1
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0028124. [PMID: 39235232 PMCID: PMC11500613 DOI: 10.1128/jb.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors, including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments, such as the soil, and is frequently found in human wound and respiratory tract co-infections with other bacteria, including Staphylococcus aureus. Here, we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. Although active flagellar function was required for surface spreading, known motility regulators were not essential, indicating that surface spreading may be regulated by an as yet unknown mechanism. This motility was distinct from the response of most other motile bacterial species in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, "surfing," albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches. IMPORTANCE Bacterial motility is an important determinant of bacterial fitness and pathogenesis, allowing expansion and invasion to access nutrients and adapt to new environments. Here, we demonstrate that secreted surfactants from a variety of foreign species, including other bacterial species, infection hosts, fungi, and plants, facilitate surface spreading motility in the opportunistic pathogen Pseudomonas aeruginosa that is distinct from established motility phenotypes. This response to foreign surfactants also occurs in Pseudomonas putida, but not in more distantly related bacterial species. Our systematic characterization of surfactant-based surface spreading shows that these interspecies surfactants serve as public goods to enable P. aeruginosa to move and explore environmental conditions when it would be otherwise immotile.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Filipiak W, Wenzel M, Ager C, Mayhew CA, Bogiel T, Włodarski R, Nagl M. Molecular Analysis of Volatile Metabolites Synthesized by Candida albicans and Staphylococcus aureus in In Vitro Cultures and Bronchoalveolar Lavage Specimens Reflecting Single- or Duo-Factor Pneumonia. Biomolecules 2024; 14:788. [PMID: 39062502 PMCID: PMC11275233 DOI: 10.3390/biom14070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Current microbiological methods for pneumonia diagnosis require invasive specimen collection and time-consuming analytical procedures. There is a need for less invasive and faster methods to detect lower respiratory tract infections. The analysis of volatile metabolites excreted by pathogenic microorganisms provides the basis for developing such a method. Given the synergistic role of Candida albicans in increasing the virulence of pathogenic bacteria causing pneumonia and the cross-kingdom metabolic interactions between microorganisms, we compare the emission of volatiles from Candida albicans yeasts and the bacteria Staphylococcus aureus using single and mixed co-cultures and apply that knowledge to human in vivo investigations. Gas chromatography-mass spectrometry (GC-MS) analysis resulted in the identification of sixty-eight volatiles that were found to have significantly different levels in cultures compared to reference medium samples. Certain volatiles were found in co-cultures that mainly originated from C. albicans metabolism (e.g., isobutyl acetate), whereas other volatiles primarily came from S. aureus (e.g., ethyl 2-methylbutyrate). Isopentyl valerate reflects synergic interactions of both microbes, as its level in co-cultures was found to be approximately three times higher than the sum of its amounts in monocultures. Hydrophilic-lipophilic-balanced (HLB) coated meshes for thin-film microextraction (TFME) were used to preconcentrate volatiles directly from bronchoalveolar lavage (BAL) specimens collected from patients suffering from ventilation-associated pneumonia (VAP), which was caused explicitly by C. albicans and S. aureus. GC-MS analyses confirmed the existence of in vitro-elucidated microbial VOCs in human specimens. Significant differences in BAL-extracted amounts respective to the pathogen-causing pneumonia were found. The model in vitro experiments provided evidence that cross-kingdom interactions between pathogenic microorganisms affect the synthesis of volatile compounds. The TFME meshes coated with HLB particles proved to be suitable for extracting VOCs from human material, enabling the translation of in vitro experiments on the microbial volatilome to the in vivo situation involving infected patients. This indicates the direction that should be taken for further clinical studies on VAP diagnosis based on volatile analysis.
Collapse
Affiliation(s)
- Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, A. Jurasza 2 Str., 85-089 Bydgoszcz, Poland
| | - Matthias Wenzel
- Institute for Breath Research, Universität Innsbruck, Innrain 66 and 80-82, A-6020 Innsbruck, Austria; (M.W.); (C.A.); (C.A.M.)
| | - Clemens Ager
- Institute for Breath Research, Universität Innsbruck, Innrain 66 and 80-82, A-6020 Innsbruck, Austria; (M.W.); (C.A.); (C.A.M.)
| | - Chris A. Mayhew
- Institute for Breath Research, Universität Innsbruck, Innrain 66 and 80-82, A-6020 Innsbruck, Austria; (M.W.); (C.A.); (C.A.M.)
| | - Tomasz Bogiel
- Department of Microbiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Maria Curie-Skłodowska 9 Str., 85-094 Bydgoszcz, Poland;
| | - Robert Włodarski
- Department of Anaesthesiology and Intensive Care, 10th Military Research Hospital and Polyclinic, Powstańców Warszawy 5 Str., 85-681 Bydgoszcz, Poland;
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstr. 41, A-6020 Innsbruck, Austria;
| |
Collapse
|
3
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Warrell DL, Zarrella TM, Machalek C, Khare A. Interspecies surfactants serve as public goods enabling surface motility in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573969. [PMID: 38260674 PMCID: PMC10802355 DOI: 10.1101/2024.01.03.573969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In most natural environments, bacteria live in polymicrobial communities where secreted molecules from neighboring species alter bacterial behaviors including motility, but such interactions are understudied. Pseudomonas aeruginosa is a motile opportunistic pathogen that exists in diverse multispecies environments such as the soil and is frequently found in human wound and respiratory tract co-infections with other bacteria including Staphylococcus aureus. Here we show that P. aeruginosa can co-opt secreted surfactants from other species for flagellar-based surface motility. We found that exogenous surfactants from S. aureus, other bacteria, and interkingdom species enabled P. aeruginosa to switch from swarming to an alternative surface spreading motility on semi-solid surfaces and allowed for the emergence of surface motility on hard agar where P. aeruginosa was otherwise unable to move. This motility was distinct from the response of other motile bacteria in the presence of exogenous surfactants. Mutant analysis indicated that this P. aeruginosa motility was similar to a previously described mucin-based motility, 'surfing', albeit with divergent regulation. Thus, our study demonstrates that secreted surfactants from the host as well as neighboring bacterial and interkingdom species act as public goods facilitating P. aeruginosa flagella-mediated surfing-like surface motility, thereby allowing it to access different environmental niches.
Collapse
Affiliation(s)
- Delayna L. Warrell
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Zarrella
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
- Current address: Department of Biology, Georgetown University, Washington, DC, USA
| | - Christopher Machalek
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Zhang M, Chen B, Dai H, Sun J, Liu H, Han J. Discovery of antifungal secondary metabolites from an intestinal fungus Fusarium sp. J Antibiot (Tokyo) 2024; 77:193-198. [PMID: 38148392 DOI: 10.1038/s41429-023-00692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Intestinal fungi, which are important parts of the gut microbiota, have the ability to produce specialized metabolites that significantly contribute to maintaining the balance of the gut microbiota and promoting the health of the host organism. In the present study, two new glycosides, including fusintespyrone A (1) and cerevisterolside A (4), as well as ten known compounds were isolated from the intestinal fungus Fusarium sp. LE06. The structures of the new compounds were elucidated by a combination of spectroscopic methods, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR), along with chemical reactions and calculations of NMR and ECD spectra. Compounds 1-3 showed significant growth inhibition against Aspergillus fumigatus, Fusarium oxysporum, and Verticillium dahliae with MIC values in the range of 1.56-6.25 μg ml-1.
Collapse
Affiliation(s)
- Mingkai Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongwei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
6
|
Yan JY, Lin TH, Jong YT, Hsueh JW, Wu SH, Lo HJ, Chen YC, Pan CH. Microbiota signatures associated with invasive Candida albicans infection in the gastrointestinal tract of immunodeficient mice. Front Cell Infect Microbiol 2024; 13:1278600. [PMID: 38298919 PMCID: PMC10828038 DOI: 10.3389/fcimb.2023.1278600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Candida albicans is a commensal microorganism in the human gut but occasionally causes invasive C. albicans infection (ICA), especially in immunocompromised individuals. Early initiation of antifungal therapy is associated with reduced mortality of ICA, but rapid diagnosis remains a challenge. The ICA-associated changes in the gut microbiota can be used as diagnostic and therapeutic targets but have been poorly investigated. In this study, we utilized an immunodeficient Rag2γc (Rag2-/-il2γc-/-) mouse model to investigate the gut microbiota alterations caused by C. albicans throughout its cycle, from its introduction into the gastrointestinal tract to invasion, in the absence of antibiotics. We observed a significant increase in the abundance of Firmicutes, particularly Lachnospiraceae and Ruminococcaceae, as well as a significant decrease in the abundance of Candidatus Arthromitus in mice exposed to either the wild-type SC5314 strain or the filamentation-defective mutant (cph1/cph1 efg1/efg1) HLC54 strain of C. albicans. However, only the SC5314-infected mice developed ICA. A linear discriminate analysis of the temporal changes in the gut bacterial composition revealed Bacteroides vulgatus as a discriminative biomarker associated with SC5314-infected mice with ICA. Additionally, a positive correlation between the B. vulgatus abundance and fungal load was found, and the negative correlation between the Candidatus Arthromitus abundance and fungal load after exposure to C. albicans suggested that C. albicans might affect the differentiation of intestinal Th17 cells. Our findings reveal the influence of pathogenic C. albicans on the gut microbiota and identify the abundance of B. vulgatus as a microbiota signature associated with ICA in an immunodeficient mouse model.
Collapse
Affiliation(s)
- Jia-Ying Yan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Tsung-Han Lin
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Tang Jong
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jun-Wei Hsueh
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Sze-Hsien Wu
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Yee-Chun Chen
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Steyn HF, White LJ, Hilton KLF, Hiscock JR, Pohl CH. Supramolecular Self-Associating Amphiphiles Inhibit Biofilm Formation by the Critical Pathogens, Pseudomonas aeruginosa and Candida albicans. ACS OMEGA 2024; 9:1770-1785. [PMID: 38222503 PMCID: PMC10785623 DOI: 10.1021/acsomega.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
In 2019, 4.95 million deaths were directly attributed to antimicrobial-resistant bacterial infections globally. In addition, the mortality associated with fungal infections is estimated at 1.7 million annually, with many of these deaths attributed to species that are no longer susceptible to traditional therapeutic regimes. Herein, we demonstrate the use of a novel class of supramolecular self-associating amphiphilic (SSA) salts as antimicrobial agents against the critical pathogens Pseudomonas aeruginosa and Candida albicans. We also identify preliminary structure-activity relationships for this class of compound that will aid the development of next-generation SSAs demonstrating enhanced antibiofilm activity. To gain insight into the possible mode of action for these agents, a series of microscopy studies were performed, taking advantage of the intrinsic fluorescent nature of benzothiazole-substituted SSAs. Analysis of these data showed that the SSAs interact with the cell surface and that a benzothiazole-containing SSA inhibits hyphal formation by C. albicans.
Collapse
Affiliation(s)
- Hendrik
J. F. Steyn
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein, Free State 9301, South Africa
| | - Lisa J. White
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Kira L. F. Hilton
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Jennifer R. Hiscock
- School
of Chemistry and Forensic Science, University
of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Carolina H. Pohl
- Department
of Microbiology and Biochemistry, University
of the Free State, Bloemfontein, Free State 9301, South Africa
| |
Collapse
|
8
|
Kurakado S, Matsumoto Y, Eshima S, Sugita T. Antimicrobial Tolerance in Cross-Kingdom Dual-Species Biofilms Formed by Fungi and Bacteria. Med Mycol J 2024; 65:49-57. [PMID: 39218647 DOI: 10.3314/mmj.24.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Candida albicans, the most common pathogenic fungus, can form biofilms on the surface of medical devices and often causes bloodstream infections. Biofilms have a complex structure composed of microorganisms and a surrounding extracellular matrix. Biofilms are difficult to treat because they are resistant to antifungal drugs and the host environment. Nearly one in four patients with candidemia have a polymicrobial infection. These polymicrobial biofilms, especially those comprising cross-kingdom species of fungi and bacteria, can lead to long hospital stays and high mortality rates. This review outlines the unique interactions of dual-species biofilms with Candida albicans and the clinically important bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University
| | | | | | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
9
|
Santos-Pascual R, Campoy I, Sanz Mata D, Martínez MJ, Prieto A, Barriuso J. Deciphering the molecular components of the quorum sensing system in the fungus Ophiostoma piceae. Microbiol Spectr 2023; 11:e0029023. [PMID: 37796004 PMCID: PMC10715110 DOI: 10.1128/spectrum.00290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This manuscript presents a comprehensive study on the molecular mechanisms triggered by the quorum sensing (QS) molecule farnesol in the biotechnologically relevant fungus Ophiostoma piceae. We present for the first time, using a multiomics approach, an in-depth analysis of the QS response in a saprotroph fungus, detailing the molecular components involved in the response and their possible mechanisms of action. We think that these results are particularly relevant in the knowledge of the functioning of the QS in eukaryotes, as well as for the exploitation of these mechanisms.
Collapse
Affiliation(s)
- Rodrigo Santos-Pascual
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Iván Campoy
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - David Sanz Mata
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Jorge Barriuso
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Kahl LJ, Stremmel N, Esparza-Mora MA, Wheatley RM, MacLean RC, Ralser M. Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses. Curr Opin Microbiol 2023; 75:102368. [PMID: 37677865 DOI: 10.1016/j.mib.2023.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Infections that involve interkingdom microbial communities, such as those between bacteria and yeast pathogens, are difficult to treat, associated with worse patient outcomes, and may be a source of antimicrobial resistance. In this review, we address co-occurrence and co-infections of Candida albicans and Pseudomonas aeruginosa, two pathogens that occupy multiple infection niches in the human body, especially in immunocompromised patients. The interaction between the pathogen species influences microbe-host interactions, the effectiveness of antimicrobials and even infection outcomes, and may thus require adapted treatment strategies. However, the molecular details of bacteria-fungal interactions both inside and outside the infection sites, are insufficiently characterised. We argue that comprehensively understanding the P. aeruginosa-C. albicans interaction network through integrated systems biology approaches will capture the highly dynamic and complex nature of these polymicrobial infections and lead to a more comprehensive understanding of clinical observations such as reshaped immune defences and low antimicrobial treatment efficacy.
Collapse
Affiliation(s)
- Lisa J Kahl
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | - Nina Stremmel
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany
| | | | - Rachel M Wheatley
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - R Craig MacLean
- University of Oxford, Department of Biology, Oxford OX1 3SZ, United Kingdom
| | - Markus Ralser
- Charité Universitätsmedizin Berlin, Department of Biochemistry, 10117 Berlin, Germany; University of Oxford, The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Oxford OX3 7BN, United Kingdom; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Bornstein K, Gryan G, Chang ES, Marchler-Bauer A, Schneider VA. The NIH Comparative Genomics Resource: addressing the promises and challenges of comparative genomics on human health. BMC Genomics 2023; 24:575. [PMID: 37759191 PMCID: PMC10523801 DOI: 10.1186/s12864-023-09643-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Comparative genomics is the comparison of genetic information within and across organisms to understand the evolution, structure, and function of genes, proteins, and non-coding regions (Sivashankari and Shanmughavel, Bioinformation 1:376-8, 2007). Advances in sequencing technology and assembly algorithms have resulted in the ability to sequence large genomes and provided a wealth of data that are being used in comparative genomic analyses. Comparative analysis can be leveraged to systematically explore and evaluate the biological relationships and evolution between species, aid in understanding the structure and function of genes, and gain a better understanding of disease and potential drug targets. As our knowledge of genetics expands, comparative genomics can help identify emerging model organisms among a broader span of the tree of life, positively impacting human health. This impact includes, but is not limited to, zoonotic disease research, therapeutics development, microbiome research, xenotransplantation, oncology, and toxicology. Despite advancements in comparative genomics, new challenges have arisen around the quantity, quality assurance, annotation, and interoperability of genomic data and metadata. New tools and approaches are required to meet these challenges and fulfill the needs of researchers. This paper focuses on how the National Institutes of Health (NIH) Comparative Genomics Resource (CGR) can address both the opportunities for comparative genomics to further impact human health and confront an increasingly complex set of challenges facing researchers.
Collapse
Affiliation(s)
| | - Gary Gryan
- The MITRE Corporation, 7525 Colshire Dr, McLean, VA, USA
| | - E Sally Chang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
12
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
13
|
Wang X, Zhang W, Wu W, Wu S, Young A, Yan Z. Is Candida albicans a contributor to cancer? A critical review based on the current evidence. Microbiol Res 2023; 272:127370. [PMID: 37028206 DOI: 10.1016/j.micres.2023.127370] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
The association between Candida albicans (C. albicans) and cancer has been noticed for decades. Whether C. albicans infection is a complication of cancer status or as a contributor to cancer development remains to be discussed. This review systematically summarized the up-to-date knowledge about associations between C. albicans and various types of cancer, and discussed the role of C. albicans in cancer development. Most of the current clinical and animal evidence support the relationship between C. albicans and oral cancer development. However, there is insufficient evidence to demonstrate the role of C. albicans in other types of cancer. Moreover, this review explored the underlying mechanisms for C. albicans promoting cancer. It was hypothesized that C. albicans may promote cancer progression by producing carcinogenic metabolites, inducing chronic inflammation, remodeling immune microenvironment, activating pro-cancer signals, and synergizing with bacteria.
Collapse
|
14
|
Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M. Pseudomonas aeruginosa behaviour in polymicrobial communities: The competitive and cooperative interactions conducting to the exacerbation of infections. Microbiol Res 2023; 268:127298. [PMID: 36610273 DOI: 10.1016/j.micres.2022.127298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen.
| | - Reem Alariqi
- Microbiology Department, Faculty of Medicine and Health Sciences, Sana'a University, 1247 Sana'a, Yemen
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Mahdi Mutahar
- Faculty of Science & Health, University of Portsmouth Dental Academy, PO1 2QG Portsmouth, United Kingdom
| |
Collapse
|
15
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
17
|
Lapiere A, Richard ML. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes 2022; 14:2105610. [PMID: 35903007 PMCID: PMC9341359 DOI: 10.1080/19490976.2022.2105610] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The composition of the microbiota is the focus of many recent publications describing the effects of the microbiota on host health. In recent years, research has progressed further, investigating not only the diversity of genes and functions but also metabolites produced by microorganisms composing the microbiota of various niches and how these metabolites affect and shape the microbial community. While an abundance of data has been published on bacterial interactions, much less data are available on the interactions of bacteria with another component of the microbiota: the fungal community. Although present in smaller numbers, fungi are essential to the balance of this complex microbial ecosystem. Both bacterial and fungal communities produce metabolites that influence their own population but also that of the other. However, to date, interkingdom interactions occurring through metabolites produced by bacteria and fungi have rarely been described. In this review, we describe the major metabolites produced by both kingdoms and discuss how they influence each other, by what mechanisms and with what consequences for the host.
Collapse
Affiliation(s)
- Alexia Lapiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, France,CONTACT Mathias L Richard INRAE, Micalis Institute, Probihote Team, Domaine de Vilvert, 78352, Jouy en Josas, France
| |
Collapse
|
18
|
Yan K, Yin H, Wang J, Cai Y. Subtle relationships between Pseudomonas aeruginosa and fungi in patients with cystic fibrosis. Acta Clin Belg 2022; 77:425-435. [PMID: 33242290 DOI: 10.1080/17843286.2020.1852850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is one of the most common hereditary lung diseases. Pseudomonas aeruginosa (PA), Aspergillus fumigatus (AF) and Candida albicans (CA) are the principal bacterial and fungal pathogens in the airways of CF patients. The interactions of coexisting bacterial-fungal pathogens are of great interest. In the present work, we reviewed the literature of available in vitro and in vivo studies, whereas most of the reports have shown that PA inhibits the growth of fungi through restriction of iron uptake and secretion of toxic substances. Fungi may also affect the growth or virulence of PA through their secreted molecules. To clarify the bacterial-fungal interaction, more in-depth and detailed studies are still needed, which will provide a better understanding of species, microbial population dynamics, and related mechanisms in CF patients.
Collapse
Affiliation(s)
| | | | | | - Yun Cai
- Department of Pharmacy, MedicalSupplies Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
20
|
Kalgudi R, Tamimi R, Kyazze G, Keshavarz T. Quorum quenchers affect the virulence regulation of non-mucoid, mucoid and heavily mucoid biofilms co-cultured on cell lines. Appl Microbiol Biotechnol 2021; 105:8853-8868. [PMID: 34716788 PMCID: PMC8590680 DOI: 10.1007/s00253-021-11638-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
Biofilm formation conferring pathogenicity is a survival strategy for Pseudomonas aeruginosa. P. aeruginosa’s virulence may differ due to differences in host-microbe interactions and the growth environment. The epithelial cell line within the respiratory system and the keratinocytes on the skin form the first physical barrier of defence. P. aeruginosa spp. biofilm formation and virulence factor secretion with and without quorum quenching (QQ) treatment was studied in co-culture using A549 and HaCaT cell lines; pyocyanin and rhamnolipid productions and elastolytic activity as virulence factors were quantified by independent assays. Biofilm formation was evaluated under dynamic conditions by quantifying total carbohydrates, alginate, proteins and eDNA. A sandwich ELISA was performed to study IL-8 secretion by the epithelial cells. The difference in gene expression of the quorum sensing (QS) and virulence factors between strains during individual and combination treatments was analysed by qPCR. Combination treatment by farnesol and tyrosol was more effective against P. aeruginosa biofilms when grown in co-cultures. The strain RBHi was found to be 3 to 4 times more virulent compared to PAO1 and NCTC 10,662, respectively, and combination treatment was more effective against RBHi strain when grown in co-culture with A549 cell line. The addition of quorum quenchers (QQs) individually and in combination reduced IL-8 secretion by A549 cells. Relative mRNA expression showed upregulation of the QS genes and virulence factors. Co-culture of P. aeruginosa and HaCaT cell line showed a general decrease in gene expression, especially in the case of P. aeruginosa RBHi when treated with farnesol and tyrosol combination. Key points • Differentiating the interactions of biofilm formed by different phenotypes of P. aeruginosa, NCTC 10,662 (non-mucoid), PAO1 (semi mucoid) and RBHi (heavily mucoid). • Biofilm formed by these P. aeruginosa strains on two commonly afflicted tissues represented by A549 (lung) and HaCaT (skin) cell lines. • Anti-biofilm/anti-virulence roles of quorum quenchers, tyrosol and farnesol in co-cultures.
Collapse
Affiliation(s)
- Rachith Kalgudi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.
| | - Roya Tamimi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Tajalli Keshavarz
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
21
|
Reece E, Bettio PHDA, Renwick J. Polymicrobial Interactions in the Cystic Fibrosis Airway Microbiome Impact the Antimicrobial Susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10070827. [PMID: 34356747 PMCID: PMC8300716 DOI: 10.3390/antibiotics10070827] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most dominant pathogens in cystic fibrosis (CF) airway disease and contributes to significant inflammation, airway damage, and poorer disease outcomes. The CF airway is now known to be host to a complex community of microorganisms, and polymicrobial interactions have been shown to play an important role in shaping P. aeruginosa pathogenicity and resistance. P. aeruginosa can cause chronic infections that once established are almost impossible to eradicate with antibiotics. CF patients that develop chronic P. aeruginosa infection have poorer lung function, higher morbidity, and a reduced life expectancy. P. aeruginosa adapts to the CF airway and quickly develops resistance to several antibiotics. A perplexing phenomenon is the disparity between in vitro antimicrobial sensitivity testing and clinical response. Considering the CF airway is host to a diverse community of microorganisms or 'microbiome' and that these microorganisms are known to interact, the antimicrobial resistance and progression of P. aeruginosa infection is likely influenced by these microbial relationships. This review combines the literature to date on interactions between P. aeruginosa and other airway microorganisms and the influence of these interactions on P. aeruginosa tolerance to antimicrobials.
Collapse
|
22
|
Fourie R, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH. Candida albicans SET3 Plays a Role in Early Biofilm Formation, Interaction With Pseudomonas aeruginosa and Virulence in Caenorhabditis elegans. Front Cell Infect Microbiol 2021; 11:680732. [PMID: 34178723 PMCID: PMC8223063 DOI: 10.3389/fcimb.2021.680732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
The yeast Candida albicans exhibits multiple morphologies dependent on environmental cues. Candida albicans biofilms are frequently polymicrobial, enabling interspecies interaction through proximity and contact. The interaction between C. albicans and the bacterium, Pseudomonas aeruginosa, is antagonistic in vitro, with P. aeruginosa repressing the yeast-to-hyphal switch in C. albicans. Previous transcriptional analysis of C. albicans in polymicrobial biofilms with P. aeruginosa revealed upregulation of genes involved in regulation of morphology and biofilm formation, including SET3, a component of the Set3/Hos2 histone deacetylase complex (Set3C). This prompted the question regarding the involvement of SET3 in the interaction between C. albicans and P. aeruginosa, both in vitro and in vivo. We found that SET3 may influence early biofilm formation by C. albicans and the interaction between C. albicans and P. aeruginosa. In addition, although deletion of SET3 did not alter the morphology of C. albicans in the presence of P. aeruginosa, it did cause a reduction in virulence in a Caenorhabditis elegans infection model, even in the presence of P. aeruginosa.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Onele Gcilitshana
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
23
|
Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β-lactam antibiotic's action on host microbiota drives Candida albicans infection. Nat Commun 2021; 12:2560. [PMID: 33963193 PMCID: PMC8105390 DOI: 10.1038/s41467-021-22845-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
The commensal fungus Candida albicans often causes life-threatening infections in patients who are immunocompromised with high mortality. A prominent but poorly understood risk factor for the C. albicans commensal‒pathogen transition is the use of broad-spectrum antibiotics. Here, we report that β-lactam antibiotics cause bacteria to release significant quantities of peptidoglycan fragments that potently induce the invasive hyphal growth of C. albicans. We identify several active peptidoglycan subunits, including tracheal cytotoxin, a molecule produced by many Gram-negative bacteria, and fragments purified from the cell wall of Gram-positive Staphylococcus aureus. Feeding mice with β-lactam antibiotics causes a peptidoglycan storm that transforms the gut from a niche usually restraining C. albicans in the commensal state to promoting invasive growth, leading to systemic dissemination. Our findings reveal a mechanism underlying a significant risk factor for C. albicans infection, which could inform clinicians regarding future antibiotic selection to minimize this deadly disease incidence.
Collapse
Affiliation(s)
- Chew Teng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoli Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuan Qiao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Fourie R, Cason ED, Albertyn J, Pohl CH. Transcriptional response of Candida albicans to Pseudomonas aeruginosa in a polymicrobial biofilm. G3-GENES GENOMES GENETICS 2021; 11:6134339. [PMID: 33580263 PMCID: PMC8049422 DOI: 10.1093/g3journal/jkab042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Candida albicans is frequently co-isolated with the Gram-negative bacterium, Pseudomonas aeruginosa. In vitro, the interaction is complex, with both species influencing each other. Not only does the bacterium kill hyphal cells of C. albicans through physical interaction, it also affects C. albicans biofilm formation and morphogenesis, through various secreted factors and cell wall components. The present study sought to expand the current knowledge regarding the interaction between C. albicans and P. aeruginosa, using transcriptome analyses of early static biofilms. Under these conditions, a total of 2,537 open reading frames (approximately 40% of the C. albicans transcriptome) was differentially regulated in the presence of P. aeruginosa. Upon deeper analyses it became evident that the response of C. albicans toward P. aeruginosa was dominated by a response to hypoxia, and included those associated with stress as well as iron and zinc homeostasis. These conditions may also lead to the observed differential regulation of genes associated with cell membrane synthesis, morphology, biofilm formation and phenotypic switching. Thus, C. albicans in polymicrobial biofilms with P. aeruginosa have unique transcriptional profiles that may influence commensalism as well as pathogenesis.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Errol D Cason
- Department of Animal Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|
25
|
Khalid S, Keller NP. Chemical signals driving bacterial-fungal interactions. Environ Microbiol 2021; 23:1334-1347. [PMID: 33511714 DOI: 10.1111/1462-2920.15410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Microorganisms reside in diverse environmental communities where interactions become indispensable due to close physical associations. These interactions are driven by chemical communication among different microbial kingdoms, particularly between fungi and bacteria. Knowledge about these communication signals provides useful information about the nature of microbial interactions and allows predictions of community development in diverse environments. Here, we provide an update on the role of small signalling molecules in fungal-bacterial interactions with focus on agricultural and medicinal environments. This review highlights the range of - and response to - diverse biochemicals produced by both kingdoms with view to harnessing their properties towards drug discovery applications.
Collapse
Affiliation(s)
- Saima Khalid
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
26
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
27
|
Phuengmaung P, Somparn P, Panpetch W, Singkham-In U, Wannigama DL, Chatsuwan T, Leelahavanichkul A. Coexistence of Pseudomonas aeruginosa With Candida albicans Enhances Biofilm Thickness Through Alginate-Related Extracellular Matrix but Is Attenuated by N-acetyl-l-cysteine. Front Cell Infect Microbiol 2020; 10:594336. [PMID: 33330136 PMCID: PMC7732535 DOI: 10.3389/fcimb.2020.594336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023] Open
Abstract
Bacteria and Candidaalbicans are prominent gut microbiota, and the translocation of these organisms into blood circulation might induce mixed-organism biofilms, which warrants the exploration of mixed- versus single-organism biofilms in vitro and in vivo. In single-organism biofilms, Acinetobacter baumannii and Pseudomonas aeruginosa (PA) produced the least and the most prominent biofilms, respectively. C. albicans with P. aeruginosa (PA+CA) induced the highest biofilms among mixed-organism groups as determined by crystal violet straining. The sessile form of PA+CA induced higher macrophage responses than sessile PA, which supports enhanced immune activation toward mixed-organism biofilms. In addition, Candida incubated in pre-formed Pseudomonas biofilms (PA>CA) produced even higher biofilms than PA+CA (simultaneous incubation of both organisms) as determined by fluorescent staining on biofilm matrix (AF647 color). Despite the initially lower bacteria during preparation, bacterial burdens by culture in mixed-organism biofilms (PA+CA and PA>CA) were not different from biofilms of PA alone, supporting Candida-enhanced Pseudomonas growth. Moreover, proteomic analysis in PA>CA biofilms demonstrated high AlgU and mucA with low mucB when compared with PA alone or PA+CA, implying an alginate-related mucoid phenotype in PA>CA biofilms. Furthermore, mice with PA>CA biofilms demonstrated higher bacteremia with more severe sepsis compared with mice with PA+CA biofilms. This is possibly due to the different structures. Interestingly, l-cysteine, a biofilm matrix inhibitor, attenuated mixed-organism biofilms both in vitro and in mice. In conclusion, Candida enhanced Pseudomonas alginate–related biofilm production, and Candida presentation in pre-formed Pseudomonas biofilms might alter biofilm structures that affect clinical manifestations but was attenuated by l-cysteine.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front Cell Infect Microbiol 2020; 10:550505. [PMID: 33262953 PMCID: PMC7686562 DOI: 10.3389/fcimb.2020.550505] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Modern medicine is currently facing huge setbacks concerning infection therapeutics as microorganisms are consistently knocking down every antimicrobial wall set before them. The situation becomes more worrying when taking into account that, in both environmental and disease scenarios, microorganisms present themselves as biofilm communities that are often polymicrobial. This comprises a competitive advantage, with interactions between different species altering host responses, antimicrobial effectiveness, microbial pathogenesis and virulence, usually augmenting the severity of the infection and contributing for the recalcitrance towards conventional therapy. Pseudomonas aeruginosa and Candida albicans are two opportunistic pathogens often co-isolated from infections, mainly from mucosal tissues like the lung. Despite the billions of years of co-existence, this pair of microorganisms is a great example on how little is known about cross-kingdom interactions, particularly within the context of coinfections. Given the described scenario, this study aimed to collect, curate, and analyze all published experimental information on the molecular basis of P. aeruginosa and C. albicans interactions in biofilms, in order to shed light into key mechanisms that may affect infection prognosis, increasing this area of knowledge. Publications were optimally retrieved from PubMed and Web of Science and classified as to their relevance. Data was then systematically and manually curated, analyzed, and further reconstructed as networks. A total of 641 interactions between the two pathogens were annotated, outputting knowledge on important molecular players affecting key virulence mechanisms, such as hyphal growth, and related genes and proteins, constituting potential therapeutic targets for infections related to these bacterial-fungal consortia. Contrasting interactions were also analyzed, and quorum-sensing inhibition approaches were highlighted. All annotated data was made publicly available at www.ceb.uminho.pt/ISCTD, a database already containing similar data for P. aeruginosa and Staphylococcus aureus communication. This will allow researchers to cut on time and effort when studying this particular subject, facilitating the understanding of the basis of the inter-species and inter-kingdom interactions and how it can be modulated to help design alternative and more effective tailored therapies. Finally, data deposition will serve as base for future dataset integration, whose analysis will hopefully give insights into communications in more complex and varied biofilm communities.
Collapse
Affiliation(s)
- Tânia Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paula Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana Patrícia Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
29
|
Grainha T, Magalhães AP, Melo LDR, Pereira MO. Pitfalls Associated with Discriminating Mixed-Species Biofilms by Flow Cytometry. Antibiotics (Basel) 2020; 9:antibiotics9110741. [PMID: 33121057 PMCID: PMC7694060 DOI: 10.3390/antibiotics9110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Since biofilms are ubiquitous in different settings and act as sources of disease for humans, reliable methods to characterize and quantify these microbial communities are required. Numerous techniques have been employed, but most of them are unidirectional, labor intensive and time consuming. Although flow cytometry (FCM) can be a reliable choice to quickly provide a multiparametric analysis, there are still few applications on biofilms, and even less on the study of inter-kingdom communities. This work aimed to give insights into the application of FCM in order to more comprehensively analyze mixed-species biofilms, formed by different Pseudomonas aeruginosa and Candida albicans strains, before and after exposure to antimicrobials. For comparison purposes, biofilm culturability was also assessed determining colony-forming units. The results showed that some aspects, namely the microbial strain used, the morphological state of the cells and the biofilm matrix, make the accurate analysis of FCM data difficult. These aspects were even more challenging when double-species biofilms were being inspected, as they could engender data misinterpretations. The outcomes draw our attention towards the need to always take into consideration the characteristics of the biofilm samples to be analyzed through FCM, and undoubtedly link to the need for optimization of the processes tailored for each particular case study.
Collapse
Affiliation(s)
| | | | - Luís D. R. Melo
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| | - Maria O. Pereira
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| |
Collapse
|
30
|
Abstract
Interactions among microbes are key drivers of evolutionary progress and constantly shape ecological niches. Microorganisms rely on chemical communication to interact with each other and surrounding organisms. They synthesize natural products as signaling molecules, antibiotics, or modulators of cellular processes that may be applied in agriculture and medicine. Whereas major insight has been gained into the principles of intraspecies interaction, much less is known about the molecular basis of interspecies interplay. In this review, we summarize recent progress in the understanding of chemically mediated bacterial-fungal interrelations. We discuss pairwise interactions among defined species and systems involving additional organisms as well as complex interactions among microbial communities encountered in the soil or defined as microbiota of higher organisms. Finally, we give examples of how the growing understanding of microbial interactions has contributed to drug discovery and hypothesize what may be future directions in studying and engineering microbiota for agricultural or medicinal purposes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
31
|
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020; 16:e1008783. [PMID: 32813693 PMCID: PMC7480860 DOI: 10.1371/journal.pgen.1008783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/09/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities. Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens that are frequently isolated from co-infections. Using a combination of dual-seq transcriptomics and genetics approaches, we found that ethanol produced by C. albicans stimulates the PhoB regulon in P. aeruginosa asynchronously with activation of the Pho4 regulon in C. albicans. We validated our result by showing that PhoB plays multiple roles in co-culture including orchestrating the competition for phosphate and the production of 5-methyl-phenazine-1-carboxylic acid; the P. aeruginosa phenazine response to C. albicans-produced ethanol depends on phosphate availability. The conditional stimulation of antifungal production in response to sub-inhibitory concentrations of ethanol only under phosphate limitation highlights the importance of considering nutrient concentrations in the analysis of co-culture interactions and suggests that the low-phosphate response in one species influences phosphate availability for the other.
Collapse
|
32
|
Bacteria Modify Candida albicans Hypha Formation, Microcolony Properties, and Survival within Macrophages. mSphere 2020; 5:5/4/e00689-20. [PMID: 32759336 PMCID: PMC7407070 DOI: 10.1128/msphere.00689-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections. Phagocytic cells are crucial components of the innate immune system preventing Candida albicans mucosal infections. Streptococcus gordonii and Pseudomonas aeruginosa often colonize mucosal sites, along with C. albicans, and yet interkingdom interactions that might alter the survival and escape of fungi from macrophages are not understood. Murine macrophages were coinfected with S. gordonii or P. aeruginosa, along with C. albicans to evaluate changes in fungal survival. S. gordonii increased C. albicans survival and filamentation within macrophage phagosomes, while P. aeruginosa reduced fungal survival and filamentation. Coinfection with S. gordonii resulted in greater escape of C. albicans from macrophages and increased size of fungal microcolonies formed on macrophage monolayers, while coinfection with P. aeruginosa reduced macrophage escape and produced smaller microcolonies. Microcolonies formed in the presence of P. aeruginosa cells outside macrophages also had significantly reduced size that was not found with P. aeruginosa phenazine deletion mutants. S. gordonii cells, as well as S. gordonii heat-fixed culture supernatants, increased C. albicans microcolony biomass but also resulted in microcolony detachment. A heat-resistant, trypsin-sensitive pheromone processed by S. gordonii Eep was needed for these effects. The majority of fungal microcolonies formed on human epithelial monolayers with S. gordonii supernatants developed as large floating structures with no detectable invasion of epithelium, along with reduced gene expression of C. albicansHYR1, EAP1, and HWP2 adhesins. However, a subset of C. albicans microcolonies was smaller and had greater epithelial invasiveness compared to microcolonies grown without S. gordonii. Thus, bacteria can alter the killing and escape of C. albicans from macrophages and contribute to changes in C. albicans pathogenicity. IMPORTANCECandida albicans is the predominant fungus colonizing the oral cavity that can have both synergistic and antagonistic interactions with other bacteria. Interkingdom polymicrobial associations modify fungal pathogenicity and are believed to increase microbial resistance to innate immunity. However, it is not known how these interactions alter fungal survival during phagocytic killing. We demonstrated that secreted molecules of S. gordonii and P. aeruginosa alter C. albicans survival within the phagosome of macrophages and alter fungal pathogenic phenotypes, including filamentation and microcolony formation. Moreover, we provide evidence for a dual interaction between S. gordonii and C. albicans such that S. gordonii signaling peptides can promote C. albicans commensalism by decreasing microcolony attachment while increasing invasion in epithelial cells. Our results identify bacterial diffusible factors as an attractive target to modify virulence of C. albicans in polymicrobial infections.
Collapse
|
33
|
Bandara HMHN, Wood DLA, Vanwonterghem I, Hugenholtz P, Cheung BPK, Samaranayake LP. Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing. Sci Rep 2020; 10:7769. [PMID: 32385378 PMCID: PMC7211000 DOI: 10.1038/s41598-020-64761-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Microorganisms employ quorum sensing (QS) mechanisms to communicate with each other within microbial ecosystems. Emerging evidence suggests that intraspecies and interspecies QS plays an important role in antimicrobial resistance in microbial communities. However, the relationship between interkingdom QS and antimicrobial resistance is largely unknown. Here, we demonstrate that interkingdom QS interactions between a bacterium, Pseudomonas aeruginosa and a yeast, Candida albicans, induce the resistance of the latter to a widely used antifungal fluconazole. Phenotypic, transcriptomic, and proteomic analyses reveal that P. aeruginosa's main QS molecule, N-(3-Oxododecanoyl)-L-homoserine lactone, induces candidal resistance to fluconazole by reversing the antifungal's effect on the ergosterol biosynthesis pathway. Accessory resistance mechanisms including upregulation of C. albicans drug-efflux, regulation of oxidative stress response, and maintenance of cell membrane integrity, further confirm this phenomenon. These findings demonstrate that P. aeruginosa QS molecules may confer protection to neighboring yeasts against azoles, in turn strengthening their co-existence in hostile polymicrobial infection sites.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Microbiology, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| | - D L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - I Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - P Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - B P K Cheung
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Rd, Sai Ying Pun, Hong Kong SAR, China
| | - L P Samaranayake
- College of Dental Medicine, The University of Sharjah, P.O. Box, 27272, Sharjah, UAE
| |
Collapse
|
34
|
Bandara HMHN, Hewavitharana AK, Shaw PN, Smyth HDC, Samaranayake LP. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int J Pharm 2020; 578:119096. [PMID: 32006626 DOI: 10.1016/j.ijpharm.2020.119096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
In contrast to the plethora of antibacterial agents, only a handful of antifungals are currently available to treat Candida albicans biofilm-associated infections. Additional novel antibiofilm strategies to eliminate C. albicans biofilm infections are needed. This study aims to improve the efficacy of a widely used azole, fluconazole by co-delivering it with a Pseudomonas aeruginosa quorum sensing molecule (QSM), N-3-oxo-dodecanoyl-L-homoserine lactone (C12AHL) in a liposomal formulation. C12AHL is known to inhibit C. albicans' morphological transition and biofilm formation. Four different formulations of liposomes with fluconazole (L-F), with C12AHL (L-H), with fluconazole and C12AHL (L-HF), and a drug-free control (L-C) were prepared using a thin-film hydration followed by extrusion method, and characterised. The effect of liposomes on colonising (90 min-24 h) and preformed (24 h) C. albicans biofilms were assessed using a standard biofilm assay. Biofilm viability (XTT reduction assay), biomass (Safranin-O staining) and architecture (confocal laser scanning microscopy, CLSM) were determined. Similar efficiencies of fluconazole entrapment were noticed in L-HF and L-F (11.74% vs 10.2%), however, L-HF released greater quantities of fluconazole compared to L-F during 24 h (4.27% vs 0.97%, P < 0.05). The entrapment and release of C12AHL was similar for L-H and L-HF liposomes (33.3% vs 33% and 88.9% vs 92.3% respectively). L-HF treated colonising, and preformed biofilms exhibited >80%, and 60% reduction in their respective viabilities at a fluconazole concentration as low as 5.5 µg/mL compared to 12% and 36%, respective reductions observed in L-F treated biofilms (P < 0.05). CLSM confirmed biofilm disruption, lack of hyphae, and reduction in biomass when treated with L-HF compared to other liposomal preparations. Liposomal co-delivery of C12AHL and fluconazole appears to suppress C. albicans biofilms through efficacious disruption of the biofilm, killing of constituent yeasts, and diminishing their virulence at a significantly lower antifungal dose. Therefore, liposomal co-formulation of C12AHL and fluconazole appears to be a promising approach to improve the efficacy of this common triazole against biofilm-mediated candidal infections.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Microbiology, Bristol Dental School, University of Bristol, UK.
| | | | - P N Shaw
- School of Pharmacy, The University of Queensland, Australia
| | - H D C Smyth
- College of Pharmacy, The University of Texas at Austin, USA
| | - L P Samaranayake
- College of Dental Medicine, The University of Sharjah, United Arab Emirates
| |
Collapse
|
35
|
Honey as a Strategy to Fight Candida tropicalis in Mixed-Biofilms with Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9020043. [PMID: 31973242 PMCID: PMC7168267 DOI: 10.3390/antibiotics9020043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
Fungal contaminations with Candida species are commonly responsible for several infections, especially when associated to bacteria. The therapeutic approach commonly used is being compromised due to microbial resistances of these microorganisms to antimicrobial agents, especially in biofilm. The use of honey as an antimicrobial agent has been emerging as a valuable solution and proving its potential in planktonic and in biofilm cells. This work aims to assess the effect of different honeys on biofilms of Candida tropicalis and Pseudomonas aeruginosa. The effect of Portuguese heather (PH) and manuka honeys on planktonic growth of Candida was initially evaluated by determination of the minimum inhibitory concentrations (MIC). Then, the same effect was evaluated in mixed biofilms, by colony-forming units numeration and fluorescence microscopy. The combinations of honey plus fluconazole and gentamicin were also tested. The results showed that the honeys tested enabled a great reduction of C. tropicalis, both in planktonic (12.5% and 25% of MIC for PH and manuka) and in biofilm. In polymicrobial biofilms, the use of PH and manuka honeys was revealed to be a promising choice and an alternative treatment, since they were able to reduce cells from both species. No synergistic effect was observed in antimicrobial combinations assays against polymicrobial biofilms.
Collapse
|
36
|
O’Brien TJ, Welch M. A Continuous-Flow Model for in vitro Cultivation of Mixed Microbial Populations Associated With Cystic Fibrosis Airway Infections. Front Microbiol 2019; 10:2713. [PMID: 31824471 PMCID: PMC6883238 DOI: 10.3389/fmicb.2019.02713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The airways of people with cystic fibrosis (CF) provide a nutrient-rich environment which favours colonisation by a variety of bacteria and fungi. Although the dominant pathogen associated with CF airway infections is Pseudomonas aeruginosa, it is becoming increasingly clear that inter-species interactions between P. aeruginosa and other colonists in the airways may have a large impact on microbial physiology and virulence. However, there are currently no suitable experimental models that permit long-term co-culture of P. aeruginosa with other CF-associated pathogens. Here, we redress this problem by describing a "3R's-compliant" continuous-flow in vitro culture model which enables long-term co-culture of three representative CF-associated microbes: P. aeruginosa, Staphylococcus aureus and Candida albicans. Although these species rapidly out-compete one another when grown together or in pairs in batch culture, we show that in a continuously-fed setup, they can be maintained in a very stable, steady-state community. We use our system to show that even numerically (0.1%) minor species can have a major impact on intercellular signalling by P. aeruginosa. Importantly, we also show that co-culturing does not appear to influence species mutation rates, further reinforcing the notion that the system favours stability rather than divergence. The model is experimentally tractable and offers an inexpensive yet robust means of investigating inter-species interactions between CF pathogens.
Collapse
Affiliation(s)
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Reen FJ, McGlacken GP, O'Gara F. The expanding horizon of alkyl quinolone signalling and communication in polycellular interactomes. FEMS Microbiol Lett 2019; 365:4953739. [PMID: 29718276 DOI: 10.1093/femsle/fny076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/25/2018] [Indexed: 02/07/2023] Open
Abstract
Population dynamics within natural ecosystems is underpinned by microbial diversity and the heterogeneity of host-microbe and microbe-microbe interactions. Small molecule signals that intersperse between species have been shown to govern many virulence-related processes in established and emerging pathogens. Understanding the capacity of microbes to decode diverse languages and adapt to the presence of 'non-self' cells will provide an important new direction to the understanding of the 'polycellular' interactome. Alkyl quinolones (AQs) have been described in the ESKAPE pathogen Pseudomonas aeruginosa, the primary agent associated with mortality in patients with cystic fibrosis and the third most prevalent nosocomial pathogen worldwide. The role of these molecules in governing the physiology and virulence of P. aeruginosa and other pathogens has received considerable attention, while a role in interspecies and interkingdom communication has recently emerged. Herein we discuss recent advances in our understanding of AQ signalling and communication in the context of microbe-microbe and microbe-host interactions. The integrated knowledge from these systems-based investigations will facilitate the development of new therapeutics based on the AQ framework that serves to disarm the pathogenesis of P. aeruginosa and competing pathogens.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, USA
| |
Collapse
|
38
|
Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi (Basel) 2019; 5:jof5020034. [PMID: 31010211 PMCID: PMC6617365 DOI: 10.3390/jof5020034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
There are many examples of the interaction between prokaryotes and eukaryotes. One such example is the polymicrobial colonization/infection by the various opportunistic pathogenic yeasts belonging to the genus Candida and the ubiquitous bacterium, Pseudomonas aeruginosa. Although this interaction has simplistically been characterized as antagonistic to the yeast, this review highlights the complexity of the interaction with various factors influencing both microbes. The first section deals with the interactions in vitro, looking specifically at the role of cell wall components, quorum sensing molecules, phenazines, fatty acid metabolites and competition for iron in the interaction. The second part of this review places all these interactions in the context of various infection or colonization sites, i.e., lungs, wounds, and the gastrointestinal tract. Here we see that the role of the host, as well as the methodology used to establish co-infection, are important factors, influencing the outcome of the disease. Suggested future perspectives for the study of this interaction include determining the influence of newly identified participants of the QS network of P. aeruginosa, oxylipin production by both species, as well as the genetic and phenotypic plasticity of these microbes, on the interaction and outcome of co-infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| |
Collapse
|
39
|
Tipping the Balance: C. albicans Adaptation in Polymicrobial Environments. J Fungi (Basel) 2018; 4:jof4030112. [PMID: 30231476 PMCID: PMC6162738 DOI: 10.3390/jof4030112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a pleiomorphic fungus which co-exists with commensal bacteria in mucosal and skin sites of mammalian hosts. It is also a major co-isolated organism from polymicrobial systemic infections, with high potential for morbidity or mortality in immunocompromised patients. Traditionally, resident mucosal bacteria have been thought to antagonize C. albicans in its ability to colonize or cause infection. However, recent investigations have revealed synergistic relationships with certain bacterial species that colonize the same mucosal sites with C. albicans. Such relationships broaden the research landscape in pathogenesis but also contribute to clinical challenges in the prevention or treatment of mucosal candidiasis. This review sheds light on interactions of C. albicans and mucosal bacteria, with special emphasis on the effects of the resident bacterial microbiota on C. albicans physiology as they relate to its adaptation in mucosal sites as a commensal colonizer or as a pathogenic organism.
Collapse
|
40
|
Agustín MDR, Brugnoni L. Multispecies biofilms betweenListeria monocytogenesandListeria innocuawith resident microbiota isolated from apple juice processing equipment. J Food Saf 2018. [DOI: 10.1111/jfs.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- María del Rosario Agustín
- Department of Biology, Biochemistry and Pharmacy; Universidad Nacional del Sur (UNS); Bahía Blanca Argentina
| | - Lorena Brugnoni
- Institute of Biological and Biomedical Sciences of the South (INBIOSUR); Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Bahía Blanca Argentina
| |
Collapse
|
41
|
Microbial Interactions in the Cystic Fibrosis Airway. J Clin Microbiol 2018; 56:JCM.00354-18. [PMID: 29769279 DOI: 10.1128/jcm.00354-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Interactions in the airway ecology of cystic fibrosis may alter organism persistence and clinical outcomes. Better understanding of such interactions could guide clinical decisions. We used generalized estimating equations to fit logistic regression models to longitudinal 2-year patient cohorts in the Cystic Fibrosis Foundation Patient Registry, 2003 to 2011, in order to study associations between the airway organisms present in each calendar year and their presence in the subsequent year. Models were adjusted for clinical characteristics and multiple observations per patient. Adjusted models were tested for sensitivity to cystic fibrosis-specific treatments. The study included 28,042 patients aged 6 years and older from 257 accredited U.S. care centers and affiliates. These patients had produced sputum specimens for at least two consecutive years that were cultured for methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Candida and Aspergillus species. We analyzed 99.8% of 538,458 sputum cultures from the patients during the study period. Methicillin-sensitive S. aureus was negatively associated with subsequent Paeruginosa. Paeruginosa was negatively associated with subsequent B. cepacia complex, Axylosoxidans, and Smaltophilia. Bcepacia complex was negatively associated with the future presence of all bacteria studied, as well as with that of Aspergillus species. Paeruginosa, B. cepacia complex, and S. maltophilia were each reciprocally and positively associated with Aspergillus species. Independently of patient characteristics, the organisms studied interact and alter the outcomes of treatment decisions, sometimes in unexpected ways. By inhibiting P. aeruginosa, methicillin-sensitive S. aureus may delay lung disease progression. Paeruginosa and B. cepacia complex may inhibit other organisms by decreasing airway biodiversity, potentially worsening lung disease.
Collapse
|
42
|
Tshikantwa TS, Ullah MW, He F, Yang G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front Microbiol 2018; 9:1156. [PMID: 29910788 PMCID: PMC5992746 DOI: 10.3389/fmicb.2018.01156] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
For a long time, it was considered that interactions between microbes are only inhibitory in nature. However, latest developments in research have demonstrated that within our environment, several classes of microbes exist which produce different products upon interaction and thus embrace a wider scope of useful and potentially valuable aspects beyond simple antibiosis. Therefore, the current review explores different types of microbial interactions and describes the role of various physical, chemical, biological, and genetic factors regulating such interactions. It further explains the mechanism of action of biofilm formation and role of secondary metabolites regulating bacteria-fungi interaction. Special emphasis and focus is placed on microbial interactions which are important in medicine, food industry, agriculture, and environment. In short, this review reveals the recent contributions of microbial interaction for the benefit of mankind.
Collapse
Affiliation(s)
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering Huazhong University of Science and Technology, Wuhan, China
| | - Feng He
- College of Life Sciences Huanggang Normal University, Huanggang, China
| | - Guang Yang
- Department of Biomedical Engineering Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
44
|
Wu GX, Huang HH, Chang HR, Kuo SM. Evaluation of the UVB-screening capacity and restorative effects exerted by farnesol gel on UVB-caused sunburn. ENVIRONMENTAL TOXICOLOGY 2018; 33:488-507. [PMID: 29380558 DOI: 10.1002/tox.22535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Farnesol, a natural 15-carbon organic compound, has various microbiological and cellular activities. It has been found to exert apoptosis-inducing effects against carcinoma cells as well as antiallergic and anti-inflammatory effects in vivo. In the current study, a series of formulations composed of various concentrations of hydroxypropyl methylcellulose (HPMC) with the addition of hyaluronan (HA) and xanthan gum (XG) was designed to evaluate the UVB-screening and H2 O2 -eliminating effects of farnesol in normal fibroblasts. Farnesol at 0.005, 0.0075, and 0.01% exhibited significant capacity for H2 O2 scavenging; at 0.0025%, it showed insignificant effects. Under 120-min UVB exposure, screening with plural gel composed of 0.0025% farnesol, 0.5% HA, and 0.5% XG containing 1.5% or 2% HPMC retained normal fibroblast viability. After 60-min exposure to UVB, screening with plural gel composed of farnesol, HA, XG, and 0.5%, 1.0%, 1.5%, or 2% HPMC decreased the ratio of the G1 phase and increased ratio of the S phase in comparison with the accumulated cell cycle of the normal fibroblasts without screening. The gel with 2% HPMC displayed the strongest cell cycle-reversal ability. In vivo histopathological results showed that the prepared plural gels with 0.5% or 2% HPMC and farnesol, HA, and XG had greater antiphotoaging and reparative effects against UVB-induced changes and damage in the skin. In conclusion, the current in vitro and in vivo results demonstrated that the prepared plural composed of 0.0025% farnesol, 0.5% HA, 0.5% XG, and 2% HPMC possessed the greatest UVB-screening capacity and the strongest restorative effects on UVB-induced sunburned skin.
Collapse
Affiliation(s)
- Guan Xuan Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Huoy Rou Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| | - Shyh Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
45
|
Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies. mSystems 2018; 3:mSystems00201-17. [PMID: 29556538 PMCID: PMC5850078 DOI: 10.1128/msystems.00201-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host.
Collapse
|
46
|
Li S, Yu X, Wu W, Chen DZ, Xiao M, Huang X. The opportunistic human fungal pathogen Candida albicans promotes the growth and proliferation of commensal Escherichia coli through an iron-responsive pathway. Microbiol Res 2017; 207:232-239. [PMID: 29458859 DOI: 10.1016/j.micres.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
Candida albicans is a commensal fungal species that commonly colonizes a heterogeneous mixture of human body where it intimately interacts with other microbes in the host environment such as the gastrointestinal (GI) tract. Most studies in fungal-bacterial interactions are about synergistic or antagonistic effects of bacterial functions on fungal physiological activities including pathogenicity. Very few studies have been demonstrated about the role of fungi on bacteria. In this study, we investigated the interactions between C. albicans and the bacterium Escherichia coli and unexpectedly observed that C. albicans enhances growth and proliferation of Escherichia coli strain K12 by facilitating its cell division. Importantly, we found, based on our genetic screens, that both fungus- and bacterium-derived factors, including the iron-responsive transcription factors Sef1 and Sfu1 in C. albicans and the siderophere enterobactin transporters FepD and FepG in E. coli, actively contribute to this transkingdom interaction. Deletion of SFU1 or SEF1 caused a dramatic reduction in growth enhancement of E. coli. Compared to the wild type E. coli, the enhanced growth of both fepD and fepG null mutants were largely dampened. However, the E. coli mutant lacking entB, a key enzyme catalyzing the biosynthesis of siderophore enterobactin, showed similar growth enhancement as the wild type when co-inoculated with C. albicans. C. albicans promotes growth and proliferation of the commensal bacterium E. coli and an iron-responsive signaling pathway appears to be required. C. albicans may act to supply a siderophere-like molecule that captures the environmental iron to promote the growth of E. coli. Our studies gave insight into a novel interacting mechanism operative in interspecies communication that occurs when bacteria and fungi co-exist.
Collapse
Affiliation(s)
- Shanshan Li
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China; Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Daniel Z Chen
- Los Osos High School, 6001 Milliken Ave., Rancho Cucamonga, CA 91737, USA
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China.
| | - Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
47
|
Abstract
Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species.
Collapse
|
48
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
49
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
50
|
Chen SCA, Patel S, Meyer W, Chapman B, Yu H, Byth K, Middleton PG, Nevalainen H, Sorrell TC. Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro. Mycopathologia 2017; 183:251-261. [PMID: 28512704 DOI: 10.1007/s11046-017-0140-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
In vitro bacterial-fungal interaction studies in cystic fibrosis (CF) have mainly focused on interactions between bacteria and Candida. Here we investigated the effect of Pseudomonas aeruginosa on the growth of Scedosporium/Lomentospora spp. Standard suspensions of P. aeruginosa (16 non-mucoid and nine mucoid isolates) were dropped onto paper disks, placed on lawns of Lomentospora prolificans (formerly Scedosporium prolificans) strain WM 14.140 or Scedosporium aurantiacum strain WM 11.78 on solid agar. The median inhibitory activity (mIz) was calculated for each fungal-bacterial combination. As a group, mIz values for non-mucoid phenotype P. aeruginosa strains were significantly lower than those for mucoid strains (P < 0.001); 14/16 (87.5%) non-mucoid strains had mIz <1.0 against both fungi versus just 3/9 mucoid strains (33.4%) (P = 0.01). One non-mucoid (PA14) and one mucoid (CIDMLS-PA-28) P. aeruginosa strain effecting inhibition were selected for further studies. Inhibition of both L. prolificans and S. aurantiacum by these strains was confirmed using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) reduction assay. Following incubation with XTT, inhibition of fungal growth was determined as the ratio of absorbance in liquid culture with Pseudomonas to that in control fungal cultures. An absorbance ratio of <1.0 consistent with bacterial inhibition of fungal growth was observed for all four P. aeruginosa-fungal combinations (P < 0.05). Fluorescence microscopy, subsequent to co-culture of either fungal isolate with P. aeruginosa strain PA14 or CIDMLS-PA-28 revealed poorly formed hyphae, compared with control fungal cultures. P. aeruginosa inhibits growth of L. prolificans and S. aurantiacum in vitro, with non-mucoid strains more commonly having an inhibitory effect. As P. aeruginosa undergoes phenotype transitions from non-mucoid to the mucoid form with progression of CF lung disease, this balance may influence the appearance of Scedosporium fungi in the airways.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia. .,Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.
| | - Shilpa Patel
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Belinda Chapman
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hong Yu
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia
| | - Karen Byth
- Research and Education Network, University of Sydney, Westmead, NSW, Australia
| | - Peter G Middleton
- The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Respiratory and Sleep Medicine, Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Westmead, NSW, Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|