1
|
Govindarajan DK, Eskeziyaw BM, Kandaswamy K, Mengistu DY. Diagnosis of extraintestinal pathogenic Escherichia coli pathogenesis in urinary tract infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100296. [PMID: 39553200 PMCID: PMC11565050 DOI: 10.1016/j.crmicr.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) is a virulent pathogen found in humans that causes the majority of urinary tract infections, and other infections such as meningitis and sepsis. ExPEC can enter the urinary tract through two modes: ascending from the bladder or descending from the kidneys. Human anatomical structures generally prevent the transmission of pathogens between the extra-intestinal area, kidneys, bladder, and urinary tract. However, adhesins, a virulence protein of ExPEC, promote the initial bacterial attachment and invasion of host cells. In addition to adhesion proteins, ExPEC contains iron acquisition systems and toxins to evade the host immune system, acquire essential nutrients, and gain antibiotic resistance. The presence of antibiotic-resistant genes makes treating ExPEC in urinary tract infections (UTIs) more complicated. Therefore, screening for the presence of ExPEC among other uropathogens in UTI patients is essential, as it can potentially aid in the effective treatment and mitigation of ExPEC pathogens. Several diagnostic techniques are available for detecting ExPEC, including urine culture, polymerase chain reaction, serological testing, loop-mediated isothermal amplification, and biochemical tests. This review addresses strain-specific diagnostic techniques for screening ExPEC in UTI patients.
Collapse
Affiliation(s)
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
2
|
Priya GB, Agrawal RK, Milton AAP, Mishra M, Mendiratta SK, Singh BR, Kumar D, Gandham RK, Dubal ZB, Rajkhowa S, Luke A, Patil G. Rapid and visual detection of Shiga-toxigenic Escherichia coli (STEC) in carabeef meat harnessing loop-mediated isothermal amplification (LAMP). Braz J Microbiol 2024; 55:1723-1733. [PMID: 38639846 PMCID: PMC11153427 DOI: 10.1007/s42770-024-01335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Shiga toxigenic E. coli are important foodborne zoonotic pathogens. The present study was envisaged to standardize loop-mediated isothermal amplification assays targeting stx1 and stx2 genes for rapid and visual detection of STEC and compare its sensitivity with PCR. The study also assessed the effect of short enrichment on the detection limit of LAMP and PCR. The developed LAMP assays were found to be highly specific. Analytical sensitivity of LAMP was 94 fg/µLand 25.8 fg/µL for stx-1 and stx-2 while LOD of 5 CFU/g of carabeef was measured after 6-12 h enrichment. The study highlights the importance of short (6-12 h) enrichment for improving the sensitivity of LAMP. The entire detection protocol could be performed within 9 h yielding results on the same day. The developed LAMP assays proved to be a handy and cost-effective alternative for screening STEC contamination in meat.
Collapse
Affiliation(s)
- Govindarajan Bhuvana Priya
- College of Agriculture, Central Agricultural University, Imphal, Manipur, India
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ravi Kant Agrawal
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | | - Madhu Mishra
- Division of Bacteriology & Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhoj Raj Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Zunjar Baburao Dubal
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Ashish Luke
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Girish Patil
- ICAR-NRC on Meat, Post Box 19, Boduppal Post, Chengicherla, Hyderabad, 500092, India
| |
Collapse
|
3
|
Rajkhowa S, Choudhury M, Sarma DK, Pegu SR, Gupta VK. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid visual detection of porcine circovirus type 2 (PCV2) and its application. Anim Biotechnol 2023; 34:2441-2448. [PMID: 35792780 DOI: 10.1080/10495398.2022.2095516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
A cost effective, simple and rapid method is critical for detection of porcine circovirus type 2 (PCV2) infection in pigs. The present study reports the development and evaluation a loop-mediated isothermal amplification (LAMP) assay for rapid visual detection of PCV2 in pigs. The time and temperature conditions for amplification of PCV2 genes were optimized to be 30 min at 67 °C. The developed assay was 10 fold more sensitive than conventional PCR with analytical sensitivity of 5 pg and 50 pg, respectively. The developed LAMP assay had a sensitivity of 100%, specificity of 85.45% and overall accuracy of 89.70%. This is perhaps the most rapid of all LAMP reports for PCV2 detection available globally. The assay did not cross-react with porcine parvovirus or classical swine fever virus. DNA sequencing was done to ensure accuracy of LAMP assay results. The assay was assembled into a kit of 20 reactions and validated in different laboratories in India. The developed LAMP assay was proved to be a specific, sensitive and rapid method for visual detection of PCV2 which does not require costly equipments.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- Animal Health Laboratory, Indian Council of Agricultural Research, National Research Centre on Pig (ICAR- NRC on Pig), Assam, India
| | - Manjisa Choudhury
- Animal Health Laboratory, Indian Council of Agricultural Research, National Research Centre on Pig (ICAR- NRC on Pig), Assam, India
| | | | - Seema R Pegu
- Animal Health Laboratory, Indian Council of Agricultural Research, National Research Centre on Pig (ICAR- NRC on Pig), Assam, India
| | - Vivek Kumar Gupta
- Animal Health Laboratory, Indian Council of Agricultural Research, National Research Centre on Pig (ICAR- NRC on Pig), Assam, India
| |
Collapse
|
4
|
Jiang Q, Li Y, Huang L, Guo J, Wang A, Ma C, Shi C. Direct capture and amplification of nucleic acids using a universal, elution-free magnetic bead-based method for rapid pathogen detection in multiple types of biological samples. Anal Bioanal Chem 2023; 415:427-438. [PMID: 36385304 PMCID: PMC9668711 DOI: 10.1007/s00216-022-04422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid amplification tests (NAATs) have become an attractive approach for pathogen detection, and obtaining high-quality nucleic acid extracts from biological samples plays a critical role in ensuring accurate NAATs. In this work, we established an elution-free magnetic bead (MB)-based method by introducing polyethylene-polypropylene glycol (PEPPG) F68 in lysis buffer and using NaOH solution instead of alcohols as the washing buffer for rapid nucleic acid extraction from multiple types of biological samples, including nasopharyngeal swabs, serum, milk, and pork, which bypassed the nucleic acid elution step and allowed the nucleic acid/MB composite to be directly used as the template for amplification reactions. The entire extraction process was able to be completed in approximately 7 min. Even though the nucleic acid/MB composite could not be used for quantitative real-time PCR (qPCR) assays, this elution-free MB-based method significantly improved the sensitivity of the loop-mediated isothermal amplification (LAMP) assay. The sensitivity of the quantitative real-time LAMP (qLAMP) assays combined with this elution-free MB-based method showed an improvement of one to three orders of magnitude compared with qLAMP or qPCR assays combined with the traditional MB-based method. In addition to manual operation, like the traditional MB-based method, this universal, rapid, and facile nucleic acid extraction method also has potential for integration into automated robotic processing, making it particularly suitable for the establishment of an analysis platform for ultrafast and sensitive pathogen detection in various biological samples both in centralized laboratories and at remote sites.
Collapse
Affiliation(s)
- Qianqian Jiang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Lin Huang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jinling Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Ailin Wang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 People’s Republic of China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071 People’s Republic of China
| |
Collapse
|
5
|
Alič Š, Dermastia M, Burger J, Dickinson M, Pietersen G, Pietersen G, Dreo T. Genome-Informed Design of a LAMP Assay for the Specific Detection of the Strain of ' Candidatus Phytoplasma asteris' Phytoplasma Occurring in Grapevines in South Africa. PLANT DISEASE 2022; 106:2927-2939. [PMID: 35380469 DOI: 10.1094/pdis-10-21-2312-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Grapevine yellows is one of the most damaging phytoplasma-associated diseases worldwide. It is linked to several phytoplasma species, which can vary regionally due to phytoplasma and insect-vector diversity. Specific, rapid, and reliable detection of the grapevine yellows pathogen has an important role in phytoplasma control. The purpose of this study was to develop and validate a specific loop-mediated isothermal amplification (LAMP) assay for detection of a distinct strain of grapevine 'Candidatus Phytoplasma asteris' that is present in South Africa, through implementation of a genome-informed test design approach. Several freely available, user-friendly, web-based tools were coupled to design the specific LAMP assays. The criteria for selection of the assays were set for each step of the process, which resulted in four experimentally operative LAMP assays that targeted the ftsH/hflB gene region, specific to the aster yellows phytoplasma strain from South Africa. A real-time PCR was developed, targeting the same genetic region, to provide extensive validation of the LAMP assay. The validated molecular assays are highly specific to the targeted aster yellows phytoplasma strain from South Africa, with good sensitivity and reproducibility. We show a genome-informed molecular test design and an efficient validation approach for molecular tests if reference and sample materials are sparse and hard to obtain.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Špela Alič
- National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Marina Dermastia
- National Institute of Biology, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Johan Burger
- Department of Genetics, Stellenbosch University, Matieland, 7602, South Africa
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, United Kingdom
| | - Gerhard Pietersen
- Department of Microbiology and Plant Pathology, University of Pretoria, Hatfield 0028, South Africa
| | | | - Tanja Dreo
- National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Huang Z, Fang J, Zhou M, Gong Z, Xiang T. CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol 2022; 13:1011399. [PMID: 36386639 PMCID: PMC9650447 DOI: 10.3389/fmicb.2022.1011399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 08/03/2023] Open
Abstract
Pathogenic microorganisms have major impacts on human lives. Rapid and sensitive diagnostic tools are urgently needed to facilitate the early treatment of microbial infections and the effective control of microbial transmission. CRISPR-Cas13 employs programmable RNA to produce a sensitive and specific method with high base resolution and thus to provide a novel tool for the rapid detection of microorganisms. The review aims to provide insights to spur further development by summarizing the characteristics of effectors of the CRISPR-Cas13 system and by describing the latest research into its application in the rapid detection of pathogenic microorganisms in combination with nucleic acid extraction, isothermal amplification, and product detection.
Collapse
Affiliation(s)
- Zhanchao Huang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianhua Fang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhou
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co., Ltd., Nanchang, China
| | - Tianxin Xiang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zhang X, Payne M, Kaur S, Lan R. Improved Genomic Identification, Clustering, and Serotyping of Shiga Toxin-Producing Escherichia coli Using Cluster/Serotype-Specific Gene Markers. Front Cell Infect Microbiol 2022; 11:772574. [PMID: 35083165 PMCID: PMC8785982 DOI: 10.3389/fcimb.2021.772574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have more than 470 serotypes. The well-known STEC O157:H7 serotype is a leading cause of STEC infections in humans. However, the incidence of non-O157:H7 STEC serotypes associated with foodborne outbreaks and human infections has increased in recent years. Current detection and serotyping assays are focusing on O157 and top six (“Big six”) non-O157 STEC serogroups. In this study, we performed phylogenetic analysis of nearly 41,000 publicly available STEC genomes representing 460 different STEC serotypes and identified 19 major and 229 minor STEC clusters. STEC cluster-specific gene markers were then identified through comparative genomic analysis. We further identified serotype-specific gene markers for the top 10 most frequent non-O157:H7 STEC serotypes. The cluster or serotype specific gene markers had 99.54% accuracy and more than 97.25% specificity when tested using 38,534 STEC and 14,216 non-STEC E. coli genomes, respectively. In addition, we developed a freely available in silico serotyping pipeline named STECFinder that combined these robust gene markers with established E. coli serotype specific O and H antigen genes and stx genes for accurate identification, cluster determination and serotyping of STEC. STECFinder can assign 99.85% and 99.83% of 38,534 STEC isolates to STEC clusters using assembled genomes and Illumina reads respectively and can simultaneously predict stx subtypes and STEC serotypes. Using shotgun metagenomic sequencing reads of STEC spiked food samples from a published study, we demonstrated that STECFinder can detect the spiked STEC serotypes, accurately. The cluster/serotype-specific gene markers could also be adapted for culture independent typing, facilitating rapid STEC typing. STECFinder is available as an installable package (https://github.com/LanLab/STECFinder) and will be useful for in silico STEC cluster identification and serotyping using genome data.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Rajkhowa S, Choudhury M, Pegu SR, Sarma DK, Hussain I. Development of a rapid loop-mediated isothermal amplification (LAMP) assay for visual detection of porcine parvovirus (PPV) and its application. Braz J Microbiol 2021; 52:1725-1732. [PMID: 34241828 DOI: 10.1007/s42770-021-00569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
Porcine parvovirus (PPV) infection is one of the most important causes of reproductive failure in pigs impacting the piggery industry globally with huge economic losses. A cost-effective, simple, rapid, specific, and sensitive method is critical for monitoring PPV infection on pig farms. The main aim of the present study was to develop and evaluate a loop-mediated isothermal amplification (LAMP) assay for rapid visual detection of porcine parvovirus (PPV) in pigs. A set of six LAMP primers including two outer primers, two inner primers, and two loop primers were designed utilizing the conserved region of capsid protein VP2 gene sequences of PPV and was applied for detection of PPV from porcine samples. Time and temperature conditions for amplification of PPV genes were optimized to be 30 min at 63 °C. The developed assay was ten-fold more sensitive than conventional PCR with analytical sensitivity of 20 pg and 200 pg, respectively. This is the first report of detection of PPV by LAMP assay from India. The assay did not cross-react with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), or classical swine fever virus (CSFV). The LAMP assay was assembled into a LAMP assay kit of 20 reactions and was validated in different laboratories in India. The newly developed LAMP assay was proved to be a specific, sensitive, rapid, and simple method for visual detection of PPV which does not require even costly equipments for performing the test. It complements and extends previous methods for PPV detection and provides an alternative approach for detection of PPV.
Collapse
Affiliation(s)
- S Rajkhowa
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India.
| | - M Choudhury
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India
| | - S R Pegu
- Animal Health Laboratory, Indian Council of Agricultural Research - National Research Centre On Pig (ICAR-NRC On Pig), Rani, Guwahati, 781131, Assam, India
| | - D K Sarma
- Department of Microbiology, AAU, Guwahati, India
| | - I Hussain
- Division of Veterinary Microbiology & Immunology, SKUAST-Kashmir, Srinagar, India
| |
Collapse
|
9
|
Kim HJ, Choi SJ. Rapid single-cell detection of pathogenic bacteria for in situ determination of food safety. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5621-5627. [PMID: 33188382 DOI: 10.1039/d0ay01735c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A highly sensitive in situ method to detect bacterial pathogens is of utmost importance in preventing the outbreak of foodborne diseases. In this study, a simple method enabling the detection of a single bacterial cell in a sample was developed based on magnetic capture particles (CPs), and europium-fluorescent labeling particles (LPs) functionalized with antibodies. After mixing the sample with the particles in a sample tube, the sample tube was connected to an assay chip, where the CP-bacteria-LP complex was transported from the sample chamber to a detection chamber using a simple assay device. The number of bacteria was quantitatively determined by measuring the fluorescence emitted from the detection chamber. This assay method enabled the detection of a single cell of Vibrio parahaemolyticus from 0.1 mL pure broth culture samples within 30 min. A simple enrichment method that can be performed using only the vibrating action of the assay device without any additional instruments was also developed for the analysis of food samples. By analyzing the enriched sample using the assay method, we could detect V. parahaemolyticus quantitatively with a detection limit of 1 colony forming unit from oyster samples within 130 min. Due to simplicity of this methodology and the instrumentation involved, and its capability of rapid single-cell detection, it may be considered as an in situ method for the determination of food safety.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwondo 25457, Korea.
| | - Suk-Jung Choi
- Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwondo 25457, Korea.
| |
Collapse
|
10
|
Han L, Wang K, Ma L, Delaquis P, Bach S, Feng J, Lu X. Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment. Appl Environ Microbiol 2020; 86:e02566-19. [PMID: 32005729 PMCID: PMC7082562 DOI: 10.1128/aem.02566-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 and Salmonella enterica are leading causes of foodborne outbreaks linked to fresh produce. Both species can enter the "viable but nonculturable" (VBNC) state that precludes detection using conventional culture-based or molecular methods. In this study, we assessed propidium monoazide-quantitative PCR (PMA-qPCR) assays and novel methods combining PMA and loop-mediated isothermal amplification (LAMP) for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce. The performance of PMA-LAMP assays targeting the wzy gene of E. coli O157:H7 and the agfA gene of S. enterica and the performance of PMA-qPCR assays were compared in pure culture and spiked tomato, lettuce, and spinach. No cross-reaction was observed in the specificity tests. The values representing the limit of detection (LOD) seen with PMA-LAMP were 9.0 CFU/reaction for E. coli O157:H7 and 4.6 CFU/reaction for S. enterica in pure culture and were 5.13 × 103 or 5.13 × 104 CFU/g for VBNC E. coli O157:H7 and 1.05 × 104 or 1.05 × 105 CFU/g for VBNC S. enterica in fresh produce, representing results comparable to those obtained by PMA-qPCR. Standard curves showed correlation coefficients ranging from 0.925 to 0.996, indicating a good quantitative capacity of PMA-LAMP for determining populations of both bacterial species in the VBNC state. The PMA-LAMP assay was completed with considerable economy of time (30 min versus 1 h) and achieved sensitivity and quantitative capacity comparable to those seen with a PMA-qPCR assay. PMA-LAMP is a rapid, sensitive, and robust method for the detection and quantification of VBNC E. coli O157:H7 and S. enterica in fresh produce.IMPORTANCE VBNC pathogenic bacteria pose a potential risk to the food industry because they do not multiply on routine microbiological media and thus can evade detection in conventional plating assays. Both E. coli O157:H7 and S. enterica have been reported to enter the VBNC state under a range of environmental stress conditions and to resuscitate under favorable conditions and are a potential cause of human infections. PMA-LAMP methods developed in this study provide a rapid, sensitive, and specific way to determine levels of VBNC E. coli O157:H7 and S. enterica in fresh produce, which potentially decreases the risks related to the consumption of fresh produce contaminated by enteric pathogens in this state. PMA-LAMP can be further applied in the field study to enhance our understanding of the fate of VBNC pathogens in the preharvest and postharvest stages of fresh produce.
Collapse
Affiliation(s)
- Lu Han
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lina Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Susan Bach
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Jinsong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Incili GK, Koluman A, Aktüre A, Ataşalan A. Validation and verification of LAMP, ISO, and VIDAS UP methods for detection of Escherichia coli O157:H7 in different food matrices. J Microbiol Methods 2019; 165:105697. [PMID: 31445066 DOI: 10.1016/j.mimet.2019.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is one of the most important food-borne pathogens to threaten public health. Cultural methods are used as a gold standard while they are laborious and time-consuming. Loop-mediated isothermal amplification (LAMP) method is an alternative method that became widely used for the detection of food-borne pathogens. The aim of this study was to evaluate the specificity and sensitivity of LAMP method for detection of E. coli O157:H7, also to compare detection performances with VIDAS UP and ISO (International Organization for Standardization) methods in different food matrices (beef meat, minced lamb meat, milk, cheese, apple puree, and soybean sprouts). E. coli O157:H7 were spiked in three different levels (high 4.58; medium 2.32; low 0.30 log10 CFU/g-ml) to food matrices. Although there were no significant differences in terms of the specificity and sensitivity values among the three methods (p ≥ .05), it was determined that the highest specificity and sensitivity values obtained from the LAMP method. Sensitivity and specificity values of LAMP method were found as 0.997 and 0.988, for the ISO method were 0.989 and 0.971, and for the VIDAS UP method were 0.980 and 0.963, respectively. In milk samples, sensitivity and specificity values of the VIDAS UP method were significantly lower than LAMP and ISO methods (p < .05). However, there were no significant differences found for the other food matrices among the three methods (p > .05). It can be summarized from this study that specificity and sensitivity values of the LAMP method are equal or higher and less time-consuming than ISO and VIDAS UP methods. In conclusion, using a simple, fast, and inexpensive detection method, such as LAMP, especially in endemic regions or in an outbreak to control spreading of pathogens, is very important for public health.
Collapse
Affiliation(s)
- Gökhan Kürşad Incili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazıg, Turkey
| | - Ahmet Koluman
- Biomedical Engineering Department, Technology Faculty, Pamukkale University, Denizli, Turkey.
| | - Ayşegül Aktüre
- Ministry of Agriculture and Forestry, Food Control Laboratory Directorate, Adana, Turkey
| | - Ahmet Ataşalan
- Ministry of Agriculture and Forestry, Food Control Laboratory Directorate, Adana, Turkey
| |
Collapse
|
12
|
Zhang TT, Zhong C, Shu M, Wu X, Chen H, Lin LP, Wu GP. Real‐time loop‐mediated isothermal amplification assays combined with ethidium monoazide bromide and bentonite coated activated carbon for rapid and sensitive detection of viable Escherichia coliO157:H7 from milk without enrichment. J Food Saf 2019. [DOI: 10.1111/jfs.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tian T. Zhang
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| | - Chan Zhong
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| | - Mei Shu
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| | - Xin Wu
- Jiangxi Province Food Control Institute Nanchang China
| | - Hu Chen
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| | - Li P. Lin
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| | - Guo P. Wu
- College of Food Science and EngineeringJiangxi Agricultural University Nanchang Jiangxi China
| |
Collapse
|
13
|
Chylewska A, Ogryzek M, Makowski M. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection. Curr Med Chem 2019; 26:121-165. [DOI: 10.2174/0929867324666171023164813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/20/2017] [Accepted: 05/20/2016] [Indexed: 11/22/2022]
Abstract
Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.
Collapse
Affiliation(s)
- Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Małgorzata Ogryzek
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| |
Collapse
|
14
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
15
|
Detection and Evaluation of Viable but Non-culturable Escherichia coli O157:H7 Induced by Low Temperature with a BCAC-EMA-Rti-LAMP Assay in Chicken Without Enrichment. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1377-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Huang TT, Liu SC, Huang CH, Lin CJ, Huang ST. An Integrated Real-time Electrochemical LAMP Device for Pathogenic Bacteria Detection in Food. ELECTROANAL 2018. [DOI: 10.1002/elan.201800382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tsung-Tao Huang
- Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; Taipei 106 Taiwan
- Biomedical Platform and Incubation Services Division; Instrument Technology Research Center, National Applied Research Laboratories; Hsinchu 300 Taiwan
| | - Shao-Chung Liu
- Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; Taipei 106 Taiwan
| | - Chih-Hung Huang
- Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; Taipei 106 Taiwan
| | - Chun-Ju Lin
- Biomedical Platform and Incubation Services Division; Instrument Technology Research Center, National Applied Research Laboratories; Hsinchu 300 Taiwan
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology; National Taipei University of Technology; Taipei 106 Taiwan
| |
Collapse
|
17
|
Qin Y, Puthiyakunnon S, Zhang Y, Wu X, Boddu S, Luo B, Fan H. Rapid and Specific Detection of Escherichia coli O157:H7 in Ground Beef Using Immunomagnetic Separation Combined with Loop-Mediated Isothermal Amplification. POL J FOOD NUTR SCI 2018. [DOI: 10.1515/pjfns-2017-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Azinheiro S, Carvalho J, Prado M, Garrido-Maestu A. Evaluation of Different Genetic Targets for Salmonella enterica Serovar Enteriditis and Typhimurium, Using Loop-Mediated Isothermal AMPlification for Detection in Food Samples. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Quantification and Discrimination of Viable and Dead Escherichia coli O157:H7 Cells from Chicken Without Enrichment by Ethidium Bromide Monoazide Real-time Loop-Mediated Isothermal Amplification. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Garrido-Maestu A, Fuciños P, Azinheiro S, Carvalho J, Prado M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
de Oliveira KG, Borba JC, Bailão AM, de Almeida Soares CM, Carrilho E, Duarte GRM. Loop-mediated isothermal amplification in disposable polyester-toner microdevices. Anal Biochem 2017; 534:70-77. [DOI: 10.1016/j.ab.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
22
|
Hong J. Development and application of the loop-mediated isothermal amplification assay for rapid detection of enterotoxigenicClostridium perfringensin food. J Food Saf 2017. [DOI: 10.1111/jfs.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonbae Hong
- Food & Microbiology Team, Test & Research Department; Consumer Safety Center, Korea Consumer Agency; Chungcheongbukdo 27738 South Korea
| |
Collapse
|
23
|
Taguchi M, Kanki M, Yamaguchi Y, Inamura H, Koganei Y, Sano T, Nakamura H, Asakura H. Prevalence of Listeria monocytogenes in Retail Lightly Pickled Vegetables and Its Successful Control at Processing Plants. J Food Prot 2017; 80:467-475. [PMID: 28207308 DOI: 10.4315/0362-028x.jfp-16-062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Incidences of food poisoning traced to nonanimal food products have been increasingly reported. One of these was a recent large outbreak of Shiga toxin-producing Escherichia coli (STEC) O157 infection from the consumption of lightly pickled vegetables, indicating the necessity of imposing hygienic controls during manufacturing. However, little is known about the bacterial contamination levels in these minimally processed vegetables. Here we examined the prevalence of STEC, Salmonella spp., and Listeria monocytogenes in 100 lightly pickled vegetable products manufactured at 55 processing factories. Simultaneously, we also performed quantitative measurements of representative indicator bacteria (total viable counts, coliform counts, and β-glucuronidase-producing E. coli counts). STEC and Salmonella spp. were not detected in any of the samples; L. monocytogenes was detected in 12 samples manufactured at five of the factories. Microbiological surveillance at two factories (two surveys at factory A and three surveys at factory B) between June 2014 and January 2015 determined that the areas predominantly contaminated with L. monocytogenes included the refrigerators and packaging rooms. Genotyping provided further evidence that the contaminants found in these areas were linked to those found in the final products. Taken together, we demonstrated the prevalence of L. monocytogenes in lightly pickled vegetables sold at the retail level. Microbiological surveillance at the manufacturing factories further clarified the sources of the contamination in the retail products. These data indicate the necessity of implementing adequate monitoring programs to minimize health risks attributable to the consumption of these minimally processed vegetables.
Collapse
Affiliation(s)
- Masumi Taguchi
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Nakamichi 1-3-69, Higashinari-Ku, Osaka 537-0025, Japan
| | - Masashi Kanki
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Nakamichi 1-3-69, Higashinari-Ku, Osaka 537-0025, Japan
| | - Yuko Yamaguchi
- Izumisano Public Health Center, Kamikawaraya 583-1, Izumisano, Osaka 598-0001, Japan
| | - Hideichi Inamura
- Izumisano Public Health Center, Kamikawaraya 583-1, Izumisano, Osaka 598-0001, Japan
| | - Yosuke Koganei
- Kishiwada Public Health Center, Nodamachi 3-13-1, Kishiwada, Osaka 596-0076, Japan
| | - Tetsuya Sano
- Food Safety Promotion Office, Environment Health Division, Department of Health Care and Welfare, Shiga Prefecture, Gotenham 13-45, Otsu, Shiga 520-0834, Japan
| | - Hiromi Nakamura
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Tojo-cho 8-34, Tennoji-ku, Osaka 543-0026, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
24
|
Stratakos AC, Linton M, Millington S, Grant IR. A loop-mediated isothermal amplification method for rapid direct detection and differentiation of nonpathogenic and verocytotoxigenic Escherichia coli in beef and bovine faeces. J Appl Microbiol 2017; 122:817-828. [PMID: 27992094 DOI: 10.1111/jam.13381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022]
Abstract
AIM To develop a multiplex loop-mediated isothermal amplification (LAMP) assay capable of quantifying Escherichia coli and differentiating verocytotoxigenic E. coli (VTEC). METHODS AND RESULTS Primer sets were selected to amplify the phoA gene (all E. coli strains) and stx1 and/or stx2 genes (VTEC strains only). LAMP calibration curves demonstrated good quantification capability compared with conventional culture. The limits of detection 50% (LOD50 ) of the multiplex LAMP assay were 2·8 (95% CI 2·4-3·3), 3·2 (95% CI 2·5-3·9) and 2·8-3·2 (95% CI 2·1-3·5) log CFU per g for the phoA, stx1 and stx2 genes, respectively. When validated by testing retail beef and bovine faeces samples, good correlation between E. coli counts indicated by the LAMP assay and culture was observed; however, false-negative LAMP assay results were obtained for 12·5-14·7% of samples. CONCLUSIONS A rapid, multiplex LAMP assay for direct quantification of E. coli and specific detection of VTEC in beef and faeces was successfully developed. Further optimisation of the assay would be needed to improve detection sensitivity. SIGNIFICANCE AND IMPACT OF THE STUDY The multiplex LAMP assay represents a rapid alternative to culture for monitoring E. coli levels on beef for hygiene monitoring purposes, and, potentially, a method for detection of VTEC in beef and faeces.
Collapse
Affiliation(s)
- A Ch Stratakos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - M Linton
- Food Microbiology Branch, Agriculture, Food and Environmental Science Division, Agri-Food and Biosciences Institute for Northern Ireland, Belfast, UK
| | | | - I R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
25
|
Sheet O, Grabowski N, Klein G, Abdulmawjood A. Development and validation of a loop mediated isothermal amplification (LAMP) assay for the detection of Staphylococcus aureus in bovine mastitis milk samples. Mol Cell Probes 2016; 30:320-325. [DOI: 10.1016/j.mcp.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 02/09/2023]
|
26
|
Oh SJ, Park BH, Choi G, Seo JH, Jung JH, Choi JS, Kim DH, Seo TS. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. LAB ON A CHIP 2016; 16:1917-26. [PMID: 27112702 DOI: 10.1039/c6lc00326e] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work describes fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device, which is called a lab-on-a-disc. All the processes for molecular diagnostics including DNA extraction and purification, DNA amplification and amplicon detection were integrated on a single disc. Silica microbeads incorporated in the disc enabled extraction and purification of bacterial genomic DNA from bacteria-contaminated milk samples. We targeted four kinds of foodborne pathogens (Escherichia coli O157:H7, Salmonella typhimurium, Vibrio parahaemolyticus and Listeria monocytogenes) and performed loop-mediated isothermal amplification (LAMP) to amplify the specific genes of the targets. Colorimetric detection mediated by a metal indicator confirmed the results of the LAMP reactions with the colour change of the LAMP mixtures from purple to sky blue. The whole process was conducted in an automated manner using the lab-on-a-disc and a miniaturized rotary instrument equipped with three heating blocks. We demonstrated that a milk sample contaminated with foodborne pathogens can be automatically analysed on the centrifugal disc even at the 10 bacterial cell level in 65 min. The simplicity and portability of the proposed microdevice would provide an advanced platform for point-of-care diagnostics of foodborne pathogens, where prompt confirmation of food quality is needed.
Collapse
Affiliation(s)
- Seung Jun Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Parsons BD, Zelyas N, Berenger BM, Chui L. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:478. [PMID: 27148176 PMCID: PMC4828450 DOI: 10.3389/fmicb.2016.00478] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/22/2016] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance.
Collapse
Affiliation(s)
- Brendon D. Parsons
- Laboratory Medicine and Pathology, University of AlbertaEdmonton, AB, Canada
| | - Nathan Zelyas
- Medical Microbiology and Immunology, University of AlbertaEdmonton, AB, Canada
| | - Byron M. Berenger
- Medical Microbiology and Immunology, University of AlbertaEdmonton, AB, Canada
| | - Linda Chui
- Laboratory Medicine and Pathology, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
28
|
Levin RE. Recent Developments in Molecular Detection of Food-Borne Disease Bacteria and GMOs. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2014.996896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system. Biomed Microdevices 2014; 16:375-85. [PMID: 24562605 DOI: 10.1007/s10544-014-9841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.
Collapse
|
30
|
Zhang X, Lowe SB, Gooding JJ. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens Bioelectron 2014; 61:491-9. [DOI: 10.1016/j.bios.2014.05.039] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 01/20/2023]
|
31
|
Hua X, Yin W, Shi H, Li M, Wang Y, Wang H, Ye Y, Kim HJ, Gee SJ, Wang M, Liu F, Hammock BD. Development of phage immuno-loop-mediated isothermal amplification assays for organophosphorus pesticides in agro-products. Anal Chem 2014; 86:8441-7. [PMID: 25135320 PMCID: PMC4139188 DOI: 10.1021/ac5020657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two immuno-loop-mediated isothermal amplification assays (iLAMP) were developed by using a phage-borne peptide that was isolated from a cyclic eight-peptide phage library. One assay was used to screen eight organophosphorus (OP) pesticides with limits of detection (LOD) between 2 and 128 ng mL(-1). The iLAMP consisted of the competitive immuno-reaction coupled to the LAMP reaction for detection. This method provides positive results in the visual color of violet, while a negative response results in a sky blue color; therefore, the iLAMP allows one to rapidly detect analytes in yes or no fashion. We validated the iLAMP by detecting parathion-methyl, parathion, and fenitrothion in Chinese cabbage, apple, and greengrocery, and the detection results were consistent with the enzyme-linked immunosorbent assay (ELISA). In conclusion, the iLAMP is a simple, rapid, sensitive, and economical method for detecting OP pesticide residues in agro-products with no instrumental requirement.
Collapse
Affiliation(s)
- Xiude Hua
- College of Plant Protection (State & Local Joint Engineering Research Center of Green Pesticide Invention and Application), Nanjing Agricultural University , Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
An empirical approach for quantifying loop-mediated isothermal amplification (LAMP) using Escherichia coli as a model system. PLoS One 2014; 9:e100596. [PMID: 24979038 PMCID: PMC4076223 DOI: 10.1371/journal.pone.0100596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Loop mediated isothermal amplification (LAMP) is a highly efficient, selective and rapid DNA amplification technique for genetic screening of pathogens. However, despite its popularity, there is yet no mathematical model to quantify the outcome and no well-defined metric for comparing results that are available. LAMP is intrinsically complex and involves multiple pathways for gene replication, making fundamental modelling nearly intractable. To circumvent this difficulty, an alternate, empirical model is introduced that will allow one to extract a set of parameters from the concentration versus time curves. A simple recipe to deduce the time to positive, Tp - a parameter analogous to the threshold cycling time in polymerase chain reaction (PCR), is also provided. These parameters can be regarded as objective and unambiguous indicators of LAMP amplification. The model is exemplified on Escherichia coli strains by using the two gene fragments responsible for vero-toxin (VT) production and tested against VT-producing (O157 and O45) and non-VT producing (DH5 alpha) strains. Selective amplification of appropriate target sequences was made using well established LAMP primers and protocols, and the concentrations of the amplicons were measured using a Qubit 2.0 fluorometer at specific intervals of time. The data is fitted to a generalized logistic function. Apart from providing precise screening indicators, representing the data with a small set of numbers offers significant advantages. It facilitates comparisons of LAMP reactions independently of the sampling technique. It also eliminates subjectivity in interpretation, simplifies data analysis, and allows easy data archival, retrieval and statistical analysis for large sample populations. To our knowledge this work represents a first attempt to quantitatively model LAMP and offer a standard method that could pave the way towards high throughput automated screening.
Collapse
|
33
|
Loop-mediated isothermal amplification assay for detection of generic and verocytotoxin-producing Escherichia coli among indigenous individuals in Malaysia. ScientificWorldJournal 2014; 2014:457839. [PMID: 24967435 PMCID: PMC4055146 DOI: 10.1155/2014/457839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/06/2014] [Indexed: 01/08/2023] Open
Abstract
We have successfully developed a Loop-mediated isothermal amplification (LAMP) assay that could specifically detect generic Escherichia coli (E. coli). This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26). The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 102 CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 103 CFU/mL (Tt = 31.12). We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC) positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.
Collapse
|
34
|
Dong HJ, Cho AR, Hahn TW, Cho S. Development of a multiplex loop-mediated isothermal amplification assay to detect shiga toxin-producing Escherichia coli in cattle. J Vet Sci 2014; 15:317-25. [PMID: 24675834 PMCID: PMC4087235 DOI: 10.4142/jvs.2014.15.2.317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/28/2013] [Indexed: 11/20/2022] Open
Abstract
A multiplex loop-mediated isothermal amplification (mLAMP) assay was developed for simultaneous detection of the stx1 and stx2 genes and applied for detection of shiga toxin-producing Escherichia coli (STEC) in cattle farm samples. Two target genes were distinguished based on Tm values of 85.03 ± 0.54°C for stx1 and 87.47 ± 0.35°C for stx2. The mLAMP assay was specific (100% inclusivity and exclusivity), sensitive (with a detection limit as low as 10 fg/μL), and quantifiable (R² = 0.9313). The efficacy and sensitivity were measured to evaluate applicability of the mLAMP assay to cattle farm samples. A total of 12 (12/253; 4.7%) and 17 (17/253; 6.7%) STEC O157, and 11 (11/236; 4.7%) non-O157 STEC strains were isolated from cattle farm samples by conventional selective culture, immunomagnetic separation, and PCR-based culture methods, respectively. The coinciding multiplex PCR and mLAMP results for the types of shiga toxin revealed the value of the mLAMP assay in terms of accuracy and rapidity for characterizing shiga toxin genes. Furthermore, the high detection rate of specific genes from enrichment broth samples indicates the potential utility of this assay as a screening method for detecting STEC in cattle farm samples.
Collapse
Affiliation(s)
- Hee-Jin Dong
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
35
|
Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce. Appl Environ Microbiol 2014; 80:2516-25. [PMID: 24509927 DOI: 10.1128/aem.04203-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are a leading cause of produce-associated outbreaks in the United States. Rapid, reliable, and robust detection methods are needed to better ensure produce safety. We recently developed a loop-mediated isothermal amplification (LAMP) suite for STEC detection. In this study, the STEC LAMP suite was comprehensively evaluated against real-time quantitative PCR (qPCR) using a large panel of bacterial strains (n = 156) and various produce items (several varieties of lettuce, spinach, and sprouts). To simulate real-world contamination events, produce samples were surface inoculated with a low level (1.2 to 1.8 CFU/25 g) of individual STEC strains belonging to seven serogroups (O26, O45, O103, O111, O121, O145, and O157) and held at 4°C for 48 h before testing. Six DNA extraction methods were also compared using produce enrichment broths. All STEC targets and their subtypes were accurately detected by the LAMP suite. The detection limits were 1 to 20 cells per reaction in pure culture and 10(5) to 10(6) CFU per 25 g (i.e., 10(3) to 10(4) CFU per g) in produce, except for strains harboring the stx2c, eae-β, and eae-θ subtypes. After 6 to 8 h of enrichment, the LAMP suite achieved accurate detection of low levels of STEC strains of various stx2 and eae subtypes in lettuce and spinach varieties but not in sprouts. A similar trend of detection was observed for qPCR. The PrepMan Ultra sample preparation reagent yielded the best results among the six DNA extraction methods. This research provided a rapid, reliable, and robust method for detecting STEC in produce during routine sampling and testing. The challenge with sprouts detection by both LAMP and qPCR calls for special attention to further analysis.
Collapse
|
36
|
Niessen L, Luo J, Denschlag C, Vogel RF. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiol 2013; 36:191-206. [DOI: 10.1016/j.fm.2013.04.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
37
|
Kim YJ, Seo S, Wang X, Seo DJ, Lee MH, Son NR, Lee BH, Choi C. Comparison of Polymerase Chain Reaction, Real-time Polymerase Chain Reaction, and Loop-Mediated Isothermal Amplification for the Detection of Cronobacter sakazakii in Milk Powder. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.5.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Wang F, Yang Q, Kase JA, Meng J, Clotilde LM, Lin A, Ge B. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog Dis 2013; 10:665-77. [PMID: 23755895 DOI: 10.1089/fpd.2012.1448] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC) strains are increasingly recognized as important foodborne pathogens worldwide. Together with E. coli O157:H7, six additional STEC serogroups (O26, O45, O103, O111, O121, and O145) are now regulated as adulterants in certain raw beef products in the United States. However, effective detection and isolation of non-O157 STEC strains from food matrices remain challenging. In the past decade, great attention has been paid to developing rapid and reliable detection methods for STEC in general (targeting common virulence factors) and specific STEC serogroups in particular (targeting serogroup-specific traits). This review summarizes current trends in detecting non-O157 STEC in food, including culture, immunological, and molecular methods, as well as several novel technologies.
Collapse
Affiliation(s)
- Fei Wang
- Department of Food Science, Louisiana State University Agricultural Center , Baton Rouge, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Murray L, Edwards L, Tuppurainen ESM, Bachanek-Bankowska K, Oura CAL, Mioulet V, King DP. Detection of capripoxvirus DNA using a novel loop-mediated isothermal amplification assay. BMC Vet Res 2013; 9:90. [PMID: 23634704 PMCID: PMC3649941 DOI: 10.1186/1746-6148-9-90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sheep poxvirus (SPPV), Goat poxvirus (GTPV) and Lumpy skin disease virus (LSDV) are the most serious poxviruses of ruminants. They are double stranded DNA viruses of the genus Capripoxvirus, (subfamily Chordopoxvirinae) within the family Poxviridae. The aim of this study was to develop a Loop-mediated isothermal AMPlification (LAMP) assay for the detection of Capripoxvirus (CaPV) DNA. RESULTS A single LAMP assay targeting a conserved region of the CaPV P32 gene was selected from 3 pilot LAMP assays and optimised by adding loop primers to accelerate the reaction time. This LAMP assay successfully detected DNA prepared from representative CaPV isolates (SPPV, GTPV and LSDV), and did not cross-react with DNA extracted from other mammalian poxviruses. The analytical sensitivity of the LAMP assay was determined to be at least 163 DNA copies/μl which is equivalent to the performance reported for diagnostic real-time PCR currently used for the detection of CaPV. LAMP reactions were monitored with an intercalating dye using a real-time PCR machine, or by agarose-gel electrophoresis. Furthermore, dual labelled LAMP products (generated using internal LAMP primers that were conjugated with either biotin or fluorescein) could be readily visualised using a lateral-flow device. CONCLUSIONS This study provides a simple and rapid approach to detect CaPV DNA that may have utility for use in the field, or in non-specialised laboratories where expensive equipment is not available.
Collapse
Affiliation(s)
- Lee Murray
- The Pirbright Institute, Pirbright, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Terao Y, Yonekita T, Morishita N, Fujimura T, Matsumoto T, Morimatsu F. Potential rapid and simple lateral flow assay for Escherichia coli O111. J Food Prot 2013; 76:755-61. [PMID: 23643116 DOI: 10.4315/0362-028x.jfp-12-351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed and evaluated a lateral flow assay (LFA) as a simple and rapid method for direct detection of Escherichia coli O111 in food after enrichment. When cell suspensions of 8 E. coli O111 strains and 77 non-E. coli O111 strains were tested with the LFA, the former all yielded positive results and the latter all yielded negative results. The minimum detection limits for the E. coli O111 strains were 1.8 × 10(3) to 5.6 × 10(5) CFU/ml of cell suspension, and the LFA was able to detect live cultures or those killed by autoclaving at nearly the same level of sensitivity. To evaluate the ability of LFA to detect its target in food, enrichment cultures of meat samples inoculated with 10-fold serial dilutions of E. coli O111 were tested with the LFA and PCR. Even when there were very few E. coli O111 cells in the meat samples (1.6 × 10(0) to 1.6 × 10(1) CFU/25 g of food), when they were cultured in modified E. coli broth with novobiocin for 22 h at 42°C, the LFA yielded positive results that corresponded to the PCR results. Although the LFA requires further evaluation and field study, these results suggest that this assay has sufficient sensitivity and specificity. This procedure can be completed with a one-step incubation after the test strip has been inserted into the sample after 22 h of culture, whereas the standard culture method requires multiple cultures, skilled personnel, a well-equipped laboratory, and 4 or 5 days. The speed and simplicity of this LFA make it suitable for use as part of routine screening assays in the food industry.
Collapse
Affiliation(s)
- Yoshitaka Terao
- R&D Center, Nippon Meat Packers, Inc., 3-3 Midorigahara, Tsukuba, Ibaraki 300-2646, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Botes M, de Kwaadsteniet M, Cloete TE. Application of quantitative PCR for the detection of microorganisms in water. Anal Bioanal Chem 2013; 405:91-108. [PMID: 23001336 PMCID: PMC7079929 DOI: 10.1007/s00216-012-6399-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/13/2022]
Abstract
The occurrence of microorganisms in water due to contamination is a health risk and control thereof is a necessity. Conventional detection methods may be misleading and do not provide rapid results allowing for immediate action. The quantitative polymerase chain reaction (qPCR) method has proven to be an effective tool to detect and quantify microorganisms in water within a few hours. Quantitative PCR assays have recently been developed for the detection of specific adeno- and polyomaviruses, bacteria and protozoa in different water sources. The technique is highly sensitive and able to detect low numbers of microorganisms. Quantitative PCR can be applied for microbial source tracking in water sources, to determine the efficiency of water and wastewater treatment plants and act as a tool for risk assessment. Different qPCR assays exist depending on whether an internal control is used or whether measurements are taken at the end of the PCR reaction (end-point qPCR) or in the exponential phase (real-time qPCR). Fluorescent probes are used in the PCR reaction to hybridise within the target sequence to generate a signal and, together with specialised systems, quantify the amount of PCR product. Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) is a more sensitive technique that detects low copy number RNA and can be applied to detect, e.g. enteric viruses and viable microorganisms in water, and measure specific gene expression. There is, however, a need to standardise qPCR protocols if this technique is to be used as an analytical diagnostic tool for routine monitoring. This review focuses on the application of qPCR in the detection of microorganisms in water.
Collapse
Affiliation(s)
- Marelize Botes
- Department of Microbiology, University of Stellenbosch, Private Bag XI, Matieland 7602, Stellenbosch, Western Cape 7602, South Africa.
| | | | | |
Collapse
|
42
|
Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis. J Biomed Biotechnol 2012; 2012:435982. [PMID: 23251078 PMCID: PMC3519349 DOI: 10.1155/2012/435982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022] Open
Abstract
To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.
Collapse
|
43
|
Yoon JY, Kim B. Lab-on-a-chip pathogen sensors for food safety. SENSORS (BASEL, SWITZERLAND) 2012; 12:10713-41. [PMID: 23112625 PMCID: PMC3472853 DOI: 10.3390/s120810713] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 02/08/2023]
Abstract
There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs). These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.
Collapse
Affiliation(s)
- Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, the University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
44
|
Niessen L, Gräfenhan T, Vogel RF. ATP citrate lyase 1 (acl1) gene-based loop-mediated amplification assay for the detection of the Fusarium tricinctum species complex in pure cultures and in cereal samples. Int J Food Microbiol 2012; 158:171-85. [PMID: 22867849 DOI: 10.1016/j.ijfoodmicro.2012.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/20/2012] [Accepted: 06/26/2012] [Indexed: 01/11/2023]
Abstract
The combined data set of the acl1 and tef-1α gene sequences of 61 fungal strains assigned to Fusarium tricinctum, Fusarium avenaceum, Fusarium acuminatum, Fusarium arthrosporioides, Fusarium flocciferum and Fusarium torulosum were used to study the phylogenetic relations between taxa. F. tricinctum, F. acuminatum and F. avenaceum formed distinct clades. Members of the F. tricinctum/F. acuminatum clade fall into three well supported lineages, of which the largest includes the epitype of F. tricinctum. Loop-mediated isothermal amplification (LAMP) was used to amplify a 167 bp portion of the acl1 gene in F. tricinctum (Corda) Saccardo. DNA amplification was detected in-tube by indirect calcein fluorescence under black light after 60 min of incubation at 65.5 °C. The assay had a detection limit of 0.95 pg of purified genomic DNA of F. tricinctum CBS 410.86 per reaction, corresponding to ca. 18 genomic copies of the acl1 gene. Specificity of the assay was tested using purified DNA from 67 species and subspecies of Fusarium as well as 50 species comprising 22 genera of other filamentous fungi and yeasts. The assay detected 21 of the 23 F. tricinctum strains tested. Cross reactivity was observed with eight out of 13 strains in F. acuminatum but with none of 17 F. avenaceum strains tested. Specificity was further confirmed by conventional PCR with primers designed from the same gene. Detection of F. tricinctum from culture scrapings directly added to the reaction master mix, in DNA extracts from wheat, in single barley grains or in washings of bulk grain samples are proposed as possible applications showing the suitability of the method for food analysis. Finally it was demonstrated that the LAMP reaction can be run using simple lab equipment such as a heating block, water bath, hybridization oven or household equipment, e.g. a microwave oven.
Collapse
Affiliation(s)
- Ludwig Niessen
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Weihenstephaner Steig 16, D-85350 Freising, Germany.
| | | | | |
Collapse
|
45
|
Ravan H, Yazdanparast R. Development and evaluation of a loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella serogroup D. Anal Chim Acta 2012; 733:64-70. [DOI: 10.1016/j.aca.2012.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 11/25/2022]
|
46
|
Rapid and specific detection of escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 in ground beef, beef trim, and produce by loop-mediated isothermal amplification. Appl Environ Microbiol 2012; 78:2727-36. [PMID: 22327594 DOI: 10.1128/aem.07975-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 10(3) to 10(4) CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.
Collapse
|
47
|
Wang F, Jiang L, Ge B. Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coli in ground beef and human stools. J Clin Microbiol 2012; 50:91-7. [PMID: 22031701 PMCID: PMC3256711 DOI: 10.1128/jcm.05612-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157 and non-O157 STEC, is a significant cause of food-borne illnesses and deaths in the United States and worldwide. Shiga toxins (encoded by stx) and intimin (encoded by eae) are important virulence factors for STEC strains linked to severe human illnesses such as hemorrhagic colitis and hemolytic-uremic syndrome. In this study, the stx(1), stx(2), and eae genes were chosen as targets to design loop-mediated isothermal amplification (LAMP) assays for the rapid, specific, sensitive, and quantitative detection of STEC strains. The assay performances in pure culture and spiked ground beef and human stools were evaluated and compared with those of quantitative PCR (qPCR). No false-positive or false-negative results were observed among 90 bacterial strains used to evaluate assay specificity. The limits of detection for seven STEC strains of various serogroups (O26, O45, O103, O111, O121, O145, and O157) were approximately 1 to 20 CFU/reaction in pure culture and 10(3) to 10(4) CFU/g in spiked ground beef, which were comparable to the results of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. When applied in ground beef samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of STEC cultures, the LAMP assays achieved accurate detection after 6 to 8 h enrichment. The assays also consistently detected STEC in human stool specimens spiked with 10(3) or 10(4) CFU/0.5 g stool after 4 h enrichment, while qPCR required 4 to 6 h. In conclusion, the LAMP assays developed in this study may facilitate rapid and reliable identification of STEC contaminations in high-risk food commodities and also facilitate prompt diagnosis of STEC infections in clinical laboratories.
Collapse
Affiliation(s)
- Fei Wang
- Department of Food Science, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Lin Jiang
- Department of Food Science, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
48
|
Han X, Ding C, He L, Hu Q, Yu S. Development of loop-mediated isothermal amplification (LAMP) targeting the GroEL gene for rapid detection of Riemerella anatipestifer. Avian Dis 2011; 55:379-83. [PMID: 22017034 DOI: 10.1637/9602-112610-reg.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Riemerella anatipestifer (RA) infections cause major economic losses in the duck industry. Detection of RA using conventional assays is time-consuming and laborious. In this study, a simple and rapid assay for the detection of RA was established based on the GroEL gene sequence of RA using loop-mediated isothermal amplification (LAMP) with a set of six primers (two outer primers, two inner primers, and two loop primers). This assay was able to detect all the tested RA strains with different serotypes. A minimum of 10 colony-forming units (CFU) of RA was detected, which represents 50-fold higher sensitivity than that of the standard polymerase chain reaction (PCR) method. This assay showed good specificity to RA strains and did not react with any other species of bacteria. The assay is rapidly completed and the amplification is achieved at a minimum of 20 min at 65 C. Furthermore, the assay successfully detected RA in the liver samples of ducklings infected with RA, suggesting that the assay could be used for the clinical diagnosis of RA infection.
Collapse
Affiliation(s)
- Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
WANG XIAOLI, GENG FENGZHEN, ZHANG XIANZHOU, WANG YU, MA XIAOYAN, SU XUDONG, TAN JIANXIN, ZHANG WEI. A LOOP-MEDIATED ISOTHERMAL AMPLIFICATION ASSAY FOR RAPID DETECTION OF LISTERIA MONOCYTOGENES. J Food Saf 2011. [DOI: 10.1111/j.1745-4565.2011.00333.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Tang MJ, Zhou S, Zhang XY, Pu JH, Ge QL, Tang XJ, Gao YS. Rapid and Sensitive Detection of Listeria monocytogenes by Loop-Mediated Isothermal Amplification. Curr Microbiol 2011; 63:511-6. [DOI: 10.1007/s00284-011-0013-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/30/2011] [Indexed: 02/02/2023]
|