha EM, Lee WJ. Innate immunity and gut-microbe mutualism in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:369-376. [PMID: 19958789 DOI: 10.1016/j.dci.2009.11.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 05/28/2023]
Abstract
Metazoan guts face a wide variety of microorganisms upon exposure to the environment, including beneficial symbionts, non-symbionts, food-borne microbes and life-threatening pathogens. Recent evidence has shown that the innate immunity of gut epithelia, such as anti-microbial peptide- and reactive oxygen species-based immune systems, actively participate in gut-microbe homeostasis by shaping the commensal community while efficiently eliminating unwanted bacteria. Therefore, elucidation of the regulatory mechanism by which gut innate immunity occurs at the molecular level will provide a novel perspective of gut-microbe mutualisms as well as of gut diseases caused by alterations in the innate immunity.
Collapse
Affiliation(s)
- Ji-Hwan Ryu
- Division of Life and Pharmaceutical Science, Department of Life Science, Department of Bioinspired Science, and National Creative Research Initiative Center for Symbiosystem, Ewha Woman's University, Seoul 120-750, South Korea
| | | | | |
Collapse
|
33
|
Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci U S A 2009; 106:18686-91. [PMID: 19833874 DOI: 10.1073/pnas.0909464106] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen intermediates generated by neutrophils kill bacteria and are implicated in inflammatory tissue injury, but precise molecular targets are undefined. We demonstrate that neutrophils use myeloperoxidase (MPO) to convert methionine residues of ingested Escherichia coli to methionine sulfoxide in high yield. Neutrophils deficient in individual components of the MPO system (MPO, H(2)O(2), chloride) exhibited impaired bactericidal activity and impaired capacity to oxidize methionine. HOCl, the principal physiologic product of the MPO system, is a highly efficient oxidant for methionine, and its microbicidal effects were found to correspond linearly with oxidation of methionine residues in bacterial cytosolic and inner membrane proteins. In contrast, outer envelope proteins were initially oxidized without associated microbicidal effect. Disruption of bacterial methionine sulfoxide repair systems rendered E. coli more susceptible to killing by HOCl, whereas over-expression of a repair enzyme, methionine sulfoxide reductase A, rendered them resistant, suggesting a direct role for methionine oxidation in bactericidal activity. Prominent among oxidized bacterial proteins were those engaged in synthesis and translocation of peptides to the cell envelope, an essential physiological function. Moreover, HOCl impaired protein translocation early in the course of bacterial killing. Together, our findings indicate that MPO-mediated methionine oxidation contributes to bacterial killing by neutrophils. The findings further suggest that protein translocation to the cell envelope is one important pathway targeted for damage.
Collapse
|
34
|
Abstract
The human lung produces considerable amounts of H(2)O(2). In the normal uninflamed epithelium of both the airways and the alveoli, mucosal release of H(2)O(2) is readily detected both in cell cultures in vitro and in the exhaled breath of humans. The dual oxidases DUOX1 and DUOX2 are the H(2)O(2)-producing isoforms of the NADPH oxidase family found in epithelial cells. The DUOXs are prominently expressed at the apical cell pole of ciliated cells in the airways and in type II cells of the alveoli. Recent studies focused on the functional consequences of H(2)O(2) release by DUOX into the lung lining fluid. In the airways, a major function of DUOX is to support lactoperoxidase (LPO) to generate bactericidal OSCN(-), and there are indications that the DUOX/LPO defense system is critically dependent on the function of the CFTR Cl(-) channel, which provides both SCN(-) (for LPO function) and HCO(3)(-) (for pH adjustment) to the airway surface liquid. Although DUOX is also functional in the alveolar epithelium, no comparable heme peroxidase is present in the alveolus, and thus DUOX-mediated H(2)O(2) release by alveolar cells may have other functions, such as cellular signaling.
Collapse
Affiliation(s)
- Horst Fischer
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA.
| |
Collapse
|
35
|
Xu P, Qu JM, Xu JF, Zhang J, Jiang HN, Zhang HJ. NAC is associated with additional alleviation of lung injury induced by invasive pulmonary aspergillosis in a neutropenic model. Acta Pharmacol Sin 2009; 30:980-6. [PMID: 19575001 PMCID: PMC4006662 DOI: 10.1038/aps.2009.83] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/29/2009] [Indexed: 02/08/2023] Open
Abstract
AIM Neutropenic individuals are at high risk for invasive pulmonary aspergillosis (IPA), a life-threatening infection. To evaluate the therapeutic potential of antioxidants, IPA was induced in neutropenic mice and the effect of N-acetyl-l-cysteine (NAC) on oxidative stress levels and lung injury was analyzed. METHODS Mice were pretreated with three daily intraperitoneal injections of 150 mg/kg cyclophosphamide, followed by intratracheal inoculation with 4.5x10(6) conidia of Aspergillus fumigatus. The infected mice were then randomly assigned to an amphotericin B (AMB) group, an AMB plus NAC group, or an untreated control (C) group. In each group, the duration of treatment was 24, 48, or 72 h, and activities such as appearance, feeding, and dermal temperature were observed throughout the experiment. Sera and lung tissues were collected and analyzed by quantitative enzyme-linked immunosorbent assay (ELISA) for total protein, superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-alpha), and interleukin-10 (IL-10) levels. The wet/dry weight ratio of the lung was also calculated and lung sections were stained with hematoxylin-eosin for pathological examination and with methenamine silver stain for fungus detection. RESULTS Compared with the mice untreated with NAC, mice in the AMB plus NAC group had increased SOD and reduced MDA levels both systemically and locally at 24, 48, and 72 h after inoculation with conidia. NAC treatment also decreased the pulmonary protein content at 48 and 72 h and the lung wet/dry weight ratio at 24 and 48 h. Additionally, NAC enhanced pulmonary production of TNF-alpha and IL-10 at 24 h and 48 h. CONCLUSION In combination with antifungal therapy, NAC treatment can alleviate oxidative stress and lung injury associated with IPA in neutropenic mice.Acta Pharmacologica Sinica (2009) 30: 980-986; doi: 10.1038/aps.2009.83.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-ming Qu
- Department of Pulmonary Medicine, Huadong Hospital, Shanghai Medical School, Fudan University, Shanghai 200040, China
| | - Jin-fu Xu
- Department of Pulmonary Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Jing Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-ni Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui-jun Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Sam CH, Lu HK. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J Dent Sci 2009. [DOI: 10.1016/s1991-7902(09)60008-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Abstract
Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.
Collapse
|
38
|
Craig M, Slauch JM. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 2009; 4:e4975. [PMID: 19305502 PMCID: PMC2654757 DOI: 10.1371/journal.pone.0004975] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/02/2009] [Indexed: 11/22/2022] Open
Abstract
Background The phagocytic oxidative burst is a primary effector of innate immunity that protects against bacterial infection. However, the mechanism by which reactive oxygen species (ROS) kill or inhibit bacteria is not known. It is often assumed that DNA is a primary target of oxidative damage, consistent with known effects of endogenously produced ROS in the bacterial cytoplasm. But most studies fail to distinguish between effects of host derived ROS versus damage caused by endogenous bacterial sources. We took advantage of both the ability of Salmonella enterica serovar Typhimurium to survive in macrophages and the genetic tractability of the system to test the hypothesis that phagocytic superoxide damages cytoplasmic targets including DNA. Methodology/Principal Findings SodCI is a periplasmic Cu-Zn superoxide dismutase (SOD) that contributes to the survival of Salmonella Typhimurium in macrophages. Through competitive virulence assays, we asked if sodCI has a genetic interaction with various cytoplasmic systems. We found that SodCI acts independently of cytoplasmic SODs, SodA and SodB. In addition, SodCI acts independently of the base excision repair system and RuvAB, involved in DNA repair. Although sodCI did show genetic interaction with recA, this was apparently independent of recombination and is presumably due to the pleiotropic effects of a recA mutation. Conclusions/Significance Taken together, these results suggest that bacterial inhibition by phagocytic superoxide is primarily the result of damage to an extracytoplasmic target.
Collapse
Affiliation(s)
- Maureen Craig
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James M. Slauch
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Role of Nox2 in elimination of microorganisms. Semin Immunopathol 2008; 30:237-53. [PMID: 18574584 DOI: 10.1007/s00281-008-0126-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
Abstract
NADPH oxidase of the phagocytic cells (Nox2) transfers electrons from cytosolic NADPH to molecular oxygen in the extracellular or intraphagosomal space. The produced superoxide anion (O*2) provides the source for formation of all toxic oxygen derivatives, but continuous O*2 generation depends on adequate charge compensation. The vital role of Nox2 in efficient elimination of microorganisms is clearly indicated by human pathology as insufficient activity of the enzyme results in severe, recurrent bacterial infections, the typical symptoms of chronic granulomatous disease. The goals of this contribution are to provide critical review of the Nox2-dependent cellular processes that potentially contribute to bacterial killing and degradation and to indicate possible targets of pharmacological interventions.
Collapse
|
40
|
Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, Kreiswirth BN, Skaar EP, DeLeo FR. Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2008; 180:500-9. [PMID: 18097052 DOI: 10.4049/jimmunol.180.1.500] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, there has been a dramatic increase in the incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. MW2 (pulsed-field type USA400), the prototype CA-MRSA strain, is highly virulent and has enhanced ability to evade killing by neutrophils. Although progress has been made, the molecular basis for enhanced virulence of CA-MRSA remains incompletely defined. To that end, we studied resistance of MW2 to key microbicides of human neutrophils. Hydrogen peroxide (H2O2), hypochlorous acid, and azurophilic granule proteins had significant bacteriostatic but limited staphylocidal activity toward MW2 under the conditions tested. An MW2-specific microarray revealed common changes in S. aureus gene expression following exposure to each microbicide, such as up-regulation of transcripts involved in gene regulation (e.g., saeRS and kdpDE) and stress response. Azurophilic granule proteins elicited the greatest number of changes in MW2 transcripts, including up-regulation of mRNAs encoding multiple toxins and hemolysins (e.g., hlgA, hlgB, hlgC, hla, lukS-PV, lukF-PV, sec4, and set17-26). Notably, H2O2 triggered up-regulation of transcripts related to heme/iron uptake (e.g., isdA, isdB, and isdCDEFsrtBisdG), and an isogenic isdAB-negative strain of MW2 had increased susceptibility to H2O2 (p<0.001) and human neutrophils (p<0.05) compared with the wild-type parental strain. These findings reveal a S. aureus survival response wherein Iron-regulated surface determinant (Isd) proteins are important for resistance to innate host defense. Collectively, the data provide an enhanced view of the mechanisms used by S. aureus to circumvent destruction by the innate immune system.
Collapse
Affiliation(s)
- Amy M Palazzolo-Ballance
- Laboratory of Human Bacterial Pathogenesis, Research Technologies Section, Genomics Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernanda Reis Gavazzoni Dias M, Mesquita J, Lima Filgueira A, De Souza W. Human neutrophils susceptibility toParacoccidioides brasiliensis: an ultrastructural and cytochemical assay. Med Mycol 2008; 46:241-9. [DOI: 10.1080/13693780701824411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
The function of the NADPH oxidase of phagocytes, and its relationship to other NOXs. Biochem Soc Trans 2007; 35:1100-3. [DOI: 10.1042/bst0351100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of ‘professional’ phagocytic cells transfers electrons across the wall of the phagocytic vacuole, forming superoxide in the lumen. It is generally accepted that this system promotes microbial killing through the generation of reactive oxygen species and through the activity of myeloperoxidase. An alternative scenario exists in which the passage of electrons across the membrane alters the pH and generates a charge that drives ions into, and out of, the vacuole. It is proposed that the primary function of the oxidase is to produce these pH changes and ion fluxes, and the issues surrounding these processes are considered in this review. The neutrophil oxidase is the prototype of a whole family of NOXs (NAPDH oxidases) that exist throughout biology, from plants to humans, which might function, at least in part, in a similar fashion.
Collapse
|
43
|
Segal AW. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol 2007; 40:604-18. [PMID: 18036868 PMCID: PMC2636181 DOI: 10.1016/j.biocel.2007.10.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 01/09/2023]
Abstract
The NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX) of ‘professional’ phagocytic cells transfers electrons across the wall of the phagocytic vacuole, forming superoxide in the lumen. It is generally accepted that this system promotes microbial killing through the generation of reactive oxygen species and through the activity of myeloperoxidase. An alternative scenario exists in which the passage of electrons across the membrane alters the pH and generates a charge that drives ions into, and out of, the vacuole. It is proposed that the primary function of the oxidase is to produce these pH changes and ion fluxes, and the issues surrounding these processes are considered. The neutrophil oxidase is the prototype of a whole family of NOXs that exist throughout biology, from plants to man, which might function, at least in part, in a similar fashion. Some examples of how these other NOXs might influence ion fluxes are examined.
Collapse
Affiliation(s)
- Anthony W Segal
- Centre for Molecular Medicine, University College London, 5 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
44
|
|
45
|
Davtyan TK, Hakobyan IS, Muradyan RE, Hovhannisyan HG, Gabrielyan ES. Evaluation of amino acids as mediators for the antibacterial activity of iodine-lithium-alpha-dextrin in vitro and in vivo. J Antimicrob Chemother 2007; 59:1114-22. [PMID: 17439975 DOI: 10.1093/jac/dkm094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The systemic therapeutic application of iodophores has not yet been accepted due to limited availability of safe and effective ionized iodine preparations. Here we evaluated the antibacterial activity of iodine-lithium-alpha-dextrin (ILalphaD) both in vitro and in vivo. METHODS The MIC values of ILalphaD against 189 bacterial isolates in various growth media and in vivo toxicity and protective efficacy of ILalphaD in preventing mortality of rats infected with Staphylococcus aureus were determined. The intracellular killing of S. aureus by neutrophils in the presence of ILalphaD and myeloperoxidase (MPO)-catalysed oxidation of iodide was also determined. RESULTS The MIC values of ILalphaD against 189 Gram-positive cocci and Gram-negative bacilli ranged between 124-512 mg/L in growth media and 6.2-12.5 mg/L in buffer solution, and were highly variable in the presence of amino acids. We observed protection of S. aureus-infected rats from death with significant reduction of bacterial growth in organs upon intravenous administration of ILalphaD at doses that are 4-12 times lower than maximal in vivo tolerability dose. Intracellular killing of S. aureus by neutrophils increased in the presence of ILalphaD probably due to MPO-catalysed oxidation of iodide into hypoiodous acid. The pattern of ILalphaD reaction with amino acids at different pH or halide ion content determined both the generation of long-lived secondary oxidants and antibacterial activity. CONCLUSIONS Systemic application of ILalphaD proved to be successful in the rat infection model by promoting host defence. Probable mechanisms are increased intracellular killing of bacteria by production of hypoiodous acid and iodamines as well as anti-inflammatory activity.
Collapse
Affiliation(s)
- Tigran K Davtyan
- Laboratory of Immunology and Virology, Armenicum Research Center, Yerevan, Republic of Armenia.
| | | | | | | | | |
Collapse
|
46
|
Fischer H, Gonzales LK, Kolla V, Schwarzer C, Miot F, Illek B, Ballard PL. Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1506-14. [PMID: 17337509 DOI: 10.1152/ajplung.00029.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the expression and cellular functions of the epithelial NADPH oxidase DUOX1 during alveolar type II cell development. When human fetal lung cells (gestational age 11-22 wk) were cultured to confluency on permeable filters, exposure of cells to a hormone mixture (dexamethasone, 8-Br-cAMP, and IBMX, together referred to as DCI) resulted in differentiation of cells into a mature type II phenotype as assessed by expression of lamellar bodies, surfactant proteins, and transepithelial electrical parameters. After 6 days in culture in presence of DCI, transepithelial resistance (2,616 +/- 529 Omega.cm(2)) and potential (-8.5 +/- 0.6 mV) indicated epithelial polarization. At the same time, treatment with DCI significantly increased the mRNA expression of DUOX1 ( approximately 21-fold), its maturation factor DUOXA1 ( approximately 12-fold), as well as DUOX protein ( approximately 12-fold), which was localized near the apical cell pole in confluent cultures. For comparison, in fetal lung specimens, DUOX protein was not detectable at up to 27 wk of gestational age but was strongly upregulated after 32 wk. Function of DUOX1 was assessed by measuring H(2)O(2) and acid production. Rates of H(2)O(2) production were increased by DCI treatment and blocked by small interfering RNA directed against DUOX1 or by diphenylene iodonium. DCI-treated cultures also showed increased intracellular acid production and acid release into the mucosal medium, and acid production was largely blocked by knockdown of DUOX1 mRNA. These data establish the regulated expression of DUOX1 during alveolar maturation, and indicate DUOX1 in alveolar H(2)O(2) and acid secretion by differentiated type II cells.
Collapse
Affiliation(s)
- Horst Fischer
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4992] [Impact Index Per Article: 277.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
48
|
Abstract
How do neutrophils kill pathogens? A 1967 paper by Seymour Klebanoff provided a neat answer. But far from being resolved, the question still provokes vehement arguments.
Collapse
|
49
|
Fay AJ, Qian X, Jan YN, Jan LY. SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci U S A 2006; 103:17548-53. [PMID: 17085590 PMCID: PMC1634413 DOI: 10.1073/pnas.0607914103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are immune cells that bind to, engulf, and destroy bacterial and fungal pathogens in infected tissue, and their clearance by apoptosis is essential for the resolution of inflammation. Killing involves both oxidative and nonoxidative processes, the oxidative pathway requiring electrogenic production of superoxide by the membrane-bound NADPH oxidase complex. A variety of stimuli, from bacterial chemotactic peptides to complement- or IgG-opsonized microbes, can induce the production of reactive oxygen species (ROS) by neutrophils, presumably by means of NADPH oxidase. We report here that 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of Ca2+-activated potassium channels of small conductance (SK) and intermediate conductance (IK), causes production of superoxide and hydrogen peroxide by neutrophils and granulocyte-differentiated PLB-985 cells. This response can be partially inhibited by the SK blocker apamin, which inhibits a Ca2+-activated K+ current in these cells. Analysis of RNA transcripts indicates that channels encoded by the SK3 gene carry this current. The effects of 1-EBIO and apamin are independent of the NADPH oxidase pathway, as demonstrated by using a PLB-985 cell line lacking the gp91phox subunit. Rather, 1-EBIO and apamin modulate mitochondrial ROS production. Consistent with the enhanced ROS production and K+ efflux mediated by 1-EBIO, we found that this SK opener increased apoptosis of PLB-985 cells. Together, these findings suggest a previously uncharacterized mechanism for the regulation of neutrophil ROS production and programmed cell death.
Collapse
Affiliation(s)
- Alex J. Fay
- *Graduate Group in Biophysics, and
- Departments of Physiology and Biochemistry and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0725
| | - Xiang Qian
- Departments of Physiology and Biochemistry and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0725
| | - Yuh Nung Jan
- Departments of Physiology and Biochemistry and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0725
| | - Lily Yeh Jan
- Departments of Physiology and Biochemistry and Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0725
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 2006; 281:39860-9. [PMID: 17074761 DOI: 10.1074/jbc.m605898200] [Citation(s) in RCA: 467] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophils kill bacteria by ingesting them into phagosomes where superoxide and cytoplasmic granule constituents, including myeloperoxidase, are released. Myeloperoxidase converts chloride and hydrogen peroxide to hypochlorous acid (HOCl), which is strongly microbicidal. However, the role of oxidants in killing and the species responsible are poorly understood and the subject of current debate. To assess what oxidative mechanisms are likely to operate in the narrow confines of the phagosome, we have used a kinetic model to examine the fate of superoxide and its interactions with myeloperoxidase. Known rate constants for reactions of myeloperoxidase have been used and substrate concentrations estimated from neutrophil morphology. In the model, superoxide is generated at several mm/s. Most react with myeloperoxidase, which is present at millimolar concentrations, and rapidly convert the enzyme to compound III. Compound III turnover by superoxide is essential to maintain enzyme activity. Superoxide stabilizes at approximately 25 microM and hydrogen peroxide in the low micromolar range. HOCl production is efficient if there is adequate chloride supply, but further knowledge on chloride concentrations and transport mechanisms is needed to assess whether this is the case. Low myeloperoxidase concentrations also limit HOCl production by allowing more hydrogen peroxide to escape from the phagosome. In the absence of myeloperoxidase, superoxide increases to >100 microM but hydrogen peroxide to only approximately 30 microM. Most of the HOCl reacts with released granule proteins before reaching the bacterium, and chloramine products may be effectors of its antimicrobial activity. Hydroxyl radicals should form only after all susceptible protein targets are consumed.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Christchurch School of Medicine and Health Sciences, P. O. Box 4345, Christchurch, New Zealand.
| | | | | | | |
Collapse
|