1
|
Hadifar S, Kargarpour Kamakoli M, Eybpoosh S, Nakhaeizadeh M, Kargarpour Kamakoli MA, Ebrahimifard N, Fateh A, Siadat SD, Vaziri F. The shortcut of mycobacterial interspersed repetitive unit-variable number tandem repeat typing for Mycobacterium tuberculosis differentiation. Front Microbiol 2022; 13:978355. [PMID: 36160200 PMCID: PMC9493315 DOI: 10.3389/fmicb.2022.978355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The 24-loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) genotyping has been used as an international standard method for Mycobacterium tuberculosis (Mtb) genotyping. However, different optimized VNTR loci sets for improving the discrimination of specific Mtb genotypes have been proposed. In this regard, we investigated the efficacy of accumulation of the percentage differences (APDs) compared with the least absolute shrinkage and selection operator (LASSO) regression strategy to identify a customized genotype-specific VNTR loci set which provides a resolution comparable to 24-loci MIRU-VNTR in divergent Mtb populations. We utilized Spoligotyping and 24-loci MIRU-VNTR typing for genotyping 306 Mtb isolates. The APD and LASSO regression approaches were used to identify a customized VNTR set in our studied isolates. Besides, the Hunter-Gaston discriminatory index (HGDI), sensitivity, and specificity of each selected loci set were calculated based on both strategies. The selected loci based on LASSO regression compared with APD-based loci showed a better discriminatory power for identifying all studied genotypes except for T genotype, which APD-based loci showed promising discriminative power. Our findings suggested the LASSO regression rather than the APD approach is more effective in the determination of possible discriminative VNTR loci set to precise discrimination of our studied Mtb population and may be beneficial to be used in finding reduced number loci sets in other Mtb genotypes or sublineages. Moreover, we proposed customized genotype-specific MIRU-VNTR loci sets based on the LASSO regression and APD approaches for precise Mtb strains identification. As the proposed VNTR sets offered a comparable discriminatory power to the standard 24 MIRU-VNTR loci set could be promising alternatives to the standard genotyping for using in resource-limited settings.
Collapse
Affiliation(s)
- Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehran Nakhaeizadeh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Nasim Ebrahimifard
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Farzam Vaziri, ,
| |
Collapse
|
2
|
Kobayashi Y, Tateishi A, Hiroi Y, Minakuchi T, Mukouyama H, Ota M, Nagata Y, Hirao S, Yoshiyama T, Keicho N. A multidrug-resistant tuberculosis outbreak among immigrants in Tokyo, Japan, 2019-2021. Jpn J Infect Dis 2022; 75:527-529. [PMID: 35354703 DOI: 10.7883/yoken.jjid.2021.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In mid-September 2019, a teenage Chinese male student and part time waiter in Tokyo was diagnosed with multidrug-resistant (MDR) sputum smear-positive pulmonary tuberculosis (TB). This study describes the outbreak investigation of his friends and colleagues at the restaurant. We investigated six friends and 15 colleagues, of whom five friends and 13 colleagues underwent interferon-ã release assay (IGRA). Of these, three friends (60.0%) and four colleagues (30.8%) were IGRA-positive. Each one of the friends and colleagues was found to have MDR-TB (20% and 7.7%, respectively). Challenges during the investigation were the unavailability of regimens for latent TB infection (LTBI) for contacts with MDR-TB, budgetary constraints concerning implementing computed tomography (CT) scans for the contacts, frequent address changes of foreign-born patients and contacts, investigation during the coronavirus disease pandemic, and variations of alphabetical expression of the names of the patients and contacts, particularly for those from China. It is recommended that the national government officially adopt prophylaxis regimens for LTBI with MDR-TB, address the budgetary constraints regarding CT-scans, and deploy liaison officer(s) for coordinating investigations involving many foreign-born patients and contacts scattered in multiple municipalities. The names of foreign-born persons could more accurately be identified using both the alphabet and Chinese characters.
Collapse
Affiliation(s)
- Yumi Kobayashi
- Health Service Division, Nakano City Health Office, Japan
| | - Ai Tateishi
- Health Service Division, Nakano City Health Office, Japan
| | - Yumi Hiroi
- Health Service Division, Nakano City Health Office, Japan
| | - Toki Minakuchi
- Health Service Division, Nakano City Health Office, Japan
| | | | - Masaki Ota
- Division of Technical Assistance to Tuberculosis Programmes, Research Institute of Tuberculosis, Japan
| | - Yoko Nagata
- Division of Technical Assistance to Tuberculosis Programmes, Research Institute of Tuberculosis, Japan
| | - Susumu Hirao
- Division of Technical Assistance to Tuberculosis Programmes, Research Institute of Tuberculosis, Japan
| | | | | |
Collapse
|
3
|
Kikuchi T, Nakamura M, Hachisu Y, Hirai S, Yokoyama E. Molecular epidemiological analysis of Mycobacterium tuberculosis modern Beijing genotype strains isolated in Chiba Prefecture over 10 years. J Infect Chemother 2022; 28:521-525. [PMID: 35016826 DOI: 10.1016/j.jiac.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The prevalence of the phylogenetic groups of Mycobacterium tuberculosis Beijing genotype has been reported to be similar in different areas of Japan. However, recent reports from rural areas of Japan show a low prevalence of modern Beijing strains, suggesting that the distribution of modern Beijing strains may have changed recently. Therefore, multi-locus variable number of tandem repeats analysis (MLVA) and draft whole genome sequence (DWGS) analysis were carried out to investigate the prevalence of particular genotype strains. METHODS Nine hundred and ninety modern Beijing strains were studied using minimum spanning tree (MST) analysis and neighbor-net analysis of MLVA and WGS data. RESULTS An MST of M. tuberculosis Beijing genotype strains reconstructed from 12 loci-MLVA data showed two large complexes with the J12-0006 MLVA pattern. In one of the complexes, strains with the pECT07 pattern produced by 24 loci-MLVA and its SLVs were most prevalent. DWGS analysis was carried out for pECT07 and its SLV strains. Neighbor-net and MST analyses of the DWGS data showed that pECT07 and its SLV strains were grouped in separate clusters. When all the combinations of two of the tested strains were analyzed, MST analysis showed that only 9 (1.7%) of the 528 pairs of tested strains had 5 or less SNPs. CONCLUSIONS The results of this study suggested that pECT07 and its variants were prevalent among M. tuberculosis modern Beijing strains in Chiba Prefecture, but the prevalence of those strains may not have been due to an earlier large-scale latent outbreak.
Collapse
Affiliation(s)
- Takashi Kikuchi
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2, Nitona, Chuo, Chiba, 260-8715, Japan.
| | - Masaki Nakamura
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2, Nitona, Chuo, Chiba, 260-8715, Japan
| | - Yushi Hachisu
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2, Nitona, Chuo, Chiba, 260-8715, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2, Nitona, Chuo, Chiba, 260-8715, Japan; Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2, Nitona, Chuo, Chiba, 260-8715, Japan
| |
Collapse
|
4
|
Ota M, Nitta S, Terada K, Kurokawa A, Yamaguchi R, Tateishi M, Hoshino Y, Zama T, Hirao S. Analysis of a tuberculosis outbreak in an office: Hokkaido, Japan, 2019–2020. Int J Mycobacteriol 2022; 11:287-292. [DOI: 10.4103/ijmy.ijmy_111_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Ota M, Hoshino Y, Hirao S. Analysis of 605 tuberculosis outbreaks in Japan, 1993-2015: time, place and transmission site. Epidemiol Infect 2021; 149:e85. [PMID: 33745484 PMCID: PMC8080251 DOI: 10.1017/s0950268821000625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 11/06/2022] Open
Abstract
Since 1993, reports on tuberculosis (TB) outbreaks have been collected in Japan; however, there has never been an overall analysis of these TB outbreaks. We aim to provide one here. The TB outbreak data were obtained from the Ministry of Health, Labour and Welfare and are described in terms of time, place and transmission site. The average number of TB cases and latent tuberculosis infection (LTBI) were compared by the transmission site. Some 605 TB outbreaks with 3491 TB cases were reported in 1993-2015 with an increasing trend (r = 0.45), during which time 728 777 TB cases were reported nationwide. On an average, TB outbreaks occurred more often in April to May (5.5 outbreaks per 2 months) than in December to January (3.4). The most common transmission sites were workplaces (n = 255), followed by health facilities (n = 144), schools (n = 60) and welfare facilities (n = 48). Psychiatric hospitals and nursing homes had the highest average number of TB cases per outbreak (8.5 each), whereas schools and prisons had the highest numbers of LTBI cases (29.1 and 38.9, respectively). Countries, particularly those that have resources to investigate TB outbreaks, should collect and analyse findings of TB outbreaks, as it informs surveillance systems and eventually strengthens general health systems.
Collapse
Affiliation(s)
- M. Ota
- Research Institute of Tuberculosis, Tokyo, Japan
| | - Y. Hoshino
- Research Institute of Tuberculosis, Tokyo, Japan
| | - S. Hirao
- Research Institute of Tuberculosis, Tokyo, Japan
| |
Collapse
|
7
|
Liang PK, Zheng C, Xu XF, Zhao ZZ, Zhao CS, Li CH, Couvin D, Reynaud Y, Zozio T, Rastogi N, Sun Q. Local adaptive evolution of two distinct clades of Beijing and T families of Mycobacterium tuberculosis in Chongqing: a Bayesian population structure and phylogenetic study. Infect Dis Poverty 2020; 9:59. [PMID: 32487156 PMCID: PMC7268252 DOI: 10.1186/s40249-020-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
Background Beijing sub-pedigree 2 (BSP2) and T sub-lineage 6 (TSL6) are two clades belonging to Beijing and T family of Mycobacterium tuberculosis (MTB), respectively, defined by Bayesian population structure analysis based on 24-loci mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR). Globally, over 99% of BSP2 and 89% of TSL6 isolates were distributed in Chongqing, suggesting their possible local adaptive evolution. The objective of this paper is to explore whether BSP2 and TSL6 originated by their local adaptive evolution from the specific isolates of Beijing and T families in Chongqing. Methods The genotyping data of 16 090 MTB isolates were collected from laboratory collection, published literatures and SITVIT database before subjected to Bayesian population structure analysis based on 24-loci MIRU-VNTR. Spacer Oligonucleotide Forest (Spoligoforest) and 24-loci MIRU-VNTR-based minimum spanning tree (MST) were used to explore their phylogenetic pathways, with Bayesian demographic analysis for exploring the recent demographic change of TSL6. Results Phylogenetic analysis suggested that BSP2 and TSL6 in Chongqing may evolve from BSP4 and TSL5, respectively, which were locally predominant in Tibet and Jiangsu, respectively. Spoligoforest showed that Beijing and T families were genetically distant, while the convergence of the MIRU-VNTR pattern of BSP2 and TSL6 was revealed by WebLogo. The demographic analysis concluded that the recent demographic change of TSL6 might take 111.25 years. Conclusions BSP2 and TSL6 clades might originate from BSP4 and TSL5, respectively, by their local adaptive evolution in Chongqing. Our study suggests MIRU-VNTR be combined with other robust markers for a more comprehensive genotyping approach, especially for families of clades with the same MIRU-VNTR pattern.
Collapse
Affiliation(s)
- Peng-Kuan Liang
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Chao Zheng
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.,Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of SUSTC, Shenzhen, 518020, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Xu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Zhe-Ze Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.,School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chang-Song Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - Chang-He Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Abymes Cedex, Guadeloupe, France
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China.
| |
Collapse
|
8
|
Tasaka M, Koeda E, Takahashi C, Ota M. A tuberculosis outbreak in a psychiatric hospital: Kanagawa, Japan, 2012. Epidemiol Infect 2020; 148:e7. [PMID: 31933448 PMCID: PMC7019127 DOI: 10.1017/s0950268819002206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/18/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022] Open
Abstract
In January 2012, an inpatient in a ward of a psychiatric hospital with nearly 300 beds in Kanagawa, Japan, was diagnosed with sputum smear-positive pulmonary tuberculosis (TB). Here we characterise the TB outbreak cases and identify the population at risk. TB was diagnosed when a person tested bacteriologically positive for TB or was determined to have TB by a physician. A latent TB infection (LTBI) case was defined as a person tested positive by interferon-gamma release assay (IGRA). A total of 125 contacts were screened via IGRA and chest X-ray. In all, 15 TB and 15 LTBI cases were found by the end of October 2012, and thereafter no additional TB case was found. Of the 15 TB cases, eight were culture-positive and all the isolates had identical variable number tandem repeat patterns. Twenty-four of the 56 (42.9%, 95% confidence interval (CI) 29.7-56.8) inpatients in the ward had either TB or LTBI with a relative risk of 8.6 (95% CI 1.2-59.3), compared to the staff members who did not work full-time in the ward (one of 20 (5.0%, 95% CI 0.0-24.9)). We recommend that psychiatric hospitals conduct periodic screening of staff members and inpatients for TB to prevent nosocomial TB outbreaks.
Collapse
Affiliation(s)
- M. Tasaka
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - E. Koeda
- Kanagawa Prefectural Kamakura Public Health and Welfare Center, Misaki Branch, Kanagawa, Japan
| | - C. Takahashi
- Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - M. Ota
- Research Institute of Tuberculosis, Kiyose City, Tokyo, Japan
| |
Collapse
|
9
|
Genotyping of Mycobacterium tuberculosis spreading in Hanoi, Vietnam using conventional and whole genome sequencing methods. INFECTION GENETICS AND EVOLUTION 2019; 78:104107. [PMID: 31706080 DOI: 10.1016/j.meegid.2019.104107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Hanoi is the capital of Vietnam, one of the 30 countries with a high tuberculosis (TB) burden. Fundamental data on the molecular epidemiology of the disease is required for future TB management. To identify lineages and genotypes of Mycobacterium tuberculosis (Mtb), conventional genotyping data from clinical isolates of the Hanoi area was compared with whole genome sequencing (WGS) analysis from 332 of 470 samples. It was obtained from lineage-specific single nucleotide variants (SNVs), large sequence polymorphisms, spoligotyping, and variable number of tandem repeats (VNTR) analysis using mycobacterial interspersed repetitive unit (MIRU) and Japan anti-tuberculosis association (JATA) locus sets. This information was directly compared with results obtained from WGS. Mini-satellite repeat unit variants were identified using BLAST search against concatenated short read sequences, the RepUnitTyping tool. WGS analysis revealed that the Mtb strains tested are diverse and classified into lineage (L) 1, 2 and 4 (24.7, 57.2 and 18.1% respectively). The majority of the L2 strains were further divided into ancient and modern Beijing genotypes, and most of the L1 group were EAI4_VNM strains. Although conventional PCR-based genotyping results were mostly consistent with information obtained through WGS analysis, in-depth analysis identified aberrant deletions and spacers that may cause discordance. JATA-VNTR sets, including hypervariable loci, separated large Beijing genotypic clusters generated by MIRU15 into smaller groups. The distribution of repeat unit variants observed within 33 VNTR loci showed clear variation depending on the three lineages. WGS-based pairwise-SNV differences within VNTR-defined genotypic clusters were greater in L1 than in L2 and L4 (P = .001). Direct comparisons between results of PCR-based genotyping and in silico analysis of WGS data would bridge a gap between classical and modern technologies during this transition period, and provide further information on Mtb genotypes in specific geographical areas.
Collapse
|
10
|
Izumi K, Murase Y, Uchimura K, Kaebeta A, Ishihara K, Kaguraoka S, Takii T, Ohkado A. Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in Tokyo, Japan: a population-based molecular epidemiological study. BMJ Open 2019; 9:e029295. [PMID: 31076478 PMCID: PMC6527980 DOI: 10.1136/bmjopen-2019-029295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Molecular epidemiology is a promising tool for understanding tuberculosis transmission dynamics but has not been sufficiently utilised in Asian countries including Japan. The aim of this study was to estimate the proportion of TB cases attributable to recent transmission and to identify risk factors of genotype clustering and the development of large clusters within 3 years in an urban setting in Japan. DESIGN AND SETTING Long-term cross-sectional observational study combining the characteristics of patients with culture-positive TB notified in Shinjuku City, Tokyo (2002-2013), with genotype data of Mycobacterium tuberculosis. PRIMARY OUTCOME MEASURE: Genotype clustering rate and association between genotype clustering status and explanatory variables. RESULTS Among 1025 cases, 515 were localised within 113 genotype clusters. The overall clustering rate was 39.2%. Significantly higher rates were found in patients aged <40 years (adjusted odds ratio (aOR)=1.73, 95% CI 1.23 to 2.44), native Japanese individuals (aOR=3.90, 95% CI 2.27 to 6.72), full-time workers (aOR=1.63, 95% CI 1.17 to 2.27), part-time/daily workers (aOR=2.20, 95% CI 1.35 to 3.58), individuals receiving public assistance (aOR=1.81, 95% CI 1.15 to 2.84) and homeless people (aOR=1.63, 95% CI 1.02 to 2.62). A significant predictor of large genotype clusters within 3 years was a registration interval ≤2 months between the first two cases in a cluster. CONCLUSION Our results indicated that a large proportion of patients with culture-positive TB were involved in the recent TB transmission chain. Foreign-born persons still have a limited impact on transmission in the Japanese urban setting. Intensified public health interventions, including the active case finding, need to focus on individuals with socioeconomic risk factors that are significantly associated with tuberculosis transmission and clusters with shorter registration intervals between the first two cases.
Collapse
Affiliation(s)
- Kiyohiko Izumi
- Department of Epidemiology and Clinical Research, The Research Institute of Tuberculosis, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Kiyose, Japan
| | - Kazuhiro Uchimura
- Department of Epidemiology and Clinical Research, The Research Institute of Tuberculosis, Kiyose, Japan
| | - Aya Kaebeta
- Health Department, Shinjuku Public Health Center, Shinjuku, Japan
| | - Keiko Ishihara
- Health Department, Shinjuku Public Health Center, Shinjuku, Japan
| | - Sumi Kaguraoka
- Health Department, Shinjuku Public Health Center, Shinjuku, Japan
| | - Takemasa Takii
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Kiyose, Japan
| | - Akihiro Ohkado
- Department of Epidemiology and Clinical Research, The Research Institute of Tuberculosis, Kiyose, Japan
| |
Collapse
|
11
|
A case of Mycobacterium tuberculosis laboratory cross-contamination. J Infect Chemother 2019; 25:610-614. [PMID: 30982725 DOI: 10.1016/j.jiac.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/23/2022]
Abstract
SETTING A laboratory cross-contamination event was suspected because Mycobacterium tuberculosis was unexpectedly detected at a high incidence in the cultures of several clinical specimens at the National Hospital Organization, Tokyo National Hospital, Japan. OBJECTIVE To describe a case of Mycobacterium tuberculosis laboratory cross-contamination. DESIGN We reviewed the medical records of 20 patients whose clinical specimens were suspected to have been contaminated by Mycobacterium tuberculosis. Variable number of tandem repeat analysis with 15 loci, the Japan Anti-Tuberculosis Association-12, and three additional hyper-variable loci, was performed to identify the cross-contamination event. RESULTS The clinical, laboratory, and variable number of tandem repeat data revealed that the cross-contamination had possibly originated from one strongly positive specimen, resulting in false-positive results in 11 other specimens, including a case treated with anti-tuberculosis drugs. CONCLUSION Clinical and laboratory data must be re-evaluated when cross-contamination is suspected and variable number of tandem repeat analysis should be used to confirm cross-contamination. Furthermore, original isolates should be stored appropriately, without sub-culturing and genotyping should be performed at the earliest possible for better utilization of variable number of tandem repeat for the identification of cross-contamination.
Collapse
|
12
|
Li D, Song Y, Yang P, Li X, Zhang AM, Xia X. Genetic diversity and drug resistance of Mycobacterium tuberculosis in Yunnan, China. J Clin Lab Anal 2019; 33:e22884. [PMID: 30896073 PMCID: PMC6595362 DOI: 10.1002/jcla.22884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 12/03/2022] Open
Abstract
Background China is a country with high burden of tuberculosis (TB), especially drug‐resistant TB (DR‐TB), which is still a serious health problem in Yunnan Province. Mycobacterium tuberculosis (MTB) is the pathogenic microorganism of TB. The epidemiological characteristics of MTB strains in local areas need to be described. Methods A total of 430 clinical MTB isolates were collected from Yunnan Province and genotyped through the method of 24‐locus mycobacterial interspersed repetitive unit‐variable number tandem DNA repeats (MIRU‐VNTR). Results The genotypes of the 24 loci showed abundantly genetic diversity, and allelic diversity index (h) of these loci varied from 0.012 to 0.817. Among the 430 strains, 30 clusters and 370 unique genotypes were identified. Beijing family was the predominant lineage (70.47%) in Yunnan MTB strains, and the other lineages contained T family (5.81%), MANU2 (0.70%), LAM (3.26%), CAS (0.23%), New‐1 (8.37%), and some unknown clades (11.16%). A total of 74 TB strains were identified as drug resistance through drug susceptibility testing (DST), including 38 multidrug‐resistant TB (MDR‐TB) and 36 single‐drug‐resistant TB (SDR‐TB). The frequency of MDR‐TB strains was significantly higher in Beijing family (10.89%) than that in non‐Beijing family (3.94%, P = 0.032). Conclusions Although MTB strains showed high genetic diversity in Yunnan, China, the Beijing family was still the dominant strain. A high frequency of MDR‐TB strains was recorded in the Beijing family.
Collapse
Affiliation(s)
- Daoqun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Pengpeng Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaofei Li
- Department of Clinical Laboratory, The Third People's Hospital of Kunming City, Kunming, China
| | - A-Mei Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Yamamoto K, Takeuchi S, Seto J, Shimouchi A, Komukai J, Hase A, Nakamura H, Umeda K, Hirai Y, Matsumoto K, Ogasawara J, Wada T, Yamamoto T. Longitudinal genotyping surveillance of Mycobacterium tuberculosis in an area with high tuberculosis incidence shows high transmission rate of the modern Beijing subfamily in Japan. INFECTION GENETICS AND EVOLUTION 2018; 72:25-30. [PMID: 30261265 DOI: 10.1016/j.meegid.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/26/2022]
Abstract
Tuberculosis (TB) is a severe and wide-spread infectious disease worldwide. The modern Beijing subfamily, one lineage of M. tuberculosis, reportedly has high pathogenicity and transmissibility. This study used a molecular epidemiological approach to investigate the transmissibility of the modern Beijing subfamily in the Airin area of Osaka City, Japan. During 2006-2016, we collected 596 M. tuberculosis clinical isolates in the Airin area, Osaka city, Japan. We analyzed the 24-locus variable number of tandem repeats typing optimized for the Beijing family of isolates, M. tuberculosis lineage, and patient epidemiological data. The proportion of the modern Beijing subfamily was significantly higher not only than previously obtained data for the Airin area: it was also higher than the nationwide in Japan. The rate of recent clusters, defined as a variable number of tandem repeats profile identified within two years, of the modern Beijing subfamily was significantly higher than that the rate of recent clusters of the ancient Beijing subfamily. Results suggest that TB control measures formulated with attention to the modern Beijing subfamily might be an important benchmark to understanding recent TB transmission in the area.
Collapse
Affiliation(s)
- Kaori Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Shouhei Takeuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, 1-1-1 Manabino, Nagayo, Nishisonogi, Nagasaki 851-2195, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Akira Shimouchi
- Nishinari Ward Office, 1-15-17 Taishi-cho, Nishinari-ku, Osaka 557-0002, Japan
| | - Jun Komukai
- Osaka City Public Health Center, 1-27-1000 Asahimachi, Abeno-ku, Osaka 545-0051, Japan
| | - Atsushi Hase
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Yuki Hirai
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Kenji Matsumoto
- Osaka City Public Health Center, 1-27-1000 Asahimachi, Abeno-ku, Osaka 545-0051, Japan
| | - Jun Ogasawara
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Taro Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
14
|
Shi J, Zheng D, Zhu Y, Ma X, Wang S, Li H, Xing J. Role of MIRU-VNTR and spoligotyping in assessing the genetic diversity of Mycobacterium tuberculosis in Henan Province, China. BMC Infect Dis 2018; 18:447. [PMID: 30176820 PMCID: PMC6122615 DOI: 10.1186/s12879-018-3351-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis remains a serious threat to human health as an infectious disease in China. Henan, a most populated province in China, has a high incidence of tuberculosis (TB). Though the genetic diversity of Mycobacterium tuberculosis (MTB) has been investigated in many regions, there have been only a few studies on the molecular characteristics and drug resistance phenotypes in Henan. This is the first study on the genetic profile of MTB from Henan. Methods A total of 668 MTB isolates from various areas were genotyped with spoligotyping and 26-locus MIRU-VNTR (classical 24-locus MIRU-VNTR and 2 other loci). The association between TB spoligotype signatures and drug-resistant profiles was analysed. Results Our data revealed that MTB isolates circulating in Henan had a high degree of genetic variation. The Beijing family was the most predominant genotype (83.53%,n = 558), and the typical Beijing type(ST1) was the major sublineage (81.73%,n = 546). In total,668 isolates were divided into 567 different types, forming 38 clusters (2–15 isolates per cluster), and 529 unique types by 26-locus MIRU-VNTR analysis. There was no correlation between the Beijing family and gender, age at diagnosis or treatment history, whereas the Beijing family was significantly associated with all four first-line drug resistance and multidrug-resistant phenotypes. For these samples, 15 of 26 MIRU-VNTR loci had high or moderate discriminatory power according to the Hunter-Gaston discriminatory index. A combination of the 10 most polymorphic loci had similar discriminatory power as the 26-locus set. Conclusion The Beijing genotype is the most prevalent family. Ten-locus MIRU-VNTR in combination with spoligotyping can efficiently classify the molecular type of MTB in Henan Province. Electronic supplementary material The online version of this article (10.1186/s12879-018-3351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Shi
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Danwei Zheng
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Yankun Zhu
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Xiaoguang Ma
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Shaohua Wang
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| | - Hui Li
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China.
| | - Jin Xing
- Henan Province Center for Disease Control and Prevention, Zheng Zhou, 450016, Henan, People's Republic of China
| |
Collapse
|
15
|
Seto J, Wada T, Suzuki Y, Ikeda T, Mizuta K, Yamamoto T, Ahiko T. Mycobacterium tuberculosis Transmission among Elderly Persons, Yamagata Prefecture, Japan, 2009-2015. Emerg Infect Dis 2018; 23:448-455. [PMID: 28221133 PMCID: PMC5382749 DOI: 10.3201/eid2303.161571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In many countries with low to moderate tuberculosis (TB) incidence, cases have shifted to elderly persons. It is unclear, however, whether these cases are associated with recent Mycobacterium tuberculosis transmission or represent reactivation of past disease. During 2009–2015, we performed a population-based TB investigation in Yamagata Prefecture, Japan, using in-depth contact tracing and 24-loci variable-number tandem-repeat typing optimized for Beijing family M. tuberculosis strains. We analyzed 494 strains, of which 387 (78.3%) were derived from elderly patients. Recent transmission with an epidemiologic link was confirmed in 22 clusters (70 cases). In 17 (77.3%) clusters, the source patient was elderly; 11 (64.7%) of the 17 clusters occurred in a hospital or nursing home. In this setting, the increase in TB cases was associated with M. tuberculosis transmissions from elderly persons. Prevention of transmission in places where elderly persons gather will be an effective strategy for decreasing TB incidence among predominantly elderly populations.
Collapse
|
16
|
Prediction of Local Transmission of Mycobacterium tuberculosis Isolates of a Predominantly Beijing Lineage by Use of a Variable-Number Tandem-Repeat Typing Method Incorporating a Consensus Set of Hypervariable Loci. J Clin Microbiol 2017; 56:JCM.01016-17. [PMID: 29046413 DOI: 10.1128/jcm.01016-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.
Collapse
|
17
|
Singhal P, Dixit P, Singh P, Jaiswal I, Singh M, Jain A. A study on pre-XDR & XDR tuberculosis & their prevalent genotypes in clinical isolates of Mycobacterium tuberculosis in north India. Indian J Med Res 2017; 143:341-7. [PMID: 27241648 PMCID: PMC4892081 DOI: 10.4103/0971-5916.182625] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background & objectives: Pre-extensively drug resistant (pre-XDR) and extensively drug resistant tuberculosis (XDR-TB) have been areas of growing concern, and are posing threat to global efforts of TB control. The present study was planned to study the presence of pre-XDR and XDR Mycobacterium tuberculosis and their genotypes in clinical isolates obtained from previously treated cases of pulmonary TB. Methods: A total of 219 isolates obtained from previously treated cases of pulmonary TB were subjected to first-line (streptomycin, isoniazid, rifampicin and ethambutol) and second-line (ofloxacin, kanamycin, capreomycin and amikacin) drug susceptibility testing on solid Lowenstein-Jensen medium by proportion method. Genotyping was done for pre-XDR and XDR-TB isolates using 12 loci Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR). Results: Multi-drug resistance was observed in 39.7 per cent (87/219) isolates. Pre-XDR and XDR M. tuberculosis isolates amongst 87 multi-drug resistant (MDR) TB isolates were 43 (49.4%) and 10 (11.4%), respectively. Two most dominant genotypes among pre-XDR and XDR M. tuberculosis isolates were Beijing and Delhi/CAS types. Interpretation & conclusions: Resistance to second-line anti-tubercular drugs should be routinely assessed in areas endemic for TB. Similar genotype patterns were seen in pre-XDR and XDR-TB isolates. Beijing and Delhi/CAS were predominant genotypes.
Collapse
Affiliation(s)
- Parul Singhal
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Pratima Dixit
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Pooja Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Indu Jaiswal
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Mastan Singh
- Department of Microbiology, King George's Medical University, Lucknow, India
| | - Amita Jain
- Department of Microbiology, King George's Medical University, Lucknow, India
| |
Collapse
|
18
|
Seto J, Wada T, Suzuki Y, Ikeda T, Mizuta K, Mitarai S, Ahiko T. Convenient PCR method for variable-number tandem-repeat typing of Mycobacterium tuberculosis clinical isolates. J Microbiol Methods 2017; 139:12-14. [PMID: 28438643 DOI: 10.1016/j.mimet.2017.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
Variable-number tandem-repeat typing for Mycobacterium tuberculosis clinical isolates contributes to evidence-based tuberculosis control. However, cumbersome PCR procedures for the typing have disturbed routine analyses. We proposed a convenient PCR method for the typing using a PCR master mix that provides rapidity and long-term stability of the frozen PCR cocktail.
Collapse
Affiliation(s)
- Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan.
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yu Suzuki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| |
Collapse
|
19
|
Chen H, He L, Huang H, Shi C, Ni X, Dai G, Ma L, Li W. Mycobacterium tuberculosis Lineage Distribution in Xinjiang and Gansu Provinces, China. Sci Rep 2017; 7:1068. [PMID: 28432321 PMCID: PMC5430859 DOI: 10.1038/s41598-017-00720-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) genotyping has dramatically improved the understanding of the epidemiology of tuberculosis (TB). In this study, 187 M. tuberculosis isolates from Xinjiang Uygur Autonomous Region (Xinjiang) and Gansu province in China were genotyped using large sequence polymorphisms (LSPs) and variable number tandem repeats (VNTR). Ten isolates, which represent major nodes of VNTR-based minimum spanning tree, were selected and subsequently subjected to multi-locus sequence analyses (MLSA) that include 82 genes. Based on a robust lineage assignment, we tested the association between lineages and clinical characteristics by logistic regression. There are three major lineages of M. tuberculosis prevalent in Xinjiang, viz. the East Asian Lineage 2 (42.1%; 56/133), the Euro-American Lineage 4 (33.1%; 44/133), and the Indian and East African Lineage 3 (24.8%; 33/133); two lineages prevalent in Gansu province, which are the Lineage 2 (87%; 47/54) and the Lineage 4 (13%; 7/54). The topological structures of the MLSA-based phylogeny support the LSP-based identification of M. tuberculosis lineages. The statistical results suggest an association between the Lineage 2 and the hemoptysis/bloody sputum symptom, fever in Uygur patients. The pathogenicity of the Lineage 2 remains to be further investigated.
Collapse
Affiliation(s)
- Haixia Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li He
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hairong Huang
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Chengmin Shi
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xumin Ni
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Guangming Dai
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Liang Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital MedicalUniversity, Beijing, 100069, China.
| |
Collapse
|
20
|
Typing Method for the QUB11a Locus of Mycobacterium tuberculosis: IS 6110 Insertions and Tandem Repeat Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5216530. [PMID: 27812529 PMCID: PMC5080463 DOI: 10.1155/2016/5216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022]
Abstract
QUB11a is used as a locus for variable number of tandem repeats (VNTR) analysis of Mycobacterium tuberculosis Beijing lineage. However, amplification of QUB11a occasionally produces large fragments (>1,400 bp) that are not easily measured by capillary electrophoresis because of a lack of the typical stutter peak patterns that are used for counting repeat numbers. IS6110 insertion may complicate VNTR analysis of large QUB11a fragments in M. tuberculosis. We established a method for determining both tandem repeat numbers and IS6110 insertion in the QUB11a locus of M. tuberculosis using capillary electrophoresis analysis and BsmBI digestion. All 29 large QUB11a fragments (>1,200 bp) investigated contained IS6110 insertions and varied in the number of repeats (18 patterns) and location of IS6110 insertions. This method allows VNTR analysis with high discrimination.
Collapse
|
21
|
Sekizuka T, Yamashita A, Murase Y, Iwamoto T, Mitarai S, Kato S, Kuroda M. TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing. PLoS One 2015; 10:e0142951. [PMID: 26565975 PMCID: PMC4643978 DOI: 10.1371/journal.pone.0142951] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Yoshiro Murase
- Molecular Epidemiology Division, The Research Institute of Tuberculosis/Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Satoshi Mitarai
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Seiya Kato
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
An investigation on the population structure of mixed infections of Mycobacterium tuberculosis in Inner Mongolia, China. Tuberculosis (Edinb) 2015; 95:695-700. [PMID: 26542224 DOI: 10.1016/j.tube.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Mixed infections of Mycobacterium tuberculosis strains have attracted more attention due to their increasing frequencies worldwide, especially in the areas of high tuberculosis (TB) prevalence. In this study, we accessed the rates of mixed infections in a setting with high TB prevalence in Inner Mongolia Autonomous Region of China. METHODS A total of 384 M. tuberculosis isolates from the local TB hospital were subjected to mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing method. The single clones of the strains with mixed infections were separated by subculturing them on the Löwenstein-Jensen medium. RESULTS Of these 384 isolates, twelve strains (3.13%) were identified as mixed infections by MIRU-VNTR. Statistical analysis indicated that demographic characteristics and drug susceptibility profiles showed no statistically significant association with the mixed infections. We further subcultured the mixed infection strains and selected 30 clones from the subculture for each mixed infection. Genotyping data revealed that eight (8/12, 66.7%) strains with mixed infections had converted into single infection through subculture. The higher growth rate was associated with the increasing proportion of variant subpopulation through subculture. CONCLUSIONS In conclusion, by using the MIRU-VNTR method, we demonstrate that the prevalence of mixed infections in Inner Mongolia is low. Additionally, our findings reveal that the subculture changes the population structures of mixed infections, and the subpopulation with higher growth rate show better fitness, which is associated with high proportion among the population structure after subculture. This study highlights that the use of clinical specimens, rather than subcultured isolates, is preferred to estimate the prevalence of mixed infections in the specific regions.
Collapse
|
23
|
Maeda S, Hang NTL, Lien LT, Thuong PH, Hung NV, Hoang NP, Cuong VC, Hijikata M, Sakurada S, Keicho N. Mycobacterium tuberculosis strains spreading in Hanoi, Vietnam: Beijing sublineages, genotypes, drug susceptibility patterns, and host factors. Tuberculosis (Edinb) 2015; 94:649-56. [PMID: 25459163 DOI: 10.1016/j.tube.2014.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/20/2014] [Accepted: 09/28/2014] [Indexed: 01/13/2023]
Abstract
Beijing genotype strains are divided into two major sublineages, ancient (atypical) and modern (typical) types, but their phenotypic variations remain largely unknown. Mycobacterium tuberculosis (MTB) isolates from Hanoi, Vietnam, were analyzed by single-nucleotide polymorphisms and spoligotyping. Patient information and drug susceptibility patterns were obtained. Genetic clustering was assessed by variable number of tandem repeat (VNTR) locus sets. Multivariate analysis was also performed to investigate factors possibly associated with these sublineages. Of the 465 strains tested, 175 (37.6%) belonged to the ancient Beijing sublineage and 97 (20.9%) were of the modern Beijing sublineage. Patients with the Beijing genotype were significantly younger and more undernourished than those with non-Beijing genotype. The proportion of clustered strains calculated from 15 locus-optimized mycobacterial interspersed repetitive units [optimized-(MIRU)15]-, optimized-MIRU24-, optimized-MIRU28-, Japan Anti-Tuberculosis Association (JATA)15-, and JATA18-VNTRs were 55.7%, 49.2%, 33.8%, 44.5%, and 32.0%, respectively. Ancient and modern Beijing genotype strains were more frequently clustered than non-Beijing genotype strains, even when using VNTR sets with high discriminatory power. Isoniazid and streptomycin resistance tended to be more frequently observed in ancient Beijing strains than in modern Beijing strains and others. Our findings may provide insight into area-dependent differences in Beijing family strain characteristics.
Collapse
|
24
|
Seto J, Wada T, Iwamoto T, Tamaru A, Maeda S, Yamamoto K, Hase A, Murakami K, Maeda E, Oishi A, Migita Y, Yamamoto T, Ahiko T. Phylogenetic assignment of Mycobacterium tuberculosis Beijing clinical isolates in Japan by maximum a posteriori estimation. INFECTION GENETICS AND EVOLUTION 2015. [PMID: 26220897 DOI: 10.1016/j.meegid.2015.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intra-species phylogeny of Mycobacterium tuberculosis has been regarded as a clue to estimate its potential risk to develop drug-resistance and various epidemiological tendencies. Genotypic characterization of variable number of tandem repeats (VNTR), a standard tool to ascertain transmission routes, has been improving as a public health effort, but determining phylogenetic information from those efforts alone is difficult. We present a platform based on maximum a posteriori (MAP) estimation to estimate phylogenetic information for M. tuberculosis clinical isolates from individual profiles of VNTR types. This study used 1245 M. tuberculosis clinical isolates obtained throughout Japan for construction of an MAP estimation formula. Two MAP estimation formulae, classification of Beijing family and other lineages, and classification of five Beijing sublineages (ST11/26, STK, ST3, and ST25/19 belonging to the ancient Beijing subfamily and modern Beijing subfamily), were created based on 24 loci VNTR (24Beijing-VNTR) profiles and phylogenetic information of the isolates. Recursive estimation based on the formulae showed high concordance with their authentic phylogeny by multi-locus sequence typing (MLST) of the isolates. The formulae might further support phylogenetic estimation of the Beijing lineage M. tuberculosis from the VNTR genotype with various geographic backgrounds. These results suggest that MAP estimation can function as a reliable probabilistic process to append phylogenetic information to VNTR genotypes of M. tuberculosis independently, which might improve the usage of genotyping data for control, understanding, prevention, and treatment of TB.
Collapse
Affiliation(s)
- Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan.
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, 4-6 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Aki Tamaru
- Department of Microbiology, Osaka Prefectural Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Shinji Maeda
- School of Pharmacy, Hokkaido Pharmaceutical University, 7-15-4-1 Maeda, Teine-ku, Sapporo, Hokkaido 006-8590, Japan
| | - Kaori Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan; Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Atsushi Hase
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan
| | - Koichi Murakami
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Eriko Maeda
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Akira Oishi
- Department of Health Science, Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Yuji Migita
- Department of Microbiology, Nagasaki Prefectural Institute for Environmental Research and Public Health, 2-1306-11 Ikeda, Ohmura, Nagasaki 856-0026, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of International Health, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata 990-0031, Japan
| |
Collapse
|
25
|
Yokoyama E, Hachisu Y, Iwamoto T, Nakanishi N, Arikawa K, Wada T, Seto J, Kishida K. Comparative analysis of Mycobacterium tuberculosis Beijing strains isolated in three remote areas of Japan. INFECTION GENETICS AND EVOLUTION 2015; 34:444-9. [PMID: 26096775 DOI: 10.1016/j.meegid.2015.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
A quantitative and qualitative comparison was carried out of Mycobacterium tuberculosis Beijing strains isolated in three remote areas of Japan. A total of 452 strains from Chiba Prefecture, 75 from Yamagata Prefecture, and 315 from Kobe City were analyzed for 24 loci by variable number of tandem repeats typing (24(Beijing)-VNTR). All strains were classified in six Beijing subgroups (B(SUB)), B1 to B5 and T, based on a minimum spanning tree reconstructed using data of a standard set of 15 VNTR loci. No significant difference was found in the distribution of strains in the B(SUB) in the three areas, with one exception due to a B5 outbreak in Yamagata, indicating no significant quantitative difference in the B(SUB) in the three areas (P<0.01, Chi-square test). In addition, when strains in each B(SUB) isolated in the three areas were mixed and standardized index of association (I(A)(s)) and variance (Φ(PT)) values were calculated, no significant qualitative difference in the B(SUB) in the three areas was found. These results suggested that the B(SUB) diverged prior to the introduction of M. tuberculosis Beijing strains into Japan. Differences in the distribution of strains in each B(SUB) between Japan and continental Asian countries suggested there had been genetic drift in the continental Asian countries in which B4 had been dominant.
Collapse
Affiliation(s)
- Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan.
| | - Yushi Hachisu
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Tomotada Iwamoto
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Noriko Nakanishi
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Kentaro Arikawa
- Department of Infectious Disease, Kobe Institute of Health, Hyogo, Japan
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Kazunori Kishida
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| |
Collapse
|
26
|
Sun Z, Li W, Xu S, Huang H. The discovery, function and development of the variable number tandem repeats in different Mycobacterium species. Crit Rev Microbiol 2015; 42:738-58. [PMID: 26089025 DOI: 10.3109/1040841x.2015.1022506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The method of genotyping by variable number tandem repeats (VNTRs) facilitates the epidemiological studies of different Mycobacterium species worldwide. Until now, the VNTR method is not fully understood, for example, its discovery, function and classification. The inconsistent nomenclature and terminology of VNTR is especially confusing. In this review, we first describe in detail the VNTRs in Mycobacterium tuberculosis (M. tuberculosis), as this pathogen resulted in more deaths than any other microbial pathogen as well as for which extensive studies of VNTRs were carried out, and then we outline the recent progress of the VNTR-related epidemiological research in several other Mycobacterium species, such as M. abscessus, M. africanum, M. avium, M. bovis, M. canettii, M. caprae, M. intracellulare, M. leprae, M. marinum, M. microti, M. pinnipedii and M. ulcerans from different countries and regions. This article is aimed mainly at the practical notes of VNTR to help the scientists in better understanding and performing this method.
Collapse
Affiliation(s)
- Zhaogang Sun
- a Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistance Tuberculosis Research , Beijing , China and
| | - Weimin Li
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Shaofa Xu
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| | - Hairong Huang
- b Beijing Chest Hospital, National Tuberculosis Clinical Laboratory, Capital Medical University , Beijing , China
| |
Collapse
|
27
|
Disratthakit A, Meada S, Prammananan T, Thaipisuttikul I, Doi N, Chaiprasert A. Genotypic diversity of multidrug-, quinolone- and extensively drug-resistant Mycobacterium tuberculosis isolates in Thailand. INFECTION GENETICS AND EVOLUTION 2015; 32:432-9. [DOI: 10.1016/j.meegid.2015.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022]
|
28
|
Okumura K, Kato M, Kirikae T, Kayano M, Miyoshi-Akiyama T. Construction of a virtual Mycobacterium tuberculosis consensus genome and its application to data from a next generation sequencer. BMC Genomics 2015; 16:218. [PMID: 25879806 PMCID: PMC4425900 DOI: 10.1186/s12864-015-1368-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Mycobacterium tuberculosis isolates are consisted of several different lineages and the epidemiology analyses are usually assessed relative to a particular reference genome, M. tuberculosis H37Rv, which might introduce some biased results. Those analyses are essentially based genome sequence information of M. tuberculosis and could be performed in sillico in theory, with whole genome sequence (WGS) data available in the databases and obtained by next generation sequencers (NGSs). As an approach to establish higher resolution methods for such analyses, whole genome sequences of the M. tuberculosis complexes (MTBCs) strains available on databases were aligned to construct virtual reference genome sequences called the consensus sequence (CS), and evaluated its feasibility in in sillico epidemiological analyses. RESULTS The consensus sequence (CS) was successfully constructed and utilized to perform phylogenetic analysis, evaluation of read mapping efficacy, which is crucial for detecting single nucleotide polymorphisms (SNPs), and various MTBC typing methods virtually including spoligotyping, VNTR, Long sequence polymorphism and Beijing typing. SNPs detected based on CS, in comparison with H37Rv, were utilized in concatemer-based phylogenetic analysis to determine their reliability relative to a phylogenetic tree based on whole genome alignment as the gold standard. Statistical comparison of phylogenic trees based on CS with that of H37Rv indicated the former showed always better results that that of later. SNP detection and concatenation with CS was advantageous because the frequency of crucial SNPs distinguishing among strain lineages was higher than those of H37Rv. The number of SNPs detected was lower with the consensus than with the H37Rv sequence, resulting in a significant reduction in computational time. Performance of each virtual typing was satisfactory and accorded with those published when those are available. CONCLUSIONS These results indicated that virtual CS constructed from genome sequence data is an ideal approach as a reference for MTBC studies.
Collapse
Affiliation(s)
- Kayo Okumura
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Masako Kato
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Teruo Kirikae
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Mitsunori Kayano
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
29
|
Wada T, Iwamoto T, Tamaru A, Seto J, Ahiko T, Yamamoto K, Hase A, Maeda S, Yamamoto T. Clonality and micro-diversity of a nationwide spreading genotype of Mycobacterium tuberculosis in Japan. PLoS One 2015; 10:e0118495. [PMID: 25734518 PMCID: PMC4348518 DOI: 10.1371/journal.pone.0118495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as ‘M-strain’ has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypic markers will be an efficient strategy for the big data in various settings for public health actions against TB.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail:
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan
| | - Aki Tamaru
- Department of Microbiology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Junji Seto
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Tadayuki Ahiko
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Japan
| | - Kaori Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Atushi Hase
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Shinji Maeda
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Tokyo, Japan
| | - Taro Yamamoto
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
30
|
Teeter LD, Ha NP, Ma X, Wenger J, Cronin WA, Musser JM, Graviss EA. Evaluation of large genotypic Mycobacterium tuberculosis clusters: contributions from remote and recent transmission. Tuberculosis (Edinb) 2014; 93 Suppl:S38-46. [PMID: 24388648 DOI: 10.1016/s1472-9792(13)70009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tuberculosis genotypic clustering is used as a proxy for recent transmission. The association between clustering and recent transmission becomes problematic when the genotyping method lacks specificity in defining a cluster, as well as for clusters with extensive jurisdictional histories and/or common genotypes. We investigated the four largest spoligotype/12 loci MIRU-VNTR-defined clusters in Harris County, Texas from 2006-2012 to determine their historical contribution to tuberculosis morbidity, estimate the contributions from recent and remote transmission, and determine the impact of secondary genotyping on cluster definition. The clusters contained 189, 64, 51 and 38 cases. Each cluster was linked to cluster(s) previously identified by Houston Tuberculosis Initiative; 3 since 1995 and the fourth in 2002. Among cases for which timing of Mycobacterium tuberculosis transmission relative to tuberculosis disease could be ascertained, nearly equal proportions were associated with recent and remote transmission. The extent to which genotyping with an additional 12 MIRU-VNTR loci modified the cluster definition varied from little or no impact for the two smaller clusters to moderate impact for the larger clusters. Tuberculosis control measures to reduce morbidity associated with large clusters must involve strategies to identify and treat individuals who recently acquired infection, as well as persons infected for years.
Collapse
Affiliation(s)
- Larry D Teeter
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ngan P Ha
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xin Ma
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jane Wenger
- Mycobacteriology and Mycology Section, Microbial Diseases Laboratory, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Richmond, CA, USA
| | - Wendy A Cronin
- Center for TB Control and Prevention, Maryland Department of Health and Mental Hygiene, Baltimore, MD 21202, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Disease Research, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Liu Y, Tian M, Wang X, Wei R, Xing Q, Ma T, Jiang X, Li W, Zhang Z, Xue Y, Zhang X, Wang W, Wang T, Hong F, Zhang J, Wang S, Li C. Genotypic diversity analysis of Mycobacterium tuberculosis strains collected from Beijing in 2009, using spoligotyping and VNTR typing. PLoS One 2014; 9:e106787. [PMID: 25237849 PMCID: PMC4169523 DOI: 10.1371/journal.pone.0106787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
Background Tuberculosis (TB) is a serious problem in China. While there have been some studies on the nationwide genotyping of Mycobacterium tuberculosis (M. tuberculosis), there has been little detailed research in Beijing, the capital of China, which has a huge population. Here, M. tuberculosis clinical strains collected in Beijing during 2009 were genotyped by classical methods. Methodology/Principal Findings Our aim was to analyze the genetic diversity of M. tuberculosis strains within the Beijing metropolitan area. We characterized these strains using two standard methods, spoligotyping (n = 1585) and variable number of tandem repeat (VNTR) typing (n = 1053). We found that the most prominent genotype was Beijing family genotype. Other genotypes included the MANU, T and H families etc. Spoligotyping resulted in 137 type patterns, included 101 unclustered strains and 1484 strains clustered into 36 clusters. In VNTR typing analysis, we selected 12-locus (QUB-11b, MIRU10, Mtub21, MIRU 23, MIRU39, MIRU16, MIRU40, MIRU31, Mtub24, Mtub04, MIRU20, and QUB-4156c) and named it 12-locus (BJ) VNTR. VNTR resulted in 869 type patterns, included 796 unclustered strains and 257 strains clustered into 73 clusters. It has almost equal discriminatory power to the 24-locus VNTR. Conclusions/Significance Our study provides a detailed characterization of the genotypic diversity of M. tuberculosis in Beijing. Combining spoligotyping and VNTR typing to study the genotyping of M. tuberculosis gave superior results than when these techniques were used separately. Our results indicated that Beijing family strains were still the most prevalent M. tuberculosis in Beijing. Moreover, VNTR typing analyzing of M. tuberculosis strains in Beijing was successfully accomplished using 12-locus (BJ) VNTR. This method used for strains genotyping from the Beijing metropolitan area was comparable. This study will not only provide TB researchers with valuable information for related studies, but also provides guidance for the prevention and control of TB in Beijing.
Collapse
Affiliation(s)
- Yi Liu
- The Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Haidian District, Beijing, China; Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Miao Tian
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xueke Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Rongrong Wei
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Qing Xing
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Tizhuang Ma
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xiaoying Jiang
- Clinical Center on TB, China CDC, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Wensheng Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Zhiguo Zhang
- Beijing Changping Center for Tuberculosis Control and Prevention, Changping District, Beijing, PR China
| | - Yu Xue
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Tao Wang
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| | - Feng Hong
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Junjie Zhang
- The Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Haidian District, Beijing, China
| | - Sumin Wang
- Central Laboratory, Beijing Research Institute for Tuberculosis Control, Xicheng District, Beijing, PR China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, PR China
| |
Collapse
|
32
|
Ali A, Hasan Z, Jafri S, Inayat R, Hasan R. Mycobacterium tuberculosis Central Asian Strain (CAS) lineage strains in Pakistan reveal lower diversity of MIRU loci than other strains. Int J Mycobacteriol 2014; 3:108-16. [PMID: 26786332 DOI: 10.1016/j.ijmyco.2014.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) Central Asian Strain (CAS) lineage strains are predominant in South Asia. Mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing is an effective way of determining genetic diversity of strains. A maximum of 24 loci-based MIRU-VNTR typing can be used, however, it is important to investigate the relevance of specific MIRU loci for regional strains for more cost-effective MIRU typing. MIRU-VNTR typing was performed on MTB strains from Pakistan. Strains were comprised of CAS (n=113) and non-CAS lineages (n=87) - both multi-drug resistant (MDR) and drug susceptible. Hunter Gaston Discriminatory Index (HGDI) for each MIRU loci was interpreted as poor, moderate or highly discriminatory. Results were analyzed using Bionumerics software and miru-vntrplus database link. Clustering analysis revealed 185 different MIRU types. Eight clusters of 2 strains each were present amongst MDR (3 clusters) and drug susceptible (5 clusters) isolates. MDR clusters had orphan and Haarlem strains, whereas drug susceptible strain clusters were comprised of CAS and Beijing lineage strains. The HGDI for 15 loci-based MIRU typing of all isolates was 0.620, whereas HGDI for CAS was lower than non-CAS lineage strains (p-value: 0.023). HGDI of 8 MIRU-VNTR loci (Qub 26b, 10, 26, 4156, Mtub 04, 16, 31 and ETR-A) were all highly discriminatory. The average HGDI based on these 8 loci was significantly lower for CAS than non-CAS strains (P value: 0.03). The lower discriminatory index for CAS using both 15 and 8 MIRU loci-based analysis suggests less genetic diversity in these isolates than in other lineages. The eight highly discriminatory MIRU loci for CAS may help in monitoring the transmission of MTB strains in regions with high CAS lineage prevalence.
Collapse
Affiliation(s)
- Asho Ali
- Department of Pathology & Microbiology, Aga Khan University, Stadium Road, Karachi, Pakistan; School of Nursing & Midwifery, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Zahra Hasan
- Department of Pathology & Microbiology, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Sana Jafri
- Department of Pathology & Microbiology, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Raunaq Inayat
- Department of Pathology & Microbiology, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Rumina Hasan
- Department of Pathology & Microbiology, Aga Khan University, Stadium Road, Karachi, Pakistan.
| |
Collapse
|
33
|
Use of the VNTR typing technique to determine the origin of Mycobacterium tuberculosis strains isolated from Filipino patients in Korea. World J Microbiol Biotechnol 2014; 30:1625-31. [DOI: 10.1007/s11274-013-1588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
34
|
Asante-Poku A, Nyaho MS, Borrell S, Comas I, Gagneux S, Yeboah-Manu D. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana. PLoS One 2014; 9:e92675. [PMID: 24667333 PMCID: PMC3965448 DOI: 10.1371/journal.pone.0092675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Different combinations of variable number of tandem repeat (VNTR) loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC). Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. METHOD One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12") to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI). A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American) and 5 (M. africanum West African 1) strains from Ghana was defined based on the cumulative HGDI. RESULTS AND CONCLUSION Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%), and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9%) and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9%) and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Bacteriology Department, Noguchi Memorial institute For Medical Research, University of Ghana, Legon, Ghana
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michael Selasi Nyaho
- Bacteriology Department, Noguchi Memorial institute For Medical Research, University of Ghana, Legon, Ghana
- Biochemistry Department, University of Ghana, Legon, Ghana
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Iñaki Comas
- Genomics and Health Unit, Centre for Public Health Research, Valencia, Spain
- CIBER (Centros de Investigación Biomédica en Red) in Epidemiology and Public Health, Madrid, Spain
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial institute For Medical Research, University of Ghana, Legon, Ghana
- * E-mail:
| |
Collapse
|
35
|
Lee J, Kang H, Kim S, Yoo H, Kim HJ, Park YK. Optimal Combination of VNTR Typing for Discrimination of Isolated Mycobacterium tuberculosis in Korea. Tuberc Respir Dis (Seoul) 2014; 76:59-65. [PMID: 24624214 PMCID: PMC3948853 DOI: 10.4046/trd.2014.76.2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/04/2022] Open
Abstract
Background Variable-number tandem repeat (VNTR) typing is a promising method to discriminate the Mycobacterium tuberculosis isolates in molecular epidemiology. The purpose of this study is to determine the optimal VNTR combinations for discriminating isolated M. tuberculosis strains in Korea. Methods A total of 317 clinical isolates collected throughout Korea were genotyped by using the IS6110 restriction fragment length polymorphism (RFLP), and then analysed for the number of VNTR copies from 32 VNTR loci. Results The results of discriminatory power according to diverse combinations were as follows: 25 clusters in 83 strains were yielded from the internationally standardized 15 VNTR loci (Hunter-Gaston discriminatory index [HGDI], 0.9958), 25 clusters in 65 strains by using IS6110 RFLP (HGDI, 0.9977), 14 clusters in 32 strains in 12 hyper-variable VNTR loci (HGDI, 0.9995), 6 clusters in 13 strains in 32 VNTR loci (HDGI, 0.9998), and 7 clusters in 14 strains of both the 12 hyper-variable VNTR and IS6110 RFLP (HDGI, 0.9999). Conclusion The combination of 12 hyper-variable VNTR typing can be an effective tool for genotyping Korean M. tuberculosis isolates where the Beijing strains are predominant.
Collapse
Affiliation(s)
- Jihye Lee
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Heeyoon Kang
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Sarang Kim
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Heekyung Yoo
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Hee Jin Kim
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | | |
Collapse
|
36
|
Suitability of IS6110-RFLP and MIRU-VNTR for differentiating spoligotyped drug-resistant mycobacterium tuberculosis clinical isolates from Sichuan in China. BIOMED RESEARCH INTERNATIONAL 2014; 2014:763204. [PMID: 24724099 PMCID: PMC3958788 DOI: 10.1155/2014/763204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/19/2014] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
Abstract
Genotypes of Mycobacterium tuberculosis complex (MTBC) vary with the geographic origin of the patients and can affect tuberculosis (TB) transmission. This study was aimed to further differentiate spoligotype-defined clusters of drug-resistant MTBC clinical isolates split in Beijing (n = 190) versus non-Beijing isolates (n = 84) from Sichuan region, the second high-burden province in China, by IS6110-restriction fragment length polymorphism (RFLP) and 24-locus MIRU-VNTRs. Among 274 spoligotyped isolates, the clustering ratio of Beijing family was 5.3% by 24-locus MIRU-VNTRs versus 2.1% by IS6110-RFLP, while none of the non-Beijing isolates were clustered by 24-locus MIRU-VNTRs versus 9.5% by IS6110-RFLP. Hence, neither the 24-locus MIRU-VNTR was sufficient enough to fully discriminate the Beijing family, nor the IS6110-RFLP for the non-Beijing isolates. A region adjusted scheme combining 12 highly discriminatory VNTR loci with IS6110-RFLP was a better alternative for typing Beijing strains in Sichuan than 24-locus MIRU-VNTRs alone. IS6110-RFLP was for the first time introduced to systematically genotype MTBC in Sichuan and we conclude that the region-adjusted scheme of 12 highly discriminative VNTRs might be a suitable alternative to 24-locus MIRU-VNTR scheme for non-Beijing strains, while the clusters of the Beijing isolates should be further subtyped using IS6110-RFLP for optimal discrimination.
Collapse
|
37
|
Molecular epidemiology and genotyping of Mycobacterium tuberculosis isolated in Baghdad. BIOMED RESEARCH INTERNATIONAL 2014; 2014:580981. [PMID: 24719873 PMCID: PMC3955663 DOI: 10.1155/2014/580981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) remains a major health problem in Iraq but the strains responsible for the epidemic have been poorly characterized. Our aim was to characterize the TB strains circulating in Bagdad (Iraq). A total of 270 Mycobacterium tuberculosis complex (MTBC) strains isolated between 2010 and 2011 from TB patients attending the Center of Chest and Respiratory diseases in Baghdad were analyzed by Spoligotyping. The analysis indicated that 94.1% of the isolates belong to known genotype clades: CAS 39.6%, ill-defined T clade 29.6%, Manu 7.4%, Haarlem 7%, Ural 4.1%, LAM 3.3%, X 0.7%, LAM7-TUR 0.7%, EAI 0.7%, S 0.7%, and unknown 5.9%. Comparison with the international multimarker database SITVIT2 showed that SIT 309 (CAS1-Delhi) and SIT1144 (T1) were the most common types. In addition, 44 strains were included in SITVIT2 database under 16 new Spoligotype International Types (SITs); of these, 6 SITs (SIT3346, SIT3497, SIT3708, SIT3790, SIT3791, and SIT3800) (n = 32 strains) were created within the present study and 10 were created after a match with an orphan in the database. By using 24-loci MIRU-VNTR-typing on a subset of 110 samples we found a high recent transmission index (RTI) of 33.6%. In conclusion, we present the first unifying framework for both epidemiology and evolutionary analysis of M. tuberculosis in Iraq.
Collapse
|
38
|
Luo T, Yang C, Pang Y, Zhao Y, Mei J, Gao Q. Development of a hierarchical variable-number tandem repeat typing scheme for Mycobacterium tuberculosis in China. PLoS One 2014; 9:e89726. [PMID: 24586989 PMCID: PMC3934936 DOI: 10.1371/journal.pone.0089726] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/23/2014] [Indexed: 12/02/2022] Open
Abstract
Molecular typing based on variable-number tandem repeats (VNTR) analysis is a promising tool for identifying transmission of Mycobacterium tuberculosis. However, the currently proposed 15- and 24-locus VNTR sets (VNTR-15/24) only have limited resolution and contain too many loci for large-scale typing in high burden countries. To develop an optimal typing scheme in China, we evaluated the resolution and robustness of 25 VNTR loci, using population-based collections of 1362 clinical isolates from six provinces across the country. The resolution of most loci showed considerable variations among regions. By calculating the average resolution of all possible combinations of 20 robust loci, we identified an optimal locus set with a minimum of 9 loci (VNTR-9) that could achieve comparable resolution of the standard VNTR-15. The VNTR-9 had consistently high resolutions in all six regions, and it was highly concordant with VNTR-15 for defining both clustered and unique genotypes. Furthermore, VNTR-9 was phylogenetically informative for classifying lineages/sublineages of M. tuberculosis. Three hypervariable loci (HV-3), VNTR 3232, VNTR 3820 and VNTR 4120, were proved important for further differentiating unrelated clustered strains based on VNTR-9. We propose the optimized VNTR-9 as first-line method and the HV-3 as second-line method for molecular typing of M. tuberculosis in China and surrounding countries. The development of hierarchical VNTR typing methods that can achieve high resolution with a small number of loci could be suitable for molecular epidemiology study in other high burden countries.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jian Mei
- Department of TB Control, Shanghai Municipal Centers for Disease Control and Prevention, Shanghai, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Sankar S, Kuppanan S, Nandagopal B, Sridharan G. Diversity of Salmonella enterica serovar Typhi strains collected from india using variable number tandem repeat (VNTR)-PCR analysis. Mol Diagn Ther 2014; 17:257-64. [PMID: 23615945 DOI: 10.1007/s40291-013-0034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Typhoid fever is endemic in India, and a seasonal increase of cases is observed annually. In spite of effective therapies and the availability of vaccines, morbidity is widespread owing to the circulation of multiple genetic variants, frequent migration of asymptomatic carriers, unhygienic food practices and the emergence of multidrug resistance and thus continues to be a major public health problem in developing countries, particularly in India. Classical methods of strain typing such as pulsed-field gel electrophoresis, ribotyping, random amplification of polymorphic DNA and amplified fragment length polymorphism are either laborious and technically complicated or less discriminatory. METHODS We investigated the molecular diversity of Indian strains of Salmonella enterica serovar Typhi (S. Typhi) isolated from humans from different parts of India to establish the molecular epidemiology of the organism using the variable number tandem repeat (VNTR)-PCR analysis. The electrophoretic band pattern was analysed using the GelCompar II software program. RESULTS Of the 94 strains tested for three VNTRs loci, 75 VNTR genotypes were obtained. Of the three VNTRs tested in this study, VNTR1 was amplified in all the strains except one and found to be predominant. VNTR2 was amplified only in 57 strains with a Simpson diversity index of 0.93 indicating the high variability of this region within the strains. VNTR3 was amplified in 90 strains. The discriminatory power of this typing tool has been greatly enhanced by this VNTR2 region as the other two regions could not discriminate strains significantly. In our study, about 55 % of the strains amplified all three VNTR regions and 39 % of the strains lacked the VNTR2 region. Among the three VNTR regions tested, the majority of the strains produced similar banding pattern for any two regions grouped into a cluster. The strains grouped as a genotype were from the same geographical location. Strains collected from each geographical region were also highly heterogeneous. CONCLUSION Such analysis is important to identify the genetic clones of the pathogen associated with sporadic infections and disease outbreak to identify the common source and implement public health measures.
Collapse
Affiliation(s)
- Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore 632 055, Tamil Nadu, India.
| | | | | | | |
Collapse
|
40
|
Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol 2013; 52:164-72. [PMID: 24172154 DOI: 10.1128/jcm.02519-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Collapse
|
41
|
Wada T, Maeda S. Multiplex agarose gel electrophoresis system for variable number of tandem repeats genotyping: analysis example using Mycobacterium tuberculosis. Electrophoresis 2013; 34:1171-4. [PMID: 23401033 DOI: 10.1002/elps.201200471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/06/2022]
Abstract
As one genotyping method for Mycobacterium tuberculosis, variable number of tandem repeats (VNTR) is a promising tool to trace the undefined transmission of tuberculosis, but it often requires large equipment such as a genetic analyzer for DNA fragment analysis or CE system to conduct systematic analyses. For convenient genotyping at low cost in laboratories, we designed a multiplex PCR system that is applicable to agarose gel electrophoresis using fluorescent PCR primers. For tuberculosis genotyping by VNTR, the copy quantities of minisatellite DNA must be determined in more than 12 loci. The system can halve laborious electrophoresis processes by presenting an image of two VNTR amplicons on a single lane. No expensive equipment is necessary for this method. Therefore, it is useful even in developing countries.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
42
|
Iwamoto T, Grandjean L, Arikawa K, Nakanishi N, Caviedes L, Coronel J, Sheen P, Wada T, Taype CA, Shaw MA, Moore DAJ, Gilman RH. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 2012; 7:e49651. [PMID: 23185395 PMCID: PMC3504116 DOI: 10.1371/journal.pone.0049651] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/11/2012] [Indexed: 01/28/2023] Open
Abstract
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tamaru A, Nakajima C, Wada T, Wang Y, Inoue M, Kawahara R, Maekura R, Ozeki Y, Ogura H, Kobayashi K, Suzuki Y, Matsumoto S. Dominant incidence of multidrug and extensively drug-resistant specific Mycobacterium tuberculosis clones in Osaka Prefecture, Japan. PLoS One 2012; 7:e42505. [PMID: 22952596 PMCID: PMC3432034 DOI: 10.1371/journal.pone.0042505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Infection and transmission of multidrug-resistant Mycobacterium tuberculosis (MDR-Mtb) and extensively drug-resistant M. tuberculosis (XDR-Mtb) is a serious health problem. We analyzed a total of 1,110 Mtb isolates in Osaka Prefecture and neighboring areas from April 2000 to March 2009. A total of 89 MDR-Mtb were identified, 36 (48.5%) of which were determined to be XDR-Mtb. Among the 89 MDR-Mtb isolates, 24 (27.0%) phylogenetically distributed into six clusters based on mycobacterial interspersed repetitive units-various number of tandem repeats (MIRU-VNTR) typing. Among these six clusters, the MIRU-VNTR patterns of four (OM-V02, OM-V03, OM-V04, and OM-V06) were only found for MDR-Mtb. Further analysis revealed that all isolates belonging to OM-V02 and OM-V03, and two isolates from OM-V04 were clonal. Importantly such genotypes were not observed for drug-sensitive isolates. These suggest that few but transmissible clones can transmit after acquiring multidrug resistance and colonize even in a country with a developed, well-organized healthcare system.
Collapse
Affiliation(s)
- Aki Tamaru
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mycobacterium tuberculosis population in northwestern Russia: an update from Russian-EU/Latvian border region. PLoS One 2012; 7:e41318. [PMID: 22844457 PMCID: PMC3402494 DOI: 10.1371/journal.pone.0041318] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022] Open
Abstract
This study aimed to characterize the population structure of Mycobacterium tuberculosis in Pskov oblast in northwestern Russia, to view it in the geographical context, to compare drug resistance properties across major genetic families. Ninety M. tuberculosis strains from tuberculosis (TB) patients, permanent residents in Pskov oblast were subjected to LAM-specific IS6110-PCR and spoligotyping, followed by comparison with SITVITWEB and MIRU-VNTRplus databases. The Beijing genotype (n = 40) was found the most prevalent followed by LAM (n = 18), T (n = 13), Haarlem (n = 10), Ural (n = 5), and Manu2 (n = 1); the family status remained unknown for 3 isolates. The high rate of Beijing genotype and prevalence of LAM family are similar to those in the other Russian settings. A feature specific for M. tuberculosis population in Pskov is a relatively higher rate of Haarlem and T types. Beijing strains were further typed with 12-MIRU (followed by comparison with proprietary global database) and 3 hypervariable loci QUB-3232, VNTR-3820, VNTR-4120. The 12-MIRU typing differentiated 40 Beijing strains into 14 types (HGI = 0.82) while two largest types were M2 (223325153533) prevalent throughout former USSR and M11 (223325173533) prevalent in Russia and East Asia. The use of 3 hypervariable loci increased a discrimination of the Beijing strains (18 profiles, HGI = 0.89). Both major families Beijing and LAM had similar rate of MDR strains (62.5 and 55.6%, respectively) that was significantly higher than in other strains (21.9%; P = 0.001 and 0.03, respectively). The rpoB531 mutations were more frequently found in Beijing strains while LAM drug resistant strains mainly harbored rpoB516 and inhA -15 mutations. Taken together with a high rate of multidrug resistance among Beijing strains from new TB cases (79.3% versus 44.4% in LAM), these findings suggest the critical impact of the Beijing genotype on the current situation with MDR-TB in the Pskov region in northwestern Russia.
Collapse
|
45
|
Nagai Y, Iwade Y, Hayakawa E, Nakano M, Sakai T, Tanuma M, Katayama M, Nosaka T, Yamaguchi T. Molecular genotyping of Mycobacterium tuberculosis in Mie Prefecture, Japan, using variable numbers of tandem repeats analysis. Jpn J Infect Dis 2012; 65:341-4. [PMID: 22814161 DOI: 10.7883/yoken.65.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The variable numbers of tandem repeats (VNTR) analysis is a method frequently employed as a molecular epidemiological tool for Mycobacterium tuberculosis genetic fingerprinting. In this study, we characterized the population of M. tuberculosis circulating in Mie Prefecture, Japan, and assessed the utility of the proposed JATA12- and 15-VNTR analyses of 158 M. tuberculosis clinical isolates using 25 VNTR loci. The results revealed that the ancient Beijing sublineage is the most prevalent M. tuberculosis strain in Mie Prefecture, accounting for 85.0% of 113 Beijing lineage isolates. Our results also showed that JATA-VNTR using well-selected loci is as reliable as standardized 15-locus MIRU-VNTR. Furthermore, JATA15-VNTR analysis reliably improved the discriminatory power compared with basic JATA12-VNTR analysis. In summary, our data suggest that JATA-VNTR is a useful tool for discrimination of M. tuberculosis in areas where ancient Beijing strains are frequently isolated.
Collapse
Affiliation(s)
- Yuhki Nagai
- Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura, Yokkaichi City, Mie, Japan. nagaiy02@pref.mie.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garzelli C, Rindi L. Molecular epidemiological approaches to study the epidemiology of tuberculosis in low-incidence settings receiving immigrants. INFECTION GENETICS AND EVOLUTION 2012; 12:610-8. [DOI: 10.1016/j.meegid.2011.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
47
|
Vadwai V, Shetty A, Supply P, Rodrigues C. Evaluation of 24-locus MIRU-VNTR in extrapulmonary specimens: Study from a tertiary centre in Mumbai. Tuberculosis (Edinb) 2012; 92:264-72. [DOI: 10.1016/j.tube.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/01/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
48
|
Dong H, Shi L, Zhao X, Sang B, Lv B, Liu Z, Wan K. Genetic diversity of Mycobacterium tuberculosis isolates from Tibetans in Tibet, China. PLoS One 2012; 7:e33904. [PMID: 22479472 PMCID: PMC3316506 DOI: 10.1371/journal.pone.0033904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/19/2012] [Indexed: 02/04/2023] Open
Abstract
Background Tuberculosis (TB) is a serious health problem in Tibet where Tibetans are the major ethnic group. Although genotyping of Mycobacterium tuberculosis (M. tuberculosis) isolates is a valuable tool for TB control, our knowledge of population structure of M. tuberculosis circulating in Tibet is limited. Methodology/Principal Findings In our study, a total of 576 M. tuberculosis isolates from Tibetans in Tibet, China, were analyzed via spoligotyping and 24-locus MIRU-VNTR. The Beijing genotype was the most prevalent family (90.63%, n = 522). Shared-type (ST) 1 was the most dominant genotype (88.89%, n = 512). We found that there was no association between the Beijing genotype and sex, age and treatment status. In this sample collection, 7 of the 24 MIRU-VNTR loci were highly or moderately discriminative according to their Hunter-Gaston discriminatory index. An informative set of 12 loci had similar discriminatory power with 24 loci set. Conclusions/Significance The population structure of M. tuberculosis isolates in Tibetans is homogeneous and dominated by Beijing genotype. The analysis of 24-locus MIRU-VNTR data might be useful to select appropriate VNTR loci for the genotyping of M. tuberculosis.
Collapse
Affiliation(s)
- Haiyan Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
| | - Li Shi
- Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
| | - Ba Sang
- Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, People's Republic of China
| | - Bing Lv
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
49
|
Varma-Basil M, Kumar S, Arora J, Angrup A, Zozio T, Banavaliker JN, Singh UB, Rastogi N, Bose M. Comparison of spoligotyping, mycobacterial interspersed repetitive units typing and IS6110-RFLP in a study of genotypic diversity of Mycobacterium tuberculosis in Delhi, North India. Mem Inst Oswaldo Cruz 2012; 106:524-35. [PMID: 21894371 DOI: 10.1590/s0074-02762011000500002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/06/2011] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to compare polymerase chain reaction (PCR)-based methods--spoligotyping and mycobacterial interspersed repetitive units (MIRU) typing--with the gold-standard IS6110 restriction fragment length polymorphism (RFLP) analysis in 101 isolates of Mycobacterium tuberculosis to determine the genetic diversity of M. tuberculosis clinical isolates from Delhi, North India. Spoligotyping resulted in 49 patterns (14 clusters); the largest cluster was composed of Spoligotype International Types (SITs)26 [Central-Asian (CAS)1-Delhi lineage], followed by SIT11 [East-African-Indian (EAI) 3-Indian lineage]. A large number of isolates (75%) belonged to genotypic lineages, such as CAS, EAI and Manu, with a high specificity for the Indian subcontinent, emphasising the complex diversity of the phylogenetically coherent M. tuberculosis in North India. MIRU typing, using 11 discriminatory loci, was able to distinguish between all but two strains based on individual patterns. IS6110-RFLP analysis (n = 80 strains) resulted in 67 unique isolates and four clusters containing 13 strains. MIRUs discriminated all 13 strains, whereas spoligotyping discriminated 11 strains. Our results validate the use of PCR-based molecular typing of M. tuberculosis using repetitive elements in Indian isolates and demonstrate the usefulness of MIRUs for discriminating low-IS6110-copy isolates, which accounted for more than one-fifth of the strains in the present study.
Collapse
Affiliation(s)
- Mandira Varma-Basil
- Deptartment of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Investigation on Mycobacterium tuberculosis diversity in China and the origin of the Beijing clade. PLoS One 2011; 6:e29190. [PMID: 22220207 PMCID: PMC3248407 DOI: 10.1371/journal.pone.0029190] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/22/2011] [Indexed: 12/02/2022] Open
Abstract
Background Investigation of the genetic diversity of Mycobacterium tuberculosis in China has shown that Beijing genotype strains play a dominant role in the tuberculosis (TB) epidemic. In order to examine the strain diversity in the whole country, and to study the evolutionary development of Beijing strains, we sought to genotype a large collection of isolates using different methods. Methodology/Principal Findings We applied a 15-loci VNTR typing analysis on 1,586 isolates from the Beijing municipality and 12 Chinese provinces or autonomous regions. The data was compared to that of 900 isolates from various other worldwide geographic regions outside of China. A total of 1,162/1,586 (73.2%) of the isolates, distributed into 472 VNTR types, were found to belong to the Beijing genotype family and this represented 56 to 94% of the isolates in each of the localizations. VNTR typing revealed that the majority of the non-Beijing isolates fall into two genotype families, which represented 17% of the total number of isolates, and seem largely restricted to China. A small number of East African Indian genotype strains was also observed in this collection. Ancient Beijing strains with an intact region of difference (RD) 181, as well as strains presumably resembling ancestors of the whole Beijing genotype family, were mainly found in the Guangxi autonomous region. Conclusions/Significance This is the largest M. tuberculosis VNTR-based genotyping study performed in China to date. The high percentage of Beijing isolates in the whole country and the presence in the South of strains representing early branching points may be an indication that the Beijing lineage originated from China, probably in the Guangxi region. Two modern lineages are shown here to represent the majority of non-Beijing Chinese isolates. The observed geographic distribution of the different lineages within China suggests that natural frontiers are major factors in their diffusion.
Collapse
|