1
|
Liccardo D, Valletta A, Spagnuolo G, Vinciguerra C, Lauria MR, Perrotta A, Del Giudice C, De Luca F, Rengo G, Rengo S, Rengo C, Cannavo A. Porphyromonas gingivalis virulence factors induce toxic effects in SH-SY5Y neuroblastoma cells: GRK5 modulation as a protective strategy. J Biotechnol 2024; 393:7-16. [PMID: 39033880 DOI: 10.1016/j.jbiotec.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Periodontitis (PDS) is a chronic inflammatory disease initiated by a dysbiosis of oral pathogenic bacterial species, such as Porphyromonas gingivalis (Pg). These bacteria can penetrate the bloodstream, releasing various endo and exotoxins that fuel the infection, and stimulate toxic inflammation in different compartments, including the brain. However, the specific mechanisms by which PDS/Pg contribute to brain disorders, such as Alzheimer's disease (AD), remain unclear. This study assessed the effects of Pg's virulence factors - lipopolysaccharide (LPS-Pg) and gingipains (gps) K (Kgp) and Rgp - on SH-SY5Y cells. Our results demonstrated that LPS-Pg activated signaling through the Toll-like receptor (TLR)-2/4 induced a significant downregulation of G protein-coupled receptor kinase 5 (GRK5). Additionally, LPS-Pg stimulation resulted in a robust increase in Tau phosphorylation (pTau) and p53 levels, while causing a marked reduction in Bcl2 and increased cell death compared to unstimulated cells (Ns). LPS-Pg also elevated inducible nitric oxide synthase (iNOS) expression, leading to oxidative damage. In cells overexpressing GRK5 via Adenovirus, LPS-Pg failed to increase iNOS and pTau levels compared to GFP control cells. High GRK5 levels also prevented the nuclear accumulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, the overexpression of a GRK5 mutant form lacking the nuclear localization signal (ΔNLS) nearly abolished LPS-Pg induced p53 and iNOS upregulation. Finally, we tested whether Kgp and Rgp mediated similar effects and our data showed that both gps caused a marked downregulation of GRK5 leading to increased p53 and pTau levels. In conclusion, this study provides further insight into the toxic effects elicited by Pg in cells and suggests that preventing GRK5 deficiency may be a valid strategy to mitigate Pg-induced toxic effects (i.e. cell death, oxidative damage, and Tau hyperphosphorylation) in SH-SY5Y cells, which are typical molecular hallmarks of neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Maria Rosaria Lauria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Alessia Perrotta
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Francesca De Luca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy; Istituti Clinici Scientifici Maugeri IRCCS - Scientific Institute of Telese Terme (BN), Italy
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples 80131, Italy
| | - Carlo Rengo
- Dental School of Periodontology, University of Naples Federico II, Napoli 80127, Italy.
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
2
|
Ma H, Luo W, Gu Y. Does Oral Microbiota Have a Close Relationship with Pancreatic Cancer? A Systematic Review and Meta-Analysis. Ann Surg Oncol 2023; 30:8635-8641. [PMID: 37787951 DOI: 10.1245/s10434-023-14366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The association between oral microbiota and pancreatic cancer (PC) is increasingly recognized and studied. Yet, contrasting results are seen in current studies. This study aimed to provide systematic review and meta-analysis comparing PC and oral microbiota. METHODS Studies related to the association between oral microbiota and PC were identified through digital databases including PubMed, Medline, EMBASE, COCHRANE, and SCOPUS without limitations on language or publication period. The last identification date was 10 March 2023. Three case-control studies concerning the issue were included. For the meta-analyses, RevMan software version 5.4 was used. The Newcastle-Ottawa scale was used to evaluate articles and measurement of study differences, and publication bias was shown. RESULTS Porphyromonas gingivalis in oral bacteria was detected at a comparatively high detection rate in PC patients compared with healthy controls (odds ratio [OR], 1.38; 95 % confidence interval [CI], 1.09-1.74; P = 0.007; I2 = 34 %). The detection rate did not differ significantly between PC patients and healthy control patients for Aggregatibacter actinomycetemcomitans (OR 0.98; 95 % CI 0.75-1.29; P = 0.90; I2 = 76 %); Tannerella forsythiaand (OR 1.12; 95 % CI 0.89-1.42; P = 0.33; I2 = 0 %), or Prevotella intermedia (OR 1.08; 95 % CI 0.84-1.39; P = 0.55; I2 = 0 %). CONCLUSION Oral microbiota were closely related to PC, whereas P. gingivalis was more commonly found in the PC patients than in the healthy controls. For patients with PC, P. gingivalis may play a role in early diagnosis.
Collapse
Affiliation(s)
- Haowei Ma
- Clinical Medicine, Capital Medical University, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, National Clinical Research Center for Obstetric and Gynecologic Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Chen Y, Liang C, Li J, Ma L, Wang B, Yuan Z, Yang S, Nong X. Effect of artesunate on cardiovascular complications in periodontitis in a type I diabetes rat model and related mechanisms. J Endocrinol Invest 2023; 46:2031-2053. [PMID: 36892740 DOI: 10.1007/s40618-023-02052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE Both cardiovascular disease and periodontitis are complications of diabetes that have a great impact on human life and health. Our previous research found that artesunate can effectively improve cardiovascular disease in diabetes and has an inhibitory effect on periodontal disease. Therefore, the present study aimed to explore the potential therapeutic possibility of artesunate in the protection against cardiovascular complications in periodontitis with type I diabetes rats and to elucidate the possible underlying mechanisms. METHODS Sprague‒Dawley rats were randomly divided into the healthy, diabetic, periodontitis, diabetic with periodontitis, and artesunate treatment groups (10, 30, and 60 mg/kg, i.g.). After artesunate treatment, oral swabs were collected and used to determine changes in the oral flora. Micro-CT was performed to observe changes in alveolar bone. Blood samples were processed to measure various parameters, while cardiovascular tissues were evaluated by haematoxylin-eosin, Masson, Sirius red, and TUNEL staining to observe fibrosis and apoptosis. The protein and mRNA expression levels in the alveolar bone and cardiovascular tissues were detected using immunohistochemistry and RT‒PCR. RESULTS Diabetic rats with periodontitis and cardiovascular complications maintained heart and body weight but exhibited reduced blood glucose levels, and they were able to regulate blood lipid indicators at normal levels after artesunate treatment. The staining assays suggested that treatment with 60 mg/kg artesunate has a significant therapeutic effect on myocardial apoptotic fibrosis. The high expression of NF-κB, TLR4, VEGF, ICAM-1, p38 MAPK, TGF-β, Smad2, and MMP9 in the alveolar bone and cardiovascular tissue in the type I diabetes and type I diabetes with periodontitis rat models was reduced after treatment with artesunate in a concentration-dependent manner. Micro-CT showed that treatment with 60 mg/kg artesunate effectively alleviated alveolar bone resorption and density reduction. The sequencing results suggested that each model group of rats had vascular and oral flora dysbiosis, but artesunate treatment could correct the dysbacteriosis. CONCLUSIONS Periodontitis-related pathogenic bacteria cause dysbiosis of the oral and intravascular flora in type I diabetes and aggravate cardiovascular complications. The mechanism by which periodontitis aggravates cardiovascular complications involves the NF-κB pathway, which induces myocardial apoptosis, fibrosis, and vascular inflammation.
Collapse
Affiliation(s)
- Y Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - C Liang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - J Li
- Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Medical Science Research Center, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - L Ma
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - B Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Z Yuan
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - S Yang
- School of Information and Management, Nanning, 530021, Guangxi, China
| | - X Nong
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Kabwe M, Dashper S, Tucci J. The Microbiome in Pancreatic Cancer-Implications for Diagnosis and Precision Bacteriophage Therapy for This Low Survival Disease. Front Cell Infect Microbiol 2022; 12:871293. [PMID: 35663462 PMCID: PMC9160434 DOI: 10.3389/fcimb.2022.871293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
While the mortality rates for many cancers have decreased due to improved detection and treatments, that of pancreatic cancer remains stubbornly high. The microbiome is an important factor in the progression of many cancers. Greater understanding of the microbiome in pancreatic cancer patients, as well as its manipulation, may assist in diagnosis and treatment of this disease. In this report we reviewed studies that compared microbiome changes in pancreatic cancer patients and non-cancer patients. We then identified which bacterial genera were most increased in relative abundance across the oral, pancreatic, duodenal, and faecal tissue microbiomes. In light of these findings, we discuss the potential for utilising these bacteria as diagnostic biomarkers, as well as their potential control using precision targeting with bacteriophages, in instances where a causal oncogenic link is made.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
6
|
Tang Z, Cheng X, Su X, Wu L, Cai Q, Wu H. Treponema denticola Induces Alzheimer-Like Tau Hyperphosphorylation by Activating Hippocampal Neuroinflammation in Mice. J Dent Res 2022; 101:992-1001. [PMID: 35193423 DOI: 10.1177/00220345221076772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Tau hyperphosphorylation and amyloid β (Aβ) deposition are the key pathological hallmarks of AD. Recent studies have shown that periodontitis is a significant risk factor for AD. The periodontal pathogen Porphyromonas gingivalis and its virulence factors have been shown to initiate and promote the hallmark pathologies and behavioral symptoms of AD. A possible link between Treponema denticola, another main periodontal pathogen, and AD has been reported. However, the role of T. denticola in AD pathogenesis is still unclear, and whether T. denticola and P. gingivalis exert a synergistic effect to promote AD development needs to be further studied. In this study, we investigated whether oral infection with T. denticola caused tau hyperphosphorylation in the hippocampi of mice and explored the underlying mechanisms. Orally administered T. denticola induced alveolar bone resorption, colonized brain tissues, and increased the activity of the phosphokinase GSK3β by activating neuroinflammation in the hippocampus, thus promoting the hyperphosphorylation of the tau protein at Ser396, Thr181, and Thr231 in mice. An in vitro study with BV2 and N2a cell models of T. denticola invasion also verified the role of this pathogen in tau phosphorylation. T. denticola and P. gingivalis were not found to exert a synergistic effect on tau phosphorylation. In summary, these findings provide new insight into the important role of T. denticola in AD pathogenesis, providing biological connections between periodontal diseases and AD.
Collapse
Affiliation(s)
- Z Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Abstract
Cardiovascular diseases (CVDs) still remain the leading concern of global health, accounting for approximately 17.9 million deaths in 2016. The pathogenetic mechanisms of CVDs are multifactorial and incompletely understood. Recent evidence has shown that alterations in the gut microbiome and its associated metabolites may influence the pathogenesis and progression of CVDs such as atherosclerosis, heart failure, hypertension, and arrhythmia, yet the underlying links are not fully elucidated. Owing to the progress in next-generation sequencing techniques and computational strategies, researchers now are available to explore the emerging links to the genomes, transcriptomes, proteomes, and metabolomes in parallel meta-omics approaches, presenting a panoramic vista of culture-independent microbial investigation. This review aims to outline the characteristics of meta-omics pipelines and provide a brief overview of current applications in CVDs studies which can be practical for addressing crucial knowledge gaps in this field, as well as to shed its light on cardiovascular risk biomarkers and therapeutic intervention in the near future.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital & National Center for Cardiovascular Diseases, Beijing, China,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital & National Center for Cardiovascular Diseases, Beijing, China,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,CONTACT Yuejin Yang State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & National Center for Cardiovascular Disease, Beijing, China; Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
9
|
Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. Int J Oral Sci 2021; 13:28. [PMID: 34475379 PMCID: PMC8413291 DOI: 10.1038/s41368-021-00134-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/24/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, has been shown to accelerate the progression of atherosclerosis (AS). However, the definite mechanisms remain elusive. Emerging evidence supports an association between mitochondrial dysfunction and AS. In our study, the impact of P. gingivalis on mitochondrial dysfunction and the potential mechanism were investigated. The mitochondrial morphology of EA.hy926 cells infected with P. gingivalis was assessed by transmission electron microscopy, mitochondrial staining, and quantitative analysis of the mitochondrial network. Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP) levels. Cellular ATP production was examined by a luminescence assay kit. The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence. Mdivi-1, a specific Drp1 inhibitor, was used to elucidate the role of Drp1 in mitochondrial dysfunction. Our findings showed that P. gingivalis infection induced mitochondrial fragmentation, increased the mtROS levels, and decreased the MMP and ATP concentration in vascular endothelial cells. We observed upregulation of Drp1 (Ser616) phosphorylation and translocation of Drp1 to mitochondria. Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P. gingivalis. Collectively, these results revealed that P. gingivalis infection promoted mitochondrial fragmentation and dysfunction, which was dependent on Drp1. Mitochondrial dysfunction may represent the mechanism by which P. gingivalis exacerbates atherosclerotic lesions.
Collapse
|
10
|
Hallikainen J, Pyysalo M, Keränen S, Kellokoski J, Koivisto T, Suominen AL, Pussinen P, Pessi T, Frösen J. Systemic immune response against the oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans is associated with the formation and rupture of intracranial aneurysms. Eur J Neurol 2021; 28:3089-3099. [PMID: 34145948 DOI: 10.1111/ene.14986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Periodontal infections are associated with the formation and rupture of intracranial aneurysms (IAs). This study investigated the role of two key periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. METHODS Immunoglobulin A (IgA) and IgG antibodies against P. gingivalis and A. actinomycetemcomitans were measured with enzyme immune assay from the serum of 227 IA patients, of whom 64 also underwent clinical oral examination. As a control group, 1096 participants in a cross-sectional health survey, Health 2000, underwent serological studies and oral examination. Logistic regression was used for multivariate analysis. Immunohistochemistry was performed to demonstrate bacteria-derived epitopes in the IA wall. RESULTS Widespread gingivitis and severe periodontitis were more common in IA patients than in controls (2× and 1.5×, respectively). IgA antibodies against P. gingivalis and A. actinomycetemcomitans were 1.5× and 3-3.4× higher, respectively, in both unruptured and ruptured IA patients compared to controls (p ≤ 0.003). IgG antibodies against P. gingivalis were 1.8× lower in unruptured IA patients (p < 0.001). In multivariate analysis, high IgA, but low IgG, antibody levels against P. gingivalis (odds ratio [OR] = 1.4, 95% confidence interval [Cl] = 1.1-1.8 and OR = 1.5, 95% Cl = 1.1-1.9; OR = 0.6, 95% Cl = 0.4-0.7 and OR = 0.5, 95% Cl = 0.4-0.7) and against A. actinomycetemcomitans (OR = 2.3, 95% Cl = 1.7-3.1 and OR = 2.1, 95% Cl = 1.5-2.9; OR = 0.6, 95% Cl = 0.4-0.8 and OR = 0.6, 95% Cl = 0.5-0.9) were associated with the risk of IA formation and rupture. Immunohistochemistry showed P. gingivalis epitopes in the IA wall. CONCLUSIONS Exposure to the periodontal pathogens P. gingivalis and A. actinomycetemcomitans and dysfunctional acquired immune response against them may increase the risk of IA formation and IA rupture.
Collapse
Affiliation(s)
- Joona Hallikainen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Mikko Pyysalo
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Sara Keränen
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland.,A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jari Kellokoski
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Timo Koivisto
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tanja Pessi
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland.,Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Tian H, Zhang Z, Wang X, Liu W, Wang Z. Role of experimental periodontitis in inducing pulmonary inflammation in mice. Oral Dis 2021; 28:2294-2303. [PMID: 34174133 DOI: 10.1111/odi.13949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/25/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of the study was to explore the potential role of experimental periodontitis in pulmonary inflammation in mice. MATERIALS AND METHODS Mice were divided into control, ligature-induced periodontitis (L) and ligature plus Porphyromonas gingivalis (P. gingivalis)-induced periodontitis (LPG) groups. Alveolar bone resorption, pulmonary function, lung tissue histology and cytokine expression were examined at 2, 4 and 8 weeks. Then cytokines and neutrophils in the peripheral blood and lung tissue were further assessed at 8 weeks to determine the role of cytokines induced by LPG periodontitis, and the effect of P. gingivalis was evaluated using P. gingivalis-IgG and P. gingivalis gingipain. RESULTS Alveolar bone resorption was more severe in the L and LPG groups. However, pulmonary inflammation was observed only in the LPG group at 8 weeks when cytokines and neutrophils in the peripheral blood and lung tissue were the most significant elevation, along with higher levels of P. gingivalis-IgG and P. gingivalis gingipain. Cytokine levels were also increased in the gingival tissue, peripheral blood and lung tissue in the L group, accompanied by elevated peripheral blood neutrophils, but not as significantly as that in the LPG group. CONCLUSIONS LPG periodontitis can trigger pulmonary inflammation over the long term, in which cytokines and P. gingivalis play an important role.
Collapse
Affiliation(s)
- Huan Tian
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zheng Zhang
- Department of Periodontology, Hospital of Stomatology, Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral Function Reconstruction, Nankai University, Tianjin, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenyan Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Leao TSDS, Zanoni AV, Franzon R, Tomasi GH, Conzatti LP, Marrone LCP, Reynolds MA, Gomes MS. Number of teeth is independently associated with ischemic stroke: A case-control study. J Clin Neurosci 2021; 90:233-237. [PMID: 34275555 DOI: 10.1016/j.jocn.2021.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/15/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022]
Abstract
Poor oral health has been suggested as a potential risk factor for the occurrence of cardiovascular events. The present study aimed to test the hypothesis that the number of permanent natural teeth (NT) is independently associated with the occurrence of ischemic stroke (IS) or transient ischemic attack (TIA) in a southern Brazilian population. This case-control study enrolled 458 subjects, 229 hospital patients diagnosed with IS or TIA (cases) and 229 patients with no history of cardiovascular disease (controls). NT was assessed through a head and neck multidetector computed tomography angiography (MDCTA) and panoramic radiographs. The participants were matched by age and sex. Sociodemographic and medical confounding variables were obtained from the hospital charts and through a structured questionnaire. Multivariate logistic regression analysis were carried out to estimate the association between NT and the occurrence of IS or TIA. The mean age was 58.37 ± 10.75 years, with 46.7% males. Adjusted analyses showed an independent association between IS or TIA and hypertension (OR = 6.34, 95%CI = 3.93-10.24), smoking (OR = 4.70, 95%CI = 2.76-7.99) and NT (lower quartile: ≤7 teeth) (OR = 5.59, 95%CI = 2.88-10.86). The number of permanent natural teeth was inversely and independently associated with the occurrence of IS or TIA in this population. Present findings suggest a gradient effect on the association between oral health and IS.
Collapse
Affiliation(s)
- Thayana Salgado de Souza Leao
- Graduate Program in Dentistry, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States.
| | - Aline Veloso Zanoni
- Graduate Program in Dentistry, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raiane Franzon
- Graduate Program in Dentistry, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Henrique Tomasi
- Department of Neurology, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Piccoli Conzatti
- Department of Neurology, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Carlos Porcelo Marrone
- Department of Neurology, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mark Allan Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States.
| | - Maximiliano Schünke Gomes
- Graduate Program in Dentistry, School of Health and Life Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical and Dental Center of the Military Police of Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Infection of Porphyromonas gingivalis Increases Phosphate-Induced Calcification of Vascular Smooth Muscle Cells. Cells 2020; 9:cells9122694. [PMID: 33334022 PMCID: PMC7765351 DOI: 10.3390/cells9122694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests a link between periodontal disease and cardiovascular diseases. Vascular calcification is the pathological precipitation of phosphate and calcium in the vasculature and is closely associated with increased cardiovascular risk and mortality. In this study, we have demonstrated that the infection with Porphyromonas gingivalis (P. gingivalis), one of the major periodontal pathogens, increases inorganic phosphate-induced vascular calcification through the phenotype transition, apoptosis, and matrix vesicle release of vascular smooth muscle cells. Moreover, P. gingivalis infection accelerated the phosphate-induced calcium deposition in cultured rat aorta ex vivo. Taken together, our findings indicate that P. gingivalis contributes to the periodontal infection-related vascular diseases associated with vascular calcification.
Collapse
|
14
|
Aarabi G, Raedel M, Kreutzburg T, Hischke S, Debus ES, Marschall U, Seedorf U, Behrendt CA. Periodontal treatment and peripheral arterial disease severity – a retrospective analysis of health insurance claims data. VASA 2020; 49:128-132. [DOI: 10.1024/0301-1526/a000846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Summary: Background: Although epidemiological data suggest an association between periodontitis (PD) and peripheral arterial disease (PAD), it is currently unclear whether treatment of PD influences the severity of PAD. Patients and methods: Whether periodontal treatment is associated with PAD disease severity was examined by analysing health insurance claims data of patients insured by the German health insurance fund, BARMER, between January 1, 2012 and December 31, 2016. The presence of PAD was determined in individuals using International Classification of Diseases (ICD) 10th revision codes for intermittent claudication (IC) or chronic limb threatening ischaemia (CLTI). Treatment of PD was assessed by adequate ambulatory coding for non-surgical and surgical treatment of PD. Multivariate logistic regression analysis was performed to evaluate the association between PAD stages and periodontal treatment, adjusted for diabetes, age and sex. Results: The study cohort included 70,944 hospitalized patients with a diagnosis of symptomatic PAD (54.99 % women, 49.05 % IC). Among these patients, 3,567 (5.03 %) had received prior treatment for PD by supra- or sub-gingival debridement. PAD patients who had received periodontal treatment showed a lower proportion of CLTI (28.76 % among treated vs. 52.12 % among non-treated). Using multivariable regression methods, exhibiting a CLTI (vs. IC) was associated with not being treated for PD (Odds Ratio 1.97, 95 %–CI 1.83–2.13) after adjustment for age, gender, and diabetes. Conclusions: In this large-scale retrospective analysis of health insurance claims data comprising hospitalized symptomatic PAD patients, treatment of PD was associated with PAD disease severity independent of age, gender and diabetes. A potential benefit of periodontal treatment in relation to PAD will have to be determined in further prospective studies.
Collapse
Affiliation(s)
- Ghazal Aarabi
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Raedel
- Prosthodontics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thea Kreutzburg
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Hischke
- Institute and Outpatients Clinic Medical Psychology, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Sebastian Debus
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Udo Seedorf
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian-Alexander Behrendt
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Role of oral pathogens in the pathogenesis of intracranial aneurysm: review of existing evidence and potential mechanisms. Neurosurg Rev 2020; 44:239-247. [PMID: 32034564 PMCID: PMC7850994 DOI: 10.1007/s10143-020-01253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Degeneration of intracranial aneurysm wall is under active research and recent studies indicate an increased risk of rupture of intracranial aneurysm among patients with periodontal diseases. In addition, oral bacterial DNA has been identified from wall samples of ruptured and unruptured aneurysms. These novel findings led us to evaluate if oral diseases could predispose to pathological changes seen on intracranial aneurysm walls eventually leading to subarachnoid hemorrhage. The aim of this review is to consider mechanisms on the relationship between periodontitis and aneurysm rupture, focusing on recent evidence.
Collapse
|
16
|
The expression of macrophage migration inhibitory factor and intercellular adhesion molecule-1 in rats with periodontitis and atherosclerosis. Arch Oral Biol 2019; 107:104513. [DOI: 10.1016/j.archoralbio.2019.104513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
|
17
|
Liccardo D, Cannavo A, Spagnuolo G, Ferrara N, Cittadini A, Rengo C, Rengo G. Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20061414. [PMID: 30897827 PMCID: PMC6470716 DOI: 10.3390/ijms20061414] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease, initiated by the presence of a bacterial biofilm, called dental plaque, which affects both the periodontal ligaments and bone surrounding teeth. In the last decades, several lines of evidence have supported the existence of a relationship between periodontitis and systemic health. For instance, as periodontitis acts within the same chronic inflammatory model seen in cardiovascular disease (CVD), or other disorders, such as diabetes, several studies have suggested the existence of a bi-directional link between periodontal health and these pathologies. For instance, people with diabetes are more susceptible to infections and are more likely to suffer from periodontitis than people without this syndrome. Analogously, it is now evident that cardiac disorders are worsened by periodontitis, both experimentally and in humans. For all these reasons, it is very plausible that preventing periodontitis has an impact on the onset or progression of CVD and diabetes. On these grounds, in this review, we have provided an updated account on the current knowledge concerning periodontal disease and the adverse effects exerted on the cardiovascular system health and diabetes, informing readers on the most recent preclinical studies and epidemiological evidence.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici- ICS Maugeri S.p.A. Telese Terme (BN), 82037 Pavia, Italy.
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, 53100 Siena, Italy.
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy.
- Istituti Clinici Scientifici- ICS Maugeri S.p.A. Telese Terme (BN), 82037 Pavia, Italy.
| |
Collapse
|
18
|
Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. Sci Rep 2018; 8:13678. [PMID: 30209331 PMCID: PMC6135769 DOI: 10.1038/s41598-018-31980-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
Evidence for a shared genetic basis of association between coronary artery disease (CAD) and periodontitis (PD) exists. To explore the joint genetic basis, we performed a GWAS meta-analysis. In the discovery stage, we used a German aggressive periodontitis sample (AgP-Ger; 680 cases vs 3,973 controls) and the CARDIoGRAMplusC4D CAD meta-analysis dataset (60,801 cases vs 123,504 controls). Two SNPs at the known CAD risk loci ADAMTS7 (rs11634042) and VAMP8 (rs1561198) passed the pre-assigned selection criteria (PAgP-Ger < 0.05; PCAD < 5 × 10−8; concordant effect direction) and were replicated in an independent GWAS meta-analysis dataset of PD (4,415 cases vs 5,935 controls). SNP rs1561198 showed significant association (PD[Replication]: P = 0.008 OR = 1.09, 95% CI = [1.02–1.16]; PD [Discovery + Replication]: P = 0.0002, OR = 1.11, 95% CI = [1.05–1.17]). For the associated haplotype block, allele specific cis-effects on VAMP8 expression were reported. Our data adds to the shared genetic basis of CAD and PD and indicate that the observed association of the two disease conditions cannot be solely explained by shared environmental risk factors. We conclude that the molecular pathway shared by CAD and PD involves VAMP8 function, which has a role in membrane vesicular trafficking, and is manipulated by pathogens to corrupt host immune defense.
Collapse
|
19
|
Aarabi G, Schnabel RB, Heydecke G, Seedorf U. Potential Impact of Oral Inflammations on Cardiac Functions and Atrial Fibrillation. Biomolecules 2018; 8:biom8030066. [PMID: 30071583 PMCID: PMC6164509 DOI: 10.3390/biom8030066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/14/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation may be a risk factor for atrial fibrillation (AF). Oral infections frequently lead to chronic inflammation, such as gingivitis, periodontitis, and endodontic lesions. In this narrative review, we consider five basic pathogenic mechanisms that involve oral infections and inflammations in the pathogenesis of AF: (1) low level bacteremia by which oral bacteria enter the blood stream at inflamed sites of the oral cavity and invade the heart; (2) Systemic inflammation induced by inflammatory mediators, which are released from the sites of oral inflammation into the blood stream, affecting cardiac remodeling; (3) autoimmunity against molecular structures expressed in the heart caused by the host immune response to specific components of oral pathogens; (4) potentially arrhythmic effects mediated by activation of the autonomous nervous system triggered by oral inflammations; and (5) arrhythmic effects resulting from specific bacterial toxins that are produced by oral pathogenic bacteria. A number of studies support the involvement of all five mechanisms, suggesting a potentially complex contribution of oral inflammations to the pathogenesis of AF.
Collapse
Affiliation(s)
- Ghazal Aarabi
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany.
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Udo Seedorf
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
20
|
Abstract
Modern day endodontics is undergoing a massive change with the introduction of new molecular based techniques for microbial identification. This review focuses on the microbiota in untreated and root-filled canals. It will also describe briefly the recent developments in microbial identification and the mechanisms by which certain species of microbes are able to invade and establish themselves in the root canal.
Collapse
|
21
|
Xu W, Pan Y, Xu Q, Wu Y, Pan J, Hou J, Lin L, Tang X, Li C, Liu J, Zhang D. Porphyromonas gingivalis ATCC 33277 promotes intercellular adhesion molecule-1 expression in endothelial cells and monocyte-endothelial cell adhesion through macrophage migration inhibitory factor. BMC Microbiol 2018; 18:16. [PMID: 29482504 PMCID: PMC5828317 DOI: 10.1186/s12866-018-1156-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Porphyromonas gingivalis (P. gingivalis), one of the main pathogenic bacteria involved in periodontitis, induces the expression of intercellular adhesion molecule - 1 (ICAM-1) and monocyte-endothelial cell adhesion. This effect plays a pivotal role in atherosclerosis development. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine and critically affects atherosclerosis pathogenesis. In this study, we tested the involvement of MIF in the P. gingivalis ATCC 33277-enhanced adhesive properties of endothelial cells. RESULTS Endothelial MIF expression was enhanced by P. gingivalis ATCC 33277 infection. The MIF inhibitor ISO-1 inhibited ICAM-1 production in endothelial cells, and monocyte-endothelial cell adhesion was induced by P. gingivalis ATCC 33277 infection. However, the addition of exogenous human recombinant MIF to P. gingivalis ATCC 33277-infected endothelial cells facilitated monocyte recruitment by promoting ICAM-1 expression in endothelial cells. CONCLUSIONS These experiments revealed that MIF in endothelial cells participates in the pro-atherosclerotic lesion formation caused by P. gingivalis ATCC 33277 infection. Our novel findings identify a more detailed pathological role of P. gingivalis ATCC 33277 in atherosclerosis.
Collapse
Affiliation(s)
- Wanyue Xu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Qiufang Xu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Yun Wu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Jiayu Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Jingya Hou
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Li Lin
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Xiaolin Tang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Chen Li
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Jingbo Liu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China
| | - Dongmei Zhang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North St.117, Shenyang, Liaoning, 110002, China.
| |
Collapse
|
22
|
Chen TC, Lin CT, Chien SJ, Chang SF, Chen CN. Regulation of calcification in human aortic smooth muscle cells infected with high-glucose-treated Porphyromonas gingivalis. J Cell Physiol 2018; 233:4759-4769. [PMID: 29150938 DOI: 10.1002/jcp.26268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Porphyromonas (P.) gingivalis infection leading to the periodontitis has been associated with the development of systemic diseases, including cardiovascular diseases and diabetes. However, the effect of a high concentration of glucose (HG) on the invasion efficiency of P. gingivalis and the consequent modulation of pathogenesis in vascular cells, especially in the vascular smooth muscle cells (VSMCs), remains unclear. Hence, the aim of this study was to investigate whether treating P. gingivalis with HG could change its invasion capability and result in VSMC calcification and the underlying mechanism. Human aortic SMCs (HASMCs) and P. gingivalis strain CCUG25226 were used in this study. We found that HGPg infection of HASMCs could initiate the HASMC calcification by stimulating the autocrine regulation of bone morphogenetic protein (BMP) 4 in HASMCs. The upregulation of BMP4 expression in HASMCs was mediated by toll-like receptor 4 and ERK1/2-p38 signaling after P. gingivalis infection. Moreover, the autocrine action of BMP4 in HGPg infection-initiated HASMC calcification upregulated BMP4-specific downstream smad1/5/8-runx2 signaling to increase the expressions of bone-related matrix proteins, that is, osteopontin, osteocalcin, and alkaline phosphatase. This study elucidates the detailed mechanism of HGPg infection-initiated calcification of HASMCs and indicates a possible therapeutic role of BMP4 in P. gingivalis infection-associated vascular calcification.
Collapse
Affiliation(s)
- Te-Chuan Chen
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin, Taiwan.,Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Shao-Ju Chien
- Disivion of Pediatric Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
23
|
Pillai RS, Iyer K, Spin-Neto R, Kothari SF, Nielsen JF, Kothari M. Oral Health and Brain Injury: Causal or Casual Relation? Cerebrovasc Dis Extra 2018; 8:1-15. [PMID: 29402871 PMCID: PMC5836263 DOI: 10.1159/000484989] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022] Open
Abstract
Background To systematically review the current literature investigating the association between oral health and acquired brain injury. Methods A structured search strategy was applied to PubMed, Embase, Web of Science, and CENTRAL electronic databases until March 2017 by 2 independent reviewers. The preferred reporting items for systematic review and meta-analysis guidelines were used for systematic review. Results Even though the objective was to assess the association between oral health and acquired brain injury, eligible studies focused solely on different forms of stroke and stroke subtypes. Stroke prediction was associated with various factors such as number of teeth, periodontal conditions (even after controlling for confounding factors), clinical attachment loss, antibody levels to Aggregatibacter actinomycetemcomitans and Prevotella intermedia. The literature showed no consensus on the possible association between gingivitis and stroke. Patients with stroke generally had poorer oral hygiene practices and oral health. Dental prophylaxis and professional intervention reduced the incidence of stroke. Conclusions Overall, oral health and stroke were related. Periodontitis and tooth loss were independently associated with stroke. However, prevention and timely intervention may reduce the risk of stroke. Stroke was the main cerebral lesion studied in the literature, with almost no publications on other brain lesions.
Collapse
Affiliation(s)
- Rajath Sasidharan Pillai
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Kiran Iyer
- Department of Public Health Dentistry, Oxford Dental College and Hospital, Bengaluru, India
| | - Rubens Spin-Neto
- Section of Oral Radiology, Institute of Odontology and Oral Health, Aarhus University, Aarhus, Denmark
| | - Simple Futarmal Kothari
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Jørgen Feldbæk Nielsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Hammel, Denmark
| | - Mohit Kothari
- Hammel Neurorehabilitation Centre and University Research Clinic, Aarhus University, Hammel, Denmark
| |
Collapse
|
24
|
Chukkapalli SS, Easwaran M, Rivera-Kweh MF, Velsko IM, Ambadapadi S, Dai J, Larjava H, Lucas AR, Kesavalu L. Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice. Pathog Dis 2017; 75:ftx003. [PMID: 28104616 DOI: 10.1093/femspd/ftx003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease (PD) and atherosclerotic vascular disease (ASVD) are both chronic inflammatory diseases with a polymicrobial etiology and have been epidemiologically associated. The purpose is to examine whether periodontal bacteria that infect the periodontium can also infect vascular tissues and enhance pre-existing early aortic atherosclerotic lesions in LDLRnull mice. Mice were orally infected with intermediate bacterial colonizer Fusobacterium nucleatum for the first 12 weeks followed by late bacterial colonizers (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) for the remaining 12 weeks mimicking the human oral microbiota ecological colonization. Genomic DNA from all four bacterial was detected in gingival plaque by PCR, consistently demonstrating infection of mouse gingival surfaces. Infected mice had significant levels of IgG and IgM antibodies, alveolar bone resorption, and showed apical migration of junctional epithelium revealing the induction of PD. These results support the ability of oral bacteria to cause PD in mice. Detection of bacterial genomic DNA in systemic organs indicates hematogenous dissemination from the gingival pockets. Bacterial infection did not alter serum lipid fractions or serum amyloid A levels and did not induce aortic atherosclerotic plaque. This is the first study examining the causal role of periodontal bacteria in induction of ASVD in LDLRnull mice.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Meena Easwaran
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Mercedes F Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Sriram Ambadapadi
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Jiayin Dai
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Hannu Larjava
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Alexandra R Lucas
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|
25
|
Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer 2017; 118:428-434. [PMID: 29149107 PMCID: PMC5808028 DOI: 10.1038/bjc.2017.409] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Periodontal pathogens have been linked to oral and gastrointestinal (orodigestive) carcinogenesis. However, the exact mechanisms remain unknown. Treponema denticola (Td) is associated with severe periodontitis, a chronic inflammatory disease leading to tooth loss. The anaerobic spirochete Td is an invasive bacteria due to its major virulence factor chymotrypsin-like proteinase. Here we aimed to investigate the presence of Td chymotrypsin-like proteinase (Td-CTLP) in major orodigestive tumours and to elucidate potential mechanisms for Td to contribute to carcinogenesis. Methods: The presence of Td-CTLP within orodigestive tumour tissues was examined using immunohistochemistry. Oral, tonsillar, and oesophageal squamous cell carcinomas, alongside gastric, pancreatic, and colon adenocarcinomas were stained with a Td-CTLP-specific antibody. Gingival tissue from periodontitis patients served as positive controls. SDS–PAGE and immunoblot were used to analyse the immumodulatory activity of Td-CTLP in vitro. Results: Td-CTLP was present in majority of orodigestive tumour samples. Td-CTLP was found to convert pro MMP-8 and -9 into their active forms. In addition, Td-CTLP was able to degrade the proteinase inhibitors TIMP-1, TIMP-2, and α-1-antichymotrypsin, as well as complement C1q. Conclusions: Because of its presence within tumours and regulatory activity on proteins critical for the regulation of tumour microenvironment and inflammation, the Td-CTLP may contribute to orodigestive carcinogenesis.
Collapse
|
26
|
Rojas P, Petrich A, Schulze J, Wiessner A, Loddenkemper C, Epple HJ, Sterlacci W, Vieth M, Kikhney J, Moter A. Distribution and phylogeny of Brachyspira spp. in human intestinal spirochetosis revealed by FISH and 16S rRNA-gene analysis. Anaerobe 2017; 47:25-32. [PMID: 28300642 DOI: 10.1016/j.anaerobe.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
During six years as German National Consultant Laboratory for Spirochetes we investigated 149 intestinal biopsies from 91 patients, which were histopathologically diagnosed with human intestinal spirochetosis (HIS), using fluorescence in situ hybridization (FISH) combined with 16S rRNA gene PCR and sequencing. Aim of this study was to complement histopathological findings with FISH and PCR for definite diagnosis and species identification of the causative pathogens. HIS is characterized by colonization of the colonic mucosa of the human distal intestinal tract by Brachyspira spp. Microbiological diagnosis of HIS is not performed, because of the fastidious nature and slow growth of Brachyspira spp. in culture. In clinical practice, diagnosis of HIS relies solely on histopathology without differentiation of the spirochetes. We used a previously described FISH probe to detect and identify Brachyspira spp. in histological gut biopsies. FISH allowed rapid visualization and identification of Brachyspira spp. in 77 patients. In most cases, the bright FISH signal already allowed rapid localization of Brachyspira spp. at 400× magnification. By sequencing, 53 cases could be assigned to the B. aalborgi lineage including "B. ibaraki" and "B. hominis", and 23 cases to B. pilosicoli. One case showed mixed colonization. The cases reported here reaffirm all major HIS Brachyspira spp. clusters already described. However, the phylogenetic diversity seems to be even greater than previously reported. In 14 cases, we could not confirm HIS by either FISH or PCR, but found colonization of the epithelium by rods and cocci, indicating misdiagnosis by histopathology. FISH in combination with molecular identification by 16S rRNA gene sequencing has proved to be a valuable addition to histopathology. It provides definite diagnosis of HIS and allows insights into phylogeny and distribution of Brachyspira spp. HIS should be considered as a differential diagnosis in diarrhea of unknown origin, particularly in patients from risk groups (e.g. patients with colonic adenomas, inflammatory polyps, inflammatory bowel disease or HIV infection and in men who have sex with men).
Collapse
Affiliation(s)
- Pablo Rojas
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Petrich
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Schulze
- Biofilmcenter, Deutsches Herzzentrum Berlin, Berlin, Germany
| | | | | | - Hans-Jörg Epple
- Medical Clinic I, Gastroenterology, Rheumatology, Infectiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Judith Kikhney
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany; Biofilmcenter, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Deutsches Herzzentrum Berlin, Berlin, Germany; Former German Consultant Laboratory for Treponema Identification, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Singhrao SK, Harding A, Chukkapalli S, Olsen I, Kesavalu L, Crean S. Apolipoprotein E Related Co-Morbidities and Alzheimer's Disease. J Alzheimers Dis 2016; 51:935-48. [PMID: 26923007 DOI: 10.3233/jad150690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary goal of advancement in clinical services is to provide a health care system that enhances an individual's quality of life. Incidence of diabetes mellitus, cardiovascular disease, and associated dementia coupled with the advancing age of the population, have led to an increase in the worldwide challenge to the healthcare system. In order to overcome these challenges, prior knowledge of common, reliable risk factors and their effectors is essential. Oral health constitutes one such relatively unexplored but indispensable risk factor for aforementioned co-morbidities, in the form of poor oral hygiene and tooth loss during aging. Behavioral traits such as low education, smoking, poor diet, neglect of oral health, lack of exercise, and hypertension are few of the risk factors that are shared commonly among these conditions. In addition, common genetic susceptibility traits such as the apolipoprotein E gene, together with an individual's lifestyle can also influence the development of co-morbidities such as periodontitis, atherosclerosis/stroke, diabetes, and Alzheimer's disease. This review specifically addresses the susceptibility of apolipoprotein E gene allele 4 as the plausible commonality for the etiology of co-morbidities that eventually result from periodontal diseases and ultimately progress to dementia.
Collapse
Affiliation(s)
- Sim K Singhrao
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Alice Harding
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - StJohn Crean
- Oral & Dental Sciences Research Group, College of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
28
|
Fluorescence in situ hybridization for the identification of Treponema pallidum in tissue sections. Int J Med Microbiol 2015; 305:709-18. [PMID: 26365167 DOI: 10.1016/j.ijmm.2015.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Syphilis is often called the great imitator because of its frequent atypical clinical manifestations that make the disease difficult to recognize. Because Treponema pallidum subsp. pallidum, the infectious agent of syphilis, is yet uncultivated in vitro, diagnosis is usually made using serology; however, in cases where serology is inconclusive or in patients with immunosuppression where these tests may be difficult to interpret, the availability of a molecular tool for direct diagnosis may be of pivotal importance. Here we present a fluorescence in situ hybridization (FISH) assay that simultaneously identifies and analyzes spatial distribution of T. pallidum in histological tissue sections. For this assay the species-specific FISH probe TPALL targeting the 16S rRNA of T. pallidum was designed in silico and evaluated using T. pallidum infected rabbit testicular tissue and a panel of non-syphilis spirochetes as positive and negative controls, respectively, before application to samples from four syphilis-patients. In a HIV positive patient, FISH showed the presence of T. pallidum in inguinal lymph node tissue. In a patient not suspected to suffer from syphilis but underwent surgery for phimosis, numerous T. pallidum cells were found in preputial tissue. In two cases with oral involvement, FISH was able to differentiate T. pallidum from oral treponemes and showed infection of the oral mucosa and tonsils, respectively. The TPALL FISH probe is now readily available for in situ identification of T. pallidum in selected clinical samples as well as T. pallidum research applications and animal models.
Collapse
|
29
|
Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells. Infect Immun 2015; 83:4256-65. [PMID: 26283334 DOI: 10.1128/iai.00498-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.
Collapse
|
30
|
The Two-Way Association of Periodontal Infection with Systemic Disorders: An Overview. Mediators Inflamm 2015; 2015:793898. [PMID: 26339142 PMCID: PMC4539125 DOI: 10.1155/2015/793898] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022] Open
Abstract
Oral cavity that harbors diverse bacterial populations could also act as a site of origin for spread of pathogenic microorganisms to different body sites, particularly in immunocompromised hosts, patients, the elderly, or the underprivileged. A number of recent publications have advocated that patients with periodontal diseases are more susceptible to metabolic endotoxemia, inflammation, obesity, type 2 diabetes, and other related systemic complications, concluding that periodontal diseases could be a potential contributing risk factor for a wide array of clinically important systemic diseases. However, despite a significant increase in the prevalence of periodontal infections and systemic diseases in the past few decades, the fundamental biological mechanisms of connection between these ailments are still not fully explicated. Consequently, the mechanisms by which this bidirectional damage occurs are being explored with a concentric vision to develop strategies that could prevent or control the complications of these ailments. This paper attempts to summarize and hypothesize the diverse mechanisms that hint to a certain connection between the two prevalent chronic situations.
Collapse
|
31
|
Aarabi G, Eberhard J, Reissmann DR, Heydecke G, Seedorf U. Interaction between periodontal disease and atherosclerotic vascular disease--Fact or fiction? Atherosclerosis 2015; 241:555-60. [PMID: 26100678 DOI: 10.1016/j.atherosclerosis.2015.04.819] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/22/2015] [Accepted: 04/30/2015] [Indexed: 12/23/2022]
Abstract
C-reactive protein (CRP) level is associated with the 10-year risk of an atherosclerotic vascular disease (ASVD), suggesting presence of systemic inflammation probably long before ASVD is present. Where, however, does this systemic inflammation come from? One active area of research has been the study of dental infection and various forms of periodontal disease (PD), both of which are highly prevalent in populations at risk for ASVD. Recent data show that ASVD and PD interact with each other via systemic release of specific pro- and anti-inflammatory cytokines, small signal molecules and enzymes which modulate initiation and progression of the chronic inflammatory reaction involved in both diseases. In addition, periodontal pathogens were identified within atherosclerotic lesions and thrombi isolated from myocardial infarction patients. LDL cholesterol, a strong risk factor for ASVD, is also associated with PD; and statins, used to treat ASVD, are also active to prevent or reduce PD. Finally, there is growing evidence for common genetic susceptibility factors involved in both diseases. These findings support commonalities with respect to the pathogenic mechanisms involved in both inflammatory diseases. Conversely, a causative relationship cannot yet be concluded in the absence of data from large longitudinal cohort and randomized controlled intervention trials.
Collapse
Affiliation(s)
- Ghazal Aarabi
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jörg Eberhard
- Periimplant and Oral Infections, Department of Prosthetic Dentistry and Biomaterial Sciences, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Daniel R Reissmann
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Udo Seedorf
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
32
|
Kamer AR, Pirraglia E, Tsui W, Rusinek H, Vallabhajosula S, Mosconi L, Yi L, McHugh P, Craig RG, Svetcov S, Linker R, Shi C, Glodzik L, Williams S, Corby P, Saxena D, de Leon MJ. Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging 2015; 36:627-33. [PMID: 25491073 PMCID: PMC4399973 DOI: 10.1016/j.neurobiolaging.2014.10.038] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
Abstract
The accumulation of amyloid-β (Aβ) plaques is a central feature of Alzheimer's disease (AD). First reported in animal models, it remains uncertain if peripheral inflammatory and/or infectious conditions in humans can promote Aβ brain accumulation. Periodontal disease, a common chronic infection, has been previously reported to be associated with AD. Thirty-eight cognitively normal, healthy, and community-residing elderly (mean age, 61 and 68% female) were examined in an Alzheimer's Disease Research Center and a University-Based Dental School. Linear regression models (adjusted for age, apolipoprotein E, and smoking) were used to test the hypothesis that periodontal disease assessed by clinical attachment loss was associated with brain Aβ load using (11)C-Pittsburgh compound B (PIB) positron emission tomography imaging. After adjusting for confounders, clinical attachment loss (≥3 mm), representing a history of periodontal inflammatory/infectious burden, was associated with increased PIB uptake in Aβ vulnerable brain regions (p = 0.002). We show for the first time in humans an association between periodontal disease and brain Aβ load. These data are consistent with the previous animal studies showing that peripheral inflammation/infections are sufficient to produce brain Aβ accumulations.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA; School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA.
| | - Elizabeth Pirraglia
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Wai Tsui
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Henry Rusinek
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA; School of Medicine, Department of Radiology, New York, NY, USA
| | | | - Lisa Mosconi
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Li Yi
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Pauline McHugh
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Ronald G Craig
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA; Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, NY, USA
| | - Spencer Svetcov
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - Ross Linker
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - Chen Shi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - Lidia Glodzik
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Schantel Williams
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| | - Patricia Corby
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA; College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, NY, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, NY, USA
| | - Mony J de Leon
- School of Medicine, Department of Psychiatry, Center for Brain Health, New York, NY, USA
| |
Collapse
|
33
|
Amar S, Engelke M. Periodontal innate immune mechanisms relevant to atherosclerosis. Mol Oral Microbiol 2014; 30:171-85. [PMID: 25388989 DOI: 10.1111/omi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a common cardiovascular disease in the USA where it is a leading cause of illness and death. Atherosclerosis is the most common cause for heart attack and stroke. Most commonly, people develop atherosclerosis as a result of diabetes, genetic risk factors, high blood pressure, a high-fat diet, obesity, high blood cholesterol levels, and smoking. However, a sizable number of patients suffering from atherosclerosis do not harbor the classical risk factors. Ongoing infections have been suggested to play a role in this process. Periodontal disease is perhaps the most common chronic infection in adults with a wide range of clinical variability and severity. Research in the past decade has shed substantial light on both the initiating infectious agents and host immunological responses in periodontal disease. Up to 46% of the general population harbors the microorganism(s) associated with periodontal disease, although many are able to limit the progression of periodontal disease or even clear the organism(s) if infected. In the last decade, several epidemiological studies have found an association between periodontal infection and atherosclerosis. This review focuses on exploring the molecular consequences of infection by pathogens that exacerbate atherosclerosis, with the focus on infections by the periodontal bacterium Porphyromonas gingivalis as a running example.
Collapse
Affiliation(s)
- S Amar
- Center for Anti-inflammatory Therapeutics, School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
34
|
Maixner F, Thomma A, Cipollini G, Widder S, Rattei T, Zink A. Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman. PLoS One 2014; 9:e99994. [PMID: 24941044 PMCID: PMC4062476 DOI: 10.1371/journal.pone.0099994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/20/2014] [Indexed: 12/29/2022] Open
Abstract
Ancient hominoid genome studies can be regarded by definition as metagenomic analyses since they represent a mixture of both hominoid and microbial sequences in an environment. Here, we report the molecular detection of the oral spirochete Treponema denticola in ancient human tissue biopsies of the Iceman, a 5,300-year-old Copper Age natural ice mummy. Initially, the metagenomic data of the Iceman’s genomic survey was screened for bacterial ribosomal RNA (rRNA) specific reads. Through ranking the reads by abundance a relatively high number of rRNA reads most similar to T. denticola was detected. Mapping of the metagenome sequences against the T. denticola genome revealed additional reads most similar to this opportunistic pathogen. The DNA damage pattern of specifically mapped reads suggests an ancient origin of these sequences. The haematogenous spread of bacteria of the oral microbiome often reported in the recent literature could already explain the presence of metagenomic reads specific for T. denticola in the Iceman’s bone biopsy. We extended, however, our survey to an Iceman gingival tissue sample and a mouth swab sample and could thereby detect T. denticola and Porphyrimonas gingivalis, another important member of the human commensal oral microflora. Taken together, this study clearly underlines the opportunity to detect disease-associated microorganisms when applying metagenomics- enabled approaches on datasets of ancient human remains.
Collapse
Affiliation(s)
- Frank Maixner
- Institute for Mummies and the Iceman, EURAC Research, Bolzano, Italy
| | - Anton Thomma
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Stefanie Widder
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Albert Zink
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Velsko IM, Chukkapalli SS, Rivera MF, Lee JY, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One 2014; 9:e97811. [PMID: 24836175 PMCID: PMC4024021 DOI: 10.1371/journal.pone.0097811] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.
Collapse
Affiliation(s)
- Irina M. Velsko
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes F. Rivera
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Ju-Youn Lee
- Department of Periodontology, School of Dentistry Pusan National University, Yangsan City, Republic of Korea
| | - Hao Chen
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Donghang Zheng
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Pandu R. Gangula
- Department of Physiology, Oral Biology and Research, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
| | - Alexandra R. Lucas
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Armingohar Z, Jørgensen JJ, Kristoffersen AK, Abesha-Belay E, Olsen I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol 2014; 6:23408. [PMID: 25006361 PMCID: PMC4024159 DOI: 10.3402/jom.v6.23408] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/12/2023] Open
Abstract
Background Several studies have reported an association between chronic periodontitis (CP) and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB), in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries), with and without CP. Methods DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5) was polymerase chain reaction (PCR)-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database). Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM) for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both from the gut and the oral cavity, rather than exclusively periodontopathogens, may be involved as additional risk factors in the pathogenesis of VD.
Collapse
Affiliation(s)
- Zahra Armingohar
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jørgen J Jørgensen
- Department of Vascular Surgery, Oslo University Hospital, Aker and University of Oslo, Oslo, Norway
| | | | - Emnet Abesha-Belay
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(-/-) mice causally links periodontal disease and atherosclerosis. Infect Immun 2014; 82:1959-67. [PMID: 24566627 DOI: 10.1128/iai.01511-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treponema denticola is a predominantly subgingival oral spirochete closely associated with periodontal disease and has been detected in atherosclerosis. This study was designed to evaluate causative links between periodontal disease induced by chronic oral T. denticola infection and atherosclerosis in hyperlipidemic ApoE(-/-) mice. ApoE(-/-) mice (n = 24) were orally infected with T. denticola ATCC 35404 and were euthanized after 12 and 24 weeks. T. denticola genomic DNA was detected in oral plaque samples, indicating colonization of the oral cavity. Infection elicited significantly (P = 0.0172) higher IgG antibody levels and enhanced intrabony defects than sham infection. T. denticola-infected mice had higher levels of horizontal alveolar bone resorption than sham-infected mice and an associated significant increase in aortic plaque area (P ≤ 0.05). Increased atherosclerotic plaque correlated with reduced serum nitric oxide (NO) levels and increased serum-oxidized low-density lipoprotein (LDL) levels compared to those of sham-infected mice. T. denticola infection altered the expression of genes known to be involved in atherosclerotic development, including the leukocyte/endothelial cell adhesion gene (Thbs4), the connective tissue growth factor gene (Ctgf), and the selectin-E gene (Sele). Fluorescent in situ hybridization (FISH) revealed T. denticola clusters in both gingival and aortic tissue of infected mice. This is the first study examining the potential causative role of chronic T. denticola periodontal infection and vascular atherosclerosis in vivo in hyperlipidemic ApoE(-/-) mice. T. denticola is closely associated with periodontal disease and the rapid progression of atheroma in ApoE(-/-) mice. These studies confirm a causal link for active oral T. denticola infection with both atheroma and periodontal disease.
Collapse
|
38
|
Kizildag A, Arabaci T, Dogan GE. Relationship between periodontitis and cardiovascular diseases: A literature review. World J Stomatol 2014; 3:1-9. [DOI: 10.5321/wjs.v3.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/14/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Periodontitis and cardiovascular disease have a complex etiology and genetics and share some common risk factors (i.e., smoking, age, diabetes, etc.). In recent years, the relationship between periodontal disease and cardiovascular disease has been investigated extensively. This research mostly focused on the fact that periodontitis is an independent risk factor for cardiovascular disease. Our aim in this article is to investigate the etiological relationship between periodontal disease and cardiovascular disease and the mechanisms involved in this association. According to the current literature, it is concluded that there is a strong relationship between these chronic disorders.
Collapse
|
39
|
Pivotal role of NOD2 in inflammatory processes affecting atherosclerosis and periodontal bone loss. Proc Natl Acad Sci U S A 2013; 110:E5059-68. [PMID: 24324141 DOI: 10.1073/pnas.1320862110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to elucidate the role of nucleotide binding oligomerization domain-containing protein 2 (NOD2) signaling in atherosclerosis and periodontal bone loss using an Apolipoprotein E(-/-) (ApoE(-/-)) mouse model based on the proposed role of NOD2 in inflammation. NOD2(-/-)ApoE(-/-) and ApoE(-/-) mice fed a standard chow diet were given an oral gavage of Porphyromonas gingivalis for 15 wk. NOD2(-/-)ApoE(-/-) mice exhibited significant increases in inflammatory cytokines, alveolar bone loss, cholesterol, and atherosclerotic lesions in the aorta and the heart compared with ApoE(-/-) mice. In contrast, ApoE(-/-) mice injected i.p. with Muramyl DiPeptide (MDP) to stimulate NOD2 and given an oral gavage of P. gingivalis displayed a reduction of serum inflammatory cytokines, alveolar bone loss, cholesterol, and atherosclerotic lesions in the aorta and aortic sinus compared with ApoE(-/-) mice orally challenged but injected with saline. A reduction in body weight gain was observed in ApoE(-/-) mice fed a high-fat diet (HFD) and injected with MDP compared with ApoE(-/-) mice fed a high-fat diet but injected with saline. MDP treatment of bone marrow-derived macrophages incubated with P. gingivalis increased mRNA expressions of NOD2, Toll-like receptor 2, myeloid differentiation primary response gene 88, and receptor-interacting protein-2 but reduced the expressions of inhibitor of NF-κB kinase-β, NF-κB, c-Jun N-terminal kinase 3, and TNF-α protein levels compared with saline control, highlighting pathways involved in MDP antiinflammatory effects. MDP activation of NOD2 should be considered in the treatment of inflammatory processes affecting atherosclerosis, periodontal bone loss ,and possibly, diet-induced weight gain.
Collapse
|
40
|
Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, Bengtsson T, Sirsjö A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics 2013; 14:770. [PMID: 24209892 PMCID: PMC3827841 DOI: 10.1186/1471-2164-14-770] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Porphyromonas gingivalis is a gram-negative bacterium that causes destructive chronic periodontitis. In addition, this bacterium is also involved in the development of cardiovascular disease. The aim of this study was to investigate the effects of P. gingivalis infection on gene and protein expression in human aortic smooth muscle cells (AoSMCs) and its relation to cellular function. RESULTS AoSMCs were exposed to viable P. gingivalis for 24 h, whereafter confocal fluorescence microscopy was used to study P. gingivalis invasion of AoSMCs. AoSMCs proliferation was evaluated by neutral red assay. Human genome microarray, western blot and ELISA were used to investigate how P. gingivalis changes the gene and protein expression of AoSMCs. We found that viable P. gingivalis invades AoSMCs, disrupts stress fiber structures and significantly increases cell proliferation. Microarray results showed that, a total of 982 genes were identified as differentially expressed with the threshold log2 fold change > |1| (adjust p-value <0.05). Using bioinformatic data mining, we demonstrated that up-regulated genes are enriched in gene ontology function of positive control of cell proliferation and down-regulated genes are enriched in the function of negative control of cell proliferation. The results from pathway analysis revealed that all the genes belonging to these two categories induced by P. gingivalis were enriched in 25 pathways, including genes of Notch and TGF-beta pathways. CONCLUSIONS This study demonstrates that P. gingivalis is able to invade AoSMCs and stimulate their proliferation. The activation of TGF-beta and Notch signaling pathways may be involved in the bacteria-mediated proliferation of AoSMCs. These findings further support the association between periodontitis and cardiovascular diseases.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Can Apical Periodontitis Modify Systemic Levels of Inflammatory Markers? A Systematic Review and Meta-analysis. J Endod 2013; 39:1205-17. [DOI: 10.1016/j.joen.2013.06.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/29/2013] [Accepted: 06/29/2013] [Indexed: 01/01/2023]
|
42
|
LIU BIN, WANG JIA, CHENG LAN, LIANG JINGPING. Role of JNK and NF-κB pathways in Porphyromonas gingivalis LPS-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. Mol Med Rep 2013; 8:1594-600. [DOI: 10.3892/mmr.2013.1685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
|
43
|
Abstract
Established risk factors for pancreatic cancer, including tobacco smoking, chronic pancreatitis, obesity and type 2 diabetes, collectively account for less than half of all pancreatic cancer cases. Inflammation plays a key role in pancreatic carcinogenesis, but it is unclear what causes local inflammation, other than pancreatitis. Epidemiological data suggest that Helicobacter pylori may be a risk factor for pancreatic cancer, and more recently, data suggest that periodontal disease, and Porphyromonas gingivalis, a pathogen for periodontal disease, may also play a role in pancreatic carcinogenesis. Individuals with periodontal disease have elevated markers of systemic inflammation, and oral bacteria can disseminate into the blood, stomach, heart and even reach the brain. These infections may contribute to the progression of pancreatic cancer by acting jointly with other pancreatic cancer risk factors that impact the inflammation and immune response, such as smoking and obesity, and the ABO genetic variant, recently linked to pancreatic cancer through genome-wide association studies. The complex interplay between bacteria, host immune response and environmental factors has been examined closely in relation to gastric cancer, but new research suggests bacteria may be playing a role in other gastrointestinal cancers. This review will summarize the literature on epidemiological studies examining infections that have been linked to pancreatic cancer and propose mechanistic pathways that may tie infections to pancreatic cancer.
Collapse
Affiliation(s)
- Dominique S Michaud
- Department of Epidemiology, School of Public Health, Brown University, Box G-S121-2, Providence, RI 02912, USA and
| |
Collapse
|
44
|
Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N. Atherosclerosis and infection: is the jury still not in? Future Microbiol 2013; 7:1217-30. [PMID: 23030426 DOI: 10.2217/fmb.12.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory process accounting for increased cardiovascular and cerebrovascular morbidity and mortality. A wealth of recent data has implicated several infectious agents, mainly Chlamydophila pneumoniae, Helicobacter pylori, CMV and periodontal pathogens, in atherosclerosis. Thus, we sought to comprehensively review the available data on the topic, exploring in particular the pathogenetic mechanisms, and discuss anticipated future directions.
Collapse
|
45
|
Ghizoni JS, Taveira LADA, Garlet GP, Ghizoni MF, Pereira JR, Dionísio TJ, Brozoski DT, Santos CF, Sant'Ana ACP. Increased levels of Porphyromonas gingivalis are associated with ischemic and hemorrhagic cerebrovascular disease in humans: an in vivo study. J Appl Oral Sci 2012; 20:104-12. [PMID: 22437687 PMCID: PMC3928781 DOI: 10.1590/s1678-77572012000100019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 11/24/2022] Open
Abstract
Objective: This study investigated the role of periodontal disease in the development of
stroke or cerebral infarction in patients by evaluating the clinical periodontal
conditions and the subgingival levels of periodontopathogens. Material and Methods: Twenty patients with ischemic (I-CVA) or hemorrhagic (H-CVA) cerebrovascular
episodes (test group) and 60 systemically healthy patients (control group) were
evaluated for: probing depth, clinical attachment level, bleeding on probing and
plaque index. Porphyromonas gingivalis and
Aggregatibacter actinomycetemcomitans were both identified and
quantified in subgingival plaque samples by conventional and real-time PCR,
respectively. Results: The test group showed a significant increase in each of the following parameters:
pocket depth, clinical attachment loss, bleeding on probing, plaque index and
number of missing teeth when compared to control values (p<0.05, unpaired
t-test). Likewise, the test group had increased numbers of sites that were
contaminated with P. gingivalis (60%x10%; p<0.001; chi-squared
test) and displayed greater prevalence of periodontal disease, with an odds ratio
of 48.06 (95% CI: 5.96-387.72; p<0.001). Notably, a positive correlation
between probing depth and the levels of P. gingivalis in ischemic
stroke was found (r=0.60; p=0.03; Spearman's rank correlation coefficient test).
A. actinomycetemcomitans DNA was not detected in any of the
groups by conventional or real-time PCR. Conclusions: Stroke patients had deeper pockets, more severe attachment loss, increased
bleeding on probing, increased plaque indexes, and in their pockets harbored
increased levels of P. gingivalis. These findings suggest that
periodontal disease is a risk factor for the development of cerebral hemorrhage or
infarction. Early treatment of periodontitis may counteract the development of
cerebrovascular episodes.
Collapse
Affiliation(s)
- Janaina Salomon Ghizoni
- Discipline of Oral Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu B, Cheng L, Liu D, Wang J, Zhang X, Shu R, Liang J. Role of p38 Mitogen-Activated Protein Kinase Pathway inPorphyromonas gingivalisLipopolysaccharide–Induced VCAM-1 Expression in Human Aortic Endothelial Cells. J Periodontol 2012; 83:955-62. [DOI: 10.1902/jop.2011.110406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Soto-Barreras U, Olvera-Rubio JO, Loyola-Rodriguez JP, Reyes-Macias JF, Martinez-Martinez RE, Patiño-Marin N, Martinez-Castañon GA, Aradillas-Garcia C, Little JW. Peripheral arterial disease associated with caries and periodontal disease. J Periodontol 2012; 84:486-94. [PMID: 22680302 DOI: 10.1902/jop.2012.120051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Peripheral arterial disease (PAD) is an important cardiovascular disorder of the peripheral arteries. Chronic infections, such as periodontitis, may play an important role in the etiology and pathophysiology of PAD and other cardiovascular conditions. Recently, Streptococcus mutans has been found with high frequency in atheromatous plaques. The aim of this study is to evaluate the possible clinical and microbiologic association between PAD and periodontitis and dental caries. METHODS Thirty patients with PAD and 30 control individuals were selected. PAD and its severity were established by the use of the ankle-brachial index (ABI). Clinical attachment loss (AL); probing depth; decayed, missing, and filled teeth (DMFT) index; and C-reactive protein (CRP) levels were evaluated. The presence of bacterial DNA from Streptococcus mutans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Treponema denticola, and Aggregatibacter actinomycetemcomitans was identified by polymerase chain reaction in subgingival biofilm and serum. RESULTS Patients with ≥30% AL ≥ 4 mm had six-fold increased risk of having PAD (odds ratio = 8.18; 95% confidence interval = 1.21 to 35.23; P = 0.031). There was statistical difference in the CRP (P = 0.0413) and DMFT index (P = 0.0002), with elevated number of missing teeth (P = 0.0459) in the PAD group compared with the control group. There were no significant differences in the frequency of bacteria in serum and subgingival plaque. CONCLUSION There was a positive relationship between periodontitis based on AL and PAD determined by the ABI (odds ratio = 8.18).
Collapse
Affiliation(s)
- Uriel Soto-Barreras
- Oral Medicine Department, The Master's Degree in Dental Science Program with specialization in Advanced Education General Dentistry, San Luis Potosí University, San Luis Potosí, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Association of Endodontic Infection with Detection of an Initial Lesion to the Cardiovascular System. J Endod 2011; 37:1624-9. [DOI: 10.1016/j.joen.2011.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/04/2011] [Accepted: 09/19/2011] [Indexed: 12/19/2022]
|
49
|
Yukitake H, Naito M, Sato K, Shoji M, Ohara N, Yoshimura M, Sakai E, Nakayama K. Effects of non-iron metalloporphyrins on growth and gene expression of Porphyromonas gingivalis. Microbiol Immunol 2011; 55:141-53. [PMID: 21204951 DOI: 10.1111/j.1348-0421.2010.00299.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, requires heme for its growth. Non-iron metalloporphyrins, In-PPIX and Ga-PPIX, were examined for antibacterial effects on P. gingivalis. Both In-PPIX and Ga-PPIX caused retardation of P. gingivalis growth in a dose-dependent fashion. Microarray and qPCR analyses revealed that In-PPIX treatment upregulated the expression of several genes encoding proteins including ClpB and ClpC, which are members of the Clp (caseinolytic protease, Hsp100) family, and aRNR, aRNR-activating protein and thioredoxin reductase, whereas In-PPIX treatment had no effect on the expression of genes encoding proteins involved in heme uptake pathways, Hmu-mediated, Iht-mediated and Tlr-mediated pathways. P. gingivalis ihtA and ihtB mutants were more resistant to In-PPIX than was the wild-type parent, whereas hmuR and tlr mutants did not show such resistance to In-PPIX. The results suggest that In-PPIX is incorporated by the Iht-mediated heme uptake pathway and that it influences protein quality control and nucleotide metabolism and retards growth of P. gingivalis.
Collapse
Affiliation(s)
- Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This 'inflammation hypothesis' raises the possibility that through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article were to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk.
Collapse
Affiliation(s)
- R Teles
- Department of Periodontology, The Forsyth Institute, Cambridge, MA 02142, USA.
| | | |
Collapse
|