1
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
2
|
Jansen van Rensburg MJ, Berger DJ, Yassine I, Shaw D, Fohrmann A, Bray JE, Jolley KA, Maiden MCJ, Brueggemann AB. Development of the Pneumococcal Genome Library, a core genome multilocus sequence typing scheme, and a taxonomic life identification number barcoding system to investigate and define pneumococcal population structure. Microb Genom 2024; 10:001280. [PMID: 39137139 PMCID: PMC11321556 DOI: 10.1099/mgen.0.001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Investigating the genomic epidemiology of major bacterial pathogens is integral to understanding transmission, evolution, colonization, disease, antimicrobial resistance and vaccine impact. Furthermore, the recent accumulation of large numbers of whole genome sequences for many bacterial species enhances the development of robust genome-wide typing schemes to define the overall bacterial population structure and lineages within it. Using the previously published data, we developed the Pneumococcal Genome Library (PGL), a curated dataset of 30 976 genomes and contextual data for carriage and disease pneumococci recovered between 1916 and 2018 in 82 countries. We leveraged the size and diversity of the PGL to develop a core genome multilocus sequence typing (cgMLST) scheme comprised of 1222 loci. Finally, using multilevel single-linkage clustering, we stratified pneumococci into hierarchical clusters based on allelic similarity thresholds and defined these with a taxonomic life identification number (LIN) barcoding system. The PGL, cgMLST scheme and LIN barcodes represent a high-quality genomic resource and fine-scale clustering approaches for the analysis of pneumococcal populations, which support the genomic epidemiology and surveillance of this leading global pathogen.
Collapse
Affiliation(s)
| | - Duncan J. Berger
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iman Yassine
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David Shaw
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andy Fohrmann
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James E. Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
3
|
Kwun MJ, Ion AV, Oggioni MR, Bentley S, Croucher N. Diverse regulatory pathways modulate bet hedging of competence induction in epigenetically-differentiated phase variants of Streptococcus pneumoniae. Nucleic Acids Res 2023; 51:10375-10394. [PMID: 37757859 PMCID: PMC10602874 DOI: 10.1093/nar/gkad760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Alexandru V Ion
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
4
|
Kremer PHC, Ferwerda B, Bootsma HJ, Rots NY, Wijmenga-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Turner P, van der Ende A, Brouwer MC, Bentley SD, van de Beek D, Lees JA. Pneumococcal genetic variability in age-dependent bacterial carriage. eLife 2022; 11:e69244. [PMID: 35881438 PMCID: PMC9395192 DOI: 10.7554/elife.69244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
The characteristics of pneumococcal carriage vary between infants and adults. Host immune factors have been shown to contribute to these age-specific differences, but the role of pathogen sequence variation is currently less well-known. Identification of age-associated pathogen genetic factors could leadto improved vaccine formulations. We therefore performed genome sequencing in a large carriage cohort of children and adults and combined this with data from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic variation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and clusters of orthologous genes (COGs) for each cohort - all of which were used in a genome-wide association with host age. Age-dependent colonization showed weak evidence of being heritable in the first cohort (h2 = 0.10, 95% CI 0.00-0.69) and stronger evidence in the second cohort (h2 = 0.56, 95% CI 0.23-0.87). We found that serotypes and genetic background (strain) explained a proportion of the heritability in the first cohort (h2serotype = 0.07, 95% CI 0.04-0.14 and h2GPSC = 0.06, 95% CI 0.03-0.13) and the second cohort (h2serotype = 0.11, 95% CI 0.05-0.21 and h2GPSC = 0.20, 95% CI 0.12-0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 × 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we did find a small effect of pathogen genome variation on pneumococcal carriage between child and adult hosts, this was variable between populations and does not appear to be caused by strong effects of individual genes. This supports proposals for adaptive future vaccination strategies that are primarily targeted at dominant circulating serotypes and tailored to the composition of the pathogen populations.
Collapse
Affiliation(s)
- Philip HC Kremer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Bart Ferwerda
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, University of AmsterdamAmsterdamNetherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Nienke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Elisabeth AM Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious D, Wilhelmina Children's HospitalUtrechtNetherlands
- Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMCAmsterdamNetherlands
- The Netherlands Reference Laboratory for Bacterial MeningitisAmsterdamNetherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger InstituteCambridgeUnited Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of AmsterdamMeibergdreefNetherlands
| | - John A Lees
- European Molecular Biology Laboratory–European Bioinformatics InstituteCambridgeUnited Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Thänert R, Choi J, Reske KA, Hink T, Thänert A, Wallace MA, Wang B, Seiler S, Cass C, Bost MH, Struttmann EL, Iqbal ZH, Sax SR, Fraser VJ, Baker AW, Foy KR, Williams B, Xu B, Capocci-Tolomeo P, Lautenbach E, Burnham CAD, Dubberke ER, Kwon JH, Dantas G. Persisting uropathogenic Escherichia coli lineages show signatures of niche-specific within-host adaptation mediated by mobile genetic elements. Cell Host Microbe 2022; 30:1034-1047.e6. [PMID: 35545083 PMCID: PMC10365138 DOI: 10.1016/j.chom.2022.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Large-scale genomic studies have identified within-host adaptation as a hallmark of bacterial infections. However, the impact of physiological, metabolic, and immunological differences between distinct niches on the pathoadaptation of opportunistic pathogens remains elusive. Here, we profile the within-host adaptation and evolutionary trajectories of 976 isolates representing 119 lineages of uropathogenic Escherichia coli (UPEC) sampled longitudinally from both the gastrointestinal and urinary tracts of 123 patients with urinary tract infections. We show that lineages persisting in both niches within a patient exhibit increased allelic diversity. Habitat-specific selection results in niche-specific adaptive mutations and genes, putatively mediating fitness in either environment. Within-lineage inter-habitat genomic plasticity mediated by mobile genetic elements (MGEs) provides the opportunistic pathogen with a mechanism to adapt to the physiological conditions of either habitat, and reduced MGE richness is associated with recurrence in gut-adapted UPEC lineages. Collectively, our results establish niche-specific adaptation as a driver of UPEC within-host evolution.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - JooHee Choi
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly A Reske
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiffany Hink
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sondra Seiler
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Candice Cass
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret H Bost
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily L Struttmann
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Zainab Hassan Iqbal
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven R Sax
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Victoria J Fraser
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Katherine R Foy
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, NC, USA
| | - Brett Williams
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Ben Xu
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Pam Capocci-Tolomeo
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebbing Lautenbach
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik R Dubberke
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Jennie H Kwon
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D, Seemann T, Davis JS, Tong SYC, Young BC, Wilson DJ, Stinear TP, Howden BP. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 2022; 11:e77195. [PMID: 35699423 PMCID: PMC9270034 DOI: 10.7554/elife.77195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
During severe infections, Staphylococcus aureus moves from its colonising sites to blood and tissues and is exposed to new selective pressures, thus, potentially driving adaptive evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation; however, a more comprehensive characterisation of genetic signatures of bacterial adaptation may enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these infections. Here, we measured adaptation using within-host evolution analysis of 2590 S. aureus genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of single nucleotide and structural genome variations, we found evidence of a distinctive evolutionary pattern within the infecting populations compared to colonising bacteria. These invasive strains had up to 20-fold enrichments for genome degradation signatures and displayed significantly convergent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addition to agr-mediated adaptation, we identified non-canonical, genome-wide significant loci including sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, emphasising the clinical significance of these signatures. These findings provide a high-resolution picture of the molecular changes when S. aureus transitions from colonisation to severe infection and may inform correlation of infection outcomes with adaptation signatures.
Collapse
Affiliation(s)
- Stefano G Giulieri
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Victorian Infectious Diseases Service, Royal Melbourne HospitalMelbourneAustralia
| | - Romain Guérillot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Sebastian Duchene
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Diane Daniel
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Joshua S Davis
- Department of Infectious Diseases, John Hunter HospitalNewcastle, New South WalesAustralia
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
| | - Steven YC Tong
- Menzies School of Health Research, Charles Darwin UniversityCasuarina, Northern TerritoryAustralia
- Victorian Infectious Disease Service, Royal Melbourne Hospital, and University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of OxfordOxfordUnited Kingdom
| | - Timothy P Stinear
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Benjamin P Howden
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- Department of Infectious Diseases, Austin HealthHeidelbergAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
7
|
Earle SG, Lobanovska M, Lavender H, Tang C, Exley RM, Ramos-Sevillano E, Browning DF, Kostiou V, Harrison OB, Bratcher HB, Varani G, Tang CM, Wilson DJ, Maiden MCJ. Genome-wide association studies reveal the role of polymorphisms affecting factor H binding protein expression in host invasion by Neisseria meningitidis. PLoS Pathog 2021; 17:e1009992. [PMID: 34662348 PMCID: PMC8553145 DOI: 10.1371/journal.ppat.1009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Many invasive bacterial diseases are caused by organisms that are ordinarily harmless components of the human microbiome. Effective interventions against these microbes require an understanding of the processes whereby symbiotic or commensal relationships transition into pathology. Here, we describe bacterial genome-wide association studies (GWAS) of Neisseria meningitidis, a common commensal of the human respiratory tract that is nevertheless a leading cause of meningitis and sepsis. An initial GWAS discovered bacterial genetic variants, including single nucleotide polymorphisms (SNPs), associated with invasive meningococcal disease (IMD) versus carriage in several loci across the meningococcal genome, encoding antigens and other extracellular components, confirming the polygenic nature of the invasive phenotype. In particular, there was a significant peak of association around the fHbp locus, encoding factor H binding protein (fHbp), which promotes bacterial immune evasion of human complement by recruiting complement factor H (CFH) to the meningococcal surface. The association around fHbp with IMD was confirmed by a validation GWAS, and we found that the SNPs identified in the validation affected the 5' region of fHbp mRNA, altering secondary RNA structures, thereby increasing fHbp expression and enhancing bacterial escape from complement-mediated killing. This finding is consistent with the known link between complement deficiencies and CFH variation with human susceptibility to IMD. These observations demonstrate the importance of human and bacterial genetic variation across the fHbp:CFH interface in determining IMD susceptibility, the transition from carriage to disease.
Collapse
Affiliation(s)
- Sarah G. Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Mariya Lobanovska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vasiliki Kostiou
- Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington United States of America
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Department for Continuing Education, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (GV); (CMT); (DJW); (MCJM)
| |
Collapse
|
8
|
Kremer PHC, Lees JA, Ferwerda B, van de Ende A, Brouwer MC, Bentley SD, van de Beek D. Genetic Variation in Neisseria meningitidis Does Not Influence Disease Severity in Meningococcal Meningitis. Front Med (Lausanne) 2020; 7:594769. [PMID: 33262994 PMCID: PMC7686797 DOI: 10.3389/fmed.2020.594769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis causes sepsis and meningitis in humans. It has been suggested that pathogen genetic variation determines variance in disease severity. Here we report results of a genome-wide association study of 486 N. meningitidis genomes from meningococcal meningitis patients and their association with disease severity. Of 369 meningococcal meningitis patients for whom clinical data was available, 44 (12%) had unfavorable outcome and 24 (7%) died. To increase power, thrombocyte count was used as proxy marker for disease severity. Bacterial genetic variants were called as k-mers, SNPs, insertions and deletions and clusters of orthologous genes (COGs). Population-level meningococcal genetic variation did not explain variance in disease severity (unfavorable outcome or thrombocyte count) in this cohort (h2 = 0.0%; 95% confidence interval: 0.0–0.9). Genetic variants in the bacterial uppS gene represented the top signal associated with thrombocyte count (p-value = 9.96e-07) but this did not reach statistical significance. We did not find an association between previously published variants in lpxL1, fHbp, and tps genes and unfavorable outcome or thrombocyte count. A power analysis based on simulated phenotypes based on real genetic data from 880 N. meningitidis genomes showed that we would be able to detect a continuous phenotype with h2 > = 0.5 with the population size available in this study. This rules out a major contribution of pathogen genetic variation to disease severity in meningococcal meningitis, and shows that much larger sample sizes are required to find specific low-effect genetic variants modulating disease outcome in meningococcal meningitis.
Collapse
Affiliation(s)
- Philip H C Kremer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John A Lees
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom.,Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arie van de Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Zbinden FR, De Ste Croix M, Grandgirard D, Haigh RD, Vacca I, Zamudio R, Goodall ECA, Stephan R, Oggioni MR, Leib SL. Pathogenic Differences of Type 1 Restriction-Modification Allele Variants in Experimental Listeria monocytogenes Meningitis. Front Cell Infect Microbiol 2020; 10:590657. [PMID: 33194838 PMCID: PMC7662400 DOI: 10.3389/fcimb.2020.590657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background: L. monocytogenes meningoencephalitis has a mortality rate of up to 50% and neurofunctional sequelae are common. Type I restriction-modification systems (RMS) are capable of adding methyl groups to the host genome. Some contain multiple sequence recognition (hsdS) genes that recombine, resulting in distinct DNA methylation patterns and patterns of gene expression. These phenotypic switches have been linked to virulence and have recently been discovered in multiple clonal complexes of L. monocytogenes. In the present study, we investigated the significant of RMS on L. monocytogenes virulence during the acute phase of experimental meningitis. Methods: L. monocytogenes strains containing RMS systems were identified, and purified clones enriched for single hsdS alleles were isolated. In vivo, 11-day old Wistar rats were infected with an inoculum containing (a) one of 4 single RMS allele variants (A, B, C, D) treated with amoxicillin (AMX 50 mg/kg/dosis, q8h), (b) a mixture of all 4 variants with or without AMX treatment, or (c) different mixtures of 2 RMS allele variants. At selected time points after infection, clinical and inflammatory parameters, bacterial titers and brain damage were determined. Changes in the relative frequency of the occurring RMS alleles in the inoculum and in CSF or cerebellum of infected animals were analyzed by capillary electrophoresis. Results: We have identified a phase variable RMS locus within L. monocytogenes CC4 and generated stocks that stably expressed each of the possible hsdS genes within that loci. Generation of these allele variants (A, B, C, D) allowed us to determine the methylation pattern associated with each hsdS through SMRT sequencing. In vivo infections with these single allele variants revealed differences in disease severity in that C induced the worst clinical outcome and more pronounced hippocampal apoptosis; D showed the most pronounced weight loss and the highest bacterial titer in the cerebellum. A caused the least severe disease. Conclusion: We identified that L. monocytogenes expressing hsdS (A) causes less damage than when other hsdS genes are expressed. While expression of hsdSC and D worsened the outcome in L. monocytogenes meningitis. We also demonstrate a competitive advantage of variants C and B over variant A in this model. Phenotypical switching may therefore represent a mechanism of virulence regulation during the acute phase of CNS infections with L. monocytogenes.
Collapse
Affiliation(s)
- Florian R Zbinden
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Richard D Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Vacca
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roxana Zamudio
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Emily C A Goodall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Chaguza C, Yang M, Cornick JE, du Plessis M, Gladstone RA, Kwambana-Adams BA, Lo SW, Ebruke C, Tonkin-Hill G, Peno C, Senghore M, Obaro SK, Ousmane S, Pluschke G, Collard JM, Sigaùque B, French N, Klugman KP, Heyderman RS, McGee L, Antonio M, Breiman RF, von Gottberg A, Everett DB, Kadioglu A, Bentley SD. Bacterial genome-wide association study of hyper-virulent pneumococcal serotype 1 identifies genetic variation associated with neurotropism. Commun Biol 2020; 3:559. [PMID: 33033372 PMCID: PMC7545184 DOI: 10.1038/s42003-020-01290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic variation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central nervous system (CNS) infections, particularly meningitis. Here, we address this question through a large-scale linear mixed model genome-wide association study of 909 African pneumococcal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling for host age, geography, and strain population structure, we identify genome-wide statistically significant genotype-phenotype associations in surface-exposed choline-binding (P = 5.00 × 10-08) and helicase proteins (P = 1.32 × 10-06) important for invasion, immune evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability indicated that causation of CNS infection requires multiple genetic and other factors reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore, virulence for meningitis.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Brenda A Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chinelo Ebruke
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Gerry Tonkin-Hill
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chikondi Peno
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Stephen K Obaro
- Division of Pediatric Infectious Disease, University of Nebraska Medical Center Omaha, Omaha, NE, USA
- International Foundation against Infectious Diseases in Nigeria, Abuja, Nigeria
| | - Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Betuel Sigaùque
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Robert F Breiman
- Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Kremer PH, Lees JA, Ferwerda B, Bijlsma MW, MacAlasdair N, van der Ende A, Brouwer MC, Bentley SD, van de Beek D. Diversification in immunogenicity genes caused by selective pressures in invasive meningococci. Microb Genom 2020; 6:mgen000422. [PMID: 32776867 PMCID: PMC7643973 DOI: 10.1099/mgen.0.000422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/26/2020] [Indexed: 11/21/2022] Open
Abstract
We studied population genomics of 486 Neisseria meningitidis isolates causing meningitis in the Netherlands during the period 1979-2003 and 2006-2013 using whole-genome sequencing to evaluate the impact of a hyperendemic period of serogroup B invasive disease. The majority of serogroup B isolates belonged to ST-41/44 (41 %) and ST-32 complex (16 %). Comparing the time periods, before and after the decline of serogroup B invasive disease, there was a decrease of ST-41/44 complex sequences (P=0.002). We observed the expansion of a sub-lineage within ST-41/44 complex sequences being associated with isolation from the 1979-2003 time period (P=0.014). Isolates belonging to this sub-lineage expansion within ST-41/44 complex were marked by four antigen allele variants. Presence of these allele variants was associated with isolation from the 1979-2003 time period after correction for multiple testing (Wald test, P=0.0043 for FetA 1-5; P=0.0035 for FHbp 14; P=0.012 for PorA 7-2.4 and P=0.0031 for NHBA two peptide allele). These sequences were associated with 4CMenB vaccine coverage (Fisher's exact test, P<0.001). Outside of the sub-lineage expansion, isolates with markedly lower levels of predicted vaccine coverage clustered in phylogenetic groups showing a trend towards isolation in the 2006-2013 time period (P=0.08). In conclusion, we show the emergence and decline of a sub-lineage expansion within ST-41/44 complex isolates concurrent with a hyperendemic period in meningococcal meningitis. The expansion was marked by specific antigen peptide allele combinations. We observed preliminary evidence for decreasing 4CMenB vaccine coverage in the post-hyperendemic period.
Collapse
Affiliation(s)
- Philip H.C. Kremer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - John A. Lees
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Bart Ferwerda
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Merijn W. Bijlsma
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Arie van der Ende
- Amsterdam UMC, Department of Medical Microbiology and the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | - Matthijs C. Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hixton, Cambridge, UK
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscienc, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Zhai T, Fu ZL, Qiu YB, Chen Q, Luo D, Chen K. Application of combined cerebrospinal fluid physicochemical parameters to detect intracranial infection in neurosurgery patients. BMC Neurol 2020; 20:213. [PMID: 32460716 PMCID: PMC7251726 DOI: 10.1186/s12883-020-01781-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Routine test of cerebrospinal fluid (CSF), such as glucose concentrations, chloride ion, protein and leukocyte, as well as color, turbidity and clot, were important indicators for intracranial infection. However, there were no models to predict the intracranial infection with these parameters. We collected data of 221 cases with CSF positive-culture and 50 cases with CSF negative culture from January 1, 2016 to December 31, 2018 in the First Affiliated Hospital of Nanchang University, China. SPSS17.0 software was used to establish the model by adopting seven described indicators, and P < 0.05 was considered as statistically significant. Meanwhile, 40 cases with positive-culture and 10 cases with negative-culture were selected to verify the sensitivity and specificity of the model. The results showed that each parameter was significant in the model establishment (P < 0.05). To extract the above seven parameters, the interpretation model C was established, and C = 0.952–0.183 × glucose value (mmol/L) - 0.024 × chloride ion value (mmol/L)- 0.000122 × protein value (mg/L) - 0.0000859 × number of leukocytes per microliter (× 106/L) + 1.354 × color number code + 0.236 × turbidity number code + 0.691 × clot number code. In addition, the diagnostic sensitivity and specificity of the model were 85.0 and 100%, respectively. The combining application of seven physicochemical parameters of CSF might be of great value in the diagnosis of intracranial infection for adult patients.
Collapse
Affiliation(s)
- Tiantian Zhai
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,School of Public health of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhong Lian Fu
- Department of Preschool education and special education, Yuzhang Normal College, Nanchang, 330103, Jiangxi, China
| | - Yan Bing Qiu
- School of Public health of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qiang Chen
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Dong Luo
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Kaisen Chen
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
13
|
De Ste Croix M, Mitsi E, Morozov A, Glenn S, Andrew PW, Ferreira DM, Oggioni MR. Phase variation in pneumococcal populations during carriage in the human nasopharynx. Sci Rep 2020; 10:1803. [PMID: 32019989 PMCID: PMC7000782 DOI: 10.1038/s41598-020-58684-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/28/2019] [Indexed: 11/10/2022] Open
Abstract
Streptococcus pneumoniae is one of the world's leading bacterial pathogens, responsible for pneumonia, septicaemia and meningitis. Asymptomatic colonisation of the nasopharynx is considered to be a prerequisite for these severe infections, however little is understood about the biological changes that permit the pneumococcus to switch from asymptomatic coloniser to invasive pathogen. A phase variable type I restriction-modification (R-M) system (SpnIII) has been linked to a change in capsule expression and to the ability to successfully colonise the murine nasopharynx. Using our laboratory data, we have developed a Markov change model that allows prediction of the expected level of phase variation within a population, and as a result measures when populations deviate from those expected at random. Using this model, we have analysed samples from the Experimental Human Pneumococcal Carriage (EHPC) project. Here we show, through mathematical modelling, that the patterns of dominant SpnIII alleles expressed in the human nasopharynx are significantly different than those predicted by stochastic switching alone. Our inter-disciplinary work demonstrates that the expression of alternative methylation patterns should be an important consideration in studies of pneumococcal colonisation.
Collapse
Affiliation(s)
- M De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - E Mitsi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, L3 5QA, United Kingdom
| | - A Morozov
- Department of Mathematics, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
- Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskii pr., Moscow, 119071, Russia
| | - S Glenn
- Department of Respiratory Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - P W Andrew
- Department of Respiratory Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
| | - D M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Pl, Liverpool, L3 5QA, United Kingdom
| | - M R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
14
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
15
|
Green LR, Dave N, Adewoye AB, Lucidarme J, Clark SA, Oldfield NJ, Turner DPJ, Borrow R, Bayliss CD. Potentiation of Phase Variation in Multiple Outer-Membrane Proteins During Spread of the Hyperinvasive Neisseria meningitidis Serogroup W ST-11 Lineage. J Infect Dis 2019; 220:1109-1117. [PMID: 31119276 PMCID: PMC6735796 DOI: 10.1093/infdis/jiz275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Since 2009, increases in the incidence of invasive meningococcal disease have occurred in the United Kingdom due to a sublineage of the Neisseria meningitidis serogroup W ST-11 clonal complex (hereafter, the "original UK strain"). In 2013, a descendent substrain (hereafter, the "2013 strain") became the dominant disease-causing variant. Multiple outer-membrane proteins of meningococci are subject to phase-variable switches in expression due to hypermutable simple-sequence repeats. We investigated whether alterations in phase-variable genes may have influenced the relative prevalence of the original UK and 2013 substrains, using multiple disease and carriage isolates. METHODS Repeat numbers were determined by either bioinformatics analysis of whole-genome sequencing data or polymerase chain reaction amplification and sizing of fragments from genomic DNA extracts. Immunoblotting and sequence-translation analysis was performed to identify expression states. RESULTS Significant increases in repeat numbers were detected between the original UK and 2013 strains in genes encoding PorA, NadA, and 2 Opa variants. Invasive and carriage isolates exhibited similar repeat numbers, but the absence of pilC gene expression was frequently associated with disease. CONCLUSIONS Elevated repeat numbers in outer-membrane protein genes of the 2013 strain are indicative of higher phase-variation rates, suggesting that rapid expansion of this strain was due to a heightened ability to evade host immune responses during transmission and asymptomatic carriage.
Collapse
Affiliation(s)
- Luke R Green
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Neelam Dave
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Adeolu B Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Stephen A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester
| | | |
Collapse
|
16
|
In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog 2019; 15:e1007987. [PMID: 31356624 PMCID: PMC6687184 DOI: 10.1371/journal.ppat.1007987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pneumoniae (pneumococci) is a leading cause of severe bacterial meningitis in many countries worldwide. To characterize the repertoire of fitness and virulence factors predominantly expressed during meningitis we performed niche-specific analysis of the in vivo proteome in a mouse meningitis model, in which bacteria are directly inoculated into the cerebrospinal fluid (CSF) cisterna magna. We generated a comprehensive mass spectrometry (MS) spectra library enabling bacterial proteome analysis even in the presence of eukaryotic proteins. We recovered 200,000 pneumococci from CSF obtained from meningitis mice and by MS we identified 685 pneumococci proteins in samples from in vitro filter controls and 249 in CSF isolates. Strikingly, the regulatory two-component system ComDE and substrate-binding protein AliB of the oligopeptide transporter system were exclusively detected in pneumococci recovered from the CSF. In the mouse meningitis model, AliB-, ComDE-, or AliB-ComDE-deficiency resulted in attenuated meningeal inflammation and disease severity when compared to wild-type pneumococci indicating the crucial role of ComDE and AliB in pneumococcal meningitis. In conclusion, we show here mechanisms of pneumococcal adaptation to a defined host compartment by a proteome-based approach. Further, this study provides the basis of a promising strategy for the identification of protein antigens critical for invasive disease caused by pneumococci and other meningeal pathogens. Pneumococci are one of the most common and aggressive meningitis pathogens associated with mortality rates between 10% and 30%. Due to severe complications during therapeutic intervention, prevention strategies to combat pneumococcal meningitis (PM) are preferred. The vaccines available are so far suboptimal and inefficient to prevent serious PM. Hence, deciphering the mechanisms employed by pneumococci to encounter and survive in the cerebrospinal fluid (CSF) will pave the way for the development of new antimicrobial strategies. This work used an in vivo proteome-based approach to identify pneumococcal proteins expressed in the CSF during acute meningitis. This strategy identified a nutrient uptake system and regulatory system to be highly expressed in the CSF and being crucial for PM. Knocking out two of the highly in vivo expressed proteins (AliA and ComDE) in S. pneumoniae yields to a significant increase in survival and decrease in pathogen burden of infected mice. These host compartment specific expressed pneumococcal antigens represent promising candidates for antimicrobials or protein-based vaccines.
Collapse
|
17
|
Recombination of the Phase-Variable spnIII Locus Is Independent of All Known Pneumococcal Site-Specific Recombinases. J Bacteriol 2019; 201:JB.00233-19. [PMID: 31085693 PMCID: PMC6620402 DOI: 10.1128/jb.00233-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination. Streptococcus pneumoniae is one of the world’s leading bacterial pathogens, causing pneumonia, septicemia, and meningitis. In recent years, it has been shown that genetic rearrangements in a type I restriction-modification system (SpnIII) can impact colony morphology and gene expression. By generating a large panel of mutant strains, we have confirmed a previously reported result that the CreX (also known as IvrR and PsrA) recombinase found within the locus is not essential for hsdS inversions. In addition, mutants of homologous recombination pathways also undergo hsdS inversions. In this work, we have shown that these genetic rearrangements, which result in different patterns of genome methylation, occur across a wide variety of serotypes and sequence types, including two strains (a 19F and a 6B strain) naturally lacking CreX. Our gene expression analysis, by transcriptome sequencing (RNAseq), confirms that the level of creX expression is impacted by these genomic rearrangements. In addition, we have shown that the frequency of hsdS recombination is temperature dependent. Most importantly, we have demonstrated that the other known pneumococcal site-specific recombinases XerD, XerS, and SPD_0921 are not involved in spnIII recombination, suggesting that a currently unknown mechanism is responsible for the recombination of these phase-variable type I systems. IMPORTANCEStreptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination.
Collapse
|
18
|
Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539-5549. [PMID: 31076776 PMCID: PMC6582336 DOI: 10.1093/nar/gkz361] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
We present fastbaps, a fast solution to the genetic clustering problem. Fastbaps rapidly identifies an approximate fit to a Dirichlet process mixture model (DPM) for clustering multilocus genotype data. Our efficient model-based clustering approach is able to cluster datasets 10-100 times larger than the existing model-based methods, which we demonstrate by analyzing an alignment of over 110 000 sequences of HIV-1 pol genes. We also provide a method for rapidly partitioning an existing hierarchy in order to maximize the DPM model marginal likelihood, allowing us to split phylogenetic trees into clades and subclades using a population genomic model. Extensive tests on simulated data as well as a diverse set of real bacterial and viral datasets show that fastbaps provides comparable or improved solutions to previous model-based methods, while being significantly faster. The method is made freely available under an open source MIT licence as an easy to use R package at https://github.com/gtonkinhill/fastbaps.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - John A Lees
- Department of Microbiology, New York University School of Medicine, NY 10016, USA
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Department of Biostatistics, University of Oslo, Blindern 0317, Norway
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Aalto FI-00076, Finland
| |
Collapse
|
19
|
Lees JA, Ferwerda B, Kremer PHC, Wheeler NE, Serón MV, Croucher NJ, Gladstone RA, Bootsma HJ, Rots NY, Wijmega-Monsuur AJ, Sanders EAM, Trzciński K, Wyllie AL, Zwinderman AH, van den Berg LH, van Rheenen W, Veldink JH, Harboe ZB, Lundbo LF, de Groot LCPGM, van Schoor NM, van der Velde N, Ängquist LH, Sørensen TIA, Nohr EA, Mentzer AJ, Mills TC, Knight JC, du Plessis M, Nzenze S, Weiser JN, Parkhill J, Madhi S, Benfield T, von Gottberg A, van der Ende A, Brouwer MC, Barrett JC, Bentley SD, van de Beek D. Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat Commun 2019; 10:2176. [PMID: 31092817 PMCID: PMC6520353 DOI: 10.1038/s41467-019-09976-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Bart Ferwerda
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Philip H C Kremer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Nicole E Wheeler
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- The Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Mercedes Valls Serón
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | | | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Alienke J Wijmega-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
| | - Anne L Wyllie
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, 3508 AB, The Netherlands
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Aeilko H Zwinderman
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Zitta B Harboe
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, DK-2300, Denmark
| | - Lene F Lundbo
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Hvidovre, 2650, Denmark
| | - Lisette C P G M de Groot
- Department of Human Nutrition, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Natasja M van Schoor
- Amsterdam UMC, VU University, Department of Epidemiology and Biostatistics, Amsterdam Public Health, Van der Boechorststraat 7, Amsterdam, 1007 MB, The Netherlands
| | - Nathalie van der Velde
- Amsterdam UMC, University of Amsterdam, Department of Internal Medicine, Geriatrics, Amsterdam Public Health, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Lars H Ängquist
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, DK-2000, Denmark
| | - Thorkild I A Sørensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Copenhagen, DK-2200, Denmark
- The Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Ellen A Nohr
- Institute of Clinical Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tara C Mills
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Mignon du Plessis
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
| | - Susan Nzenze
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Julian Parkhill
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Shabir Madhi
- National Institute for Communicable Diseases, Johannesburg, 2192, South Africa
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Hvidovre, 2650, Denmark
| | - Anne von Gottberg
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2000, South Africa
- National Institute for Communicable Diseases, Johannesburg, 2192, South Africa
| | - Arie van der Ende
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Infection and Immunity, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Jeffrey C Barrett
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
- Genomics Plc, East Road, Cambridge, CB1 1BH, UK
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK.
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| |
Collapse
|
20
|
Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, Page AJ, Marttinen P, Bentley LJ, Ochoa TJ, Ho PL, du Plessis M, Cornick JE, Kwambana-Adams B, Benisty R, Nzenze SA, Madhi SA, Hawkins PA, Everett DB, Antonio M, Dagan R, Klugman KP, von Gottberg A, McGee L, Breiman RF, Bentley SD. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine 2019; 43:338-346. [PMID: 31003929 PMCID: PMC6557916 DOI: 10.1016/j.ebiom.2019.04.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease, caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background. METHODS Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%), Asia (25%), Europe (19%), North America (12%), and South America (5%). These 20,027 pneumococcal genomes were clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage. FINDINGS The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and including, the first year of pneumococcal conjugate vaccine introduction. Penicillin and multidrug resistance were higher (p < .05) in a subset dominant-GPSCs (14/35, 9/35 respectively), and resistance to an increasing number of antibiotic classes was associated with increased recombination (R2 = 0.27 p < .0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p < .05) of its antibiogram (mean misclassification error 0.28, SD ± 0.13). We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds expressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed. INTERPRETATION We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumococcal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance, and/or serotype-independent invasiveness.
Collapse
Affiliation(s)
| | - Stephanie W Lo
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - John A Lees
- New York University School of Medicine, New York, NY, USA
| | | | | | - Jukka Corander
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK; Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
| | - Andrew J Page
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Pekka Marttinen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Espoo, Finland
| | - Leon J Bentley
- Parasites and microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Theresa J Ochoa
- Instituto de Medicina Tropical, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pak Leung Ho
- Department of Microbiology, Carol Yu Centre for Infection, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jennifer E Cornick
- Malawi-Liverpool-Wellcome-Trust Clinical Research Programme, Blantyre, Malawi
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK; WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273 Banjul, the Gambia
| | - Rachel Benisty
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Susan A Nzenze
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, South Africa; Department of Science and Technology, National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, South Africa
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, South Africa; Department of Science and Technology, National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, South Africa
| | | | | | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273 Banjul, the Gambia; Division of Microbiology & Immunity, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Robert F Breiman
- Rollins School Public Health, Emory University, USA; Emory Global Health Institute, Atlanta, USA
| | | |
Collapse
|
21
|
Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep 2019; 9:4049. [PMID: 30858412 PMCID: PMC6411942 DOI: 10.1038/s41598-019-40346-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae, a normal commensal of the upper respiratory tract, is a major public health concern, responsible for substantial global morbidity and mortality due to pneumonia, meningitis and sepsis. Why some pneumococci invade the bloodstream or CSF (so-called invasive pneumococcal disease; IPD) is uncertain. In this study we identify genes associated with IPD. We transform whole genome sequence (WGS) data into a sequence typing scheme, while avoiding the caveat of using an arbitrary genome as a reference by substituting it with a constructed pangenome. We then employ a random forest machine-learning algorithm on the transformed data, and find 43 genes consistently associated with IPD across three geographically distinct WGS data sets of pneumococcal carriage isolates. Of the genes we identified as associated with IPD, we find 23 genes previously shown to be directly relevant to IPD, as well as 18 uncharacterized genes. We suggest that these uncharacterized genes identified by us are also likely to be relevant for IPD.
Collapse
|
22
|
Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304-316. [PMID: 30679308 PMCID: PMC6360808 DOI: 10.1101/gr.241455.118] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022]
Abstract
The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Simon R Harris
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Rebecca A Gladstone
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Department of Biostatistics, University of Oslo, 0372 Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool L7 3EA, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
23
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Harrison OB, Schoen C, Retchless AC, Wang X, Jolley KA, Bray JE, Maiden MCJ. Neisseria genomics: current status and future perspectives. Pathog Dis 2018; 75:3861976. [PMID: 28591853 PMCID: PMC5827584 DOI: 10.1093/femspd/ftx060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022] Open
Abstract
High-throughput whole genome sequencing has unlocked a multitude of possibilities enabling members of the Neisseria genus to be examined with unprecedented detail, including the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. To maximise the potential benefit of this for public health, it is becoming increasingly important to ensure that this plethora of data are adequately stored, disseminated and made readily accessible. Investigations facilitating cross-species comparisons as well as the analysis of global datasets will allow differences among and within species and across geographic locations and different times to be identified, improving our understanding of the distinct phenotypes observed. Recent advances in high-throughput platforms that measure the transcriptome, proteome and/or epigenome are also becoming increasingly employed to explore the complexities of Neisseria biology. An integrated approach to the analysis of these is essential to fully understand the impact these may have in the Neisseria genus. This article reviews the current status of some of the tools available for next generation sequence analysis at the dawn of the ‘post-genomic’ era.
Collapse
Affiliation(s)
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg 97080, Germany
| | - Adam C Retchless
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Xin Wang
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
| | | |
Collapse
|
25
|
Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis. BMC Genomics 2018; 19:122. [PMID: 29402222 PMCID: PMC5800017 DOI: 10.1186/s12864-018-4498-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/28/2018] [Indexed: 12/03/2022] Open
Abstract
Background Meningitis is the most severe manifestation of tuberculosis. It is largely unknown why some people develop pulmonary TB (PTB) and others TB meningitis (TBM); we examined if the genetic background of infecting M. tuberculosis strains may be relevant. Methods We whole-genome sequenced M. tuberculosis strains isolated from 322 HIV-negative tuberculosis patients from Indonesia and compared isolates from patients with TBM (n = 106) and PTB (n = 216). Using a phylogeny-adjusted genome-wide association method to count homoplasy events we examined phenotype-related changes at specific loci or genes in parallel branches of the phylogenetic tree. Enrichment scores for the TB phenotype were calculated on single nucleotide polymorphism (SNP), gene, and pathway level. Genetic associations were validated in an independent set of isolates. Results Strains belonged to the East-Asian lineage (36.0%), Euro-American lineage (61.5%), and Indo-Oceanic lineage (2.5%). We found no association between lineage and phenotype (Chi-square = 4.556; p = 0.207). Large genomic differences were observed between isolates; the minimum pairwise genetic distance varied from 17 to 689 SNPs. Using the phylogenetic tree, based on 28,544 common variable positions, we selected 54 TBM and 54 PTB isolates in terminal branch sets with distinct phenotypes. Genetic variation in Rv0218, and absence of Rv3343c, and nanK were significantly associated with disease phenotype in these terminal branch sets, and confirmed in the validation set of 214 unpaired isolates. Conclusions Using homoplasy counting we identified genetic variation in three separate genes to be associated with the TB phenotype, including one (Rv0218) which encodes a secreted protein that could play a role in host-pathogen interaction by altering pathogen recognition or acting as virulence effector. Electronic supplementary material The online version of this article (10.1186/s12864-018-4498-z) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Young BC, Wu CH, Gordon NC, Cole K, Price JR, Liu E, Sheppard AE, Perera S, Charlesworth J, Golubchik T, Iqbal Z, Bowden R, Massey RC, Paul J, Crook DW, Peto TE, Walker AS, Llewelyn MJ, Wyllie DH, Wilson DJ. Severe infections emerge from commensal bacteria by adaptive evolution. eLife 2017; 6. [PMID: 29256859 PMCID: PMC5736351 DOI: 10.7554/elife.30637] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/02/2017] [Indexed: 12/23/2022] Open
Abstract
Bacteria responsible for the greatest global mortality colonize the human microbiota far more frequently than they cause severe infections. Whether mutation and selection among commensal bacteria are associated with infection is unknown. We investigated de novo mutation in 1163 Staphylococcus aureus genomes from 105 infected patients with nose colonization. We report that 72% of infections emerged from the nose, with infecting and nose-colonizing bacteria showing parallel adaptive differences. We found 2.8-to-3.6-fold adaptive enrichments of protein-altering variants in genes responding to rsp, which regulates surface antigens and toxin production; agr, which regulates quorum-sensing, toxin production and abscess formation; and host-derived antimicrobial peptides. Adaptive mutations in pathogenesis-associated genes were 3.1-fold enriched in infecting but not nose-colonizing bacteria. None of these signatures were observed in healthy carriers nor at the species-level, suggesting infection-associated, short-term, within-host selection pressures. Our results show that signatures of spontaneous adaptive evolution are specifically associated with infection, raising new possibilities for diagnosis and treatment.
Collapse
Affiliation(s)
- Bernadette C Young
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - N Claire Gordon
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Kevin Cole
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom
| | - James R Price
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Elian Liu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Anna E Sheppard
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, United Kingdom
| | - Sanuki Perera
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jane Charlesworth
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Tanya Golubchik
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John Paul
- National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Infection Service, Public Health England, London, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Timothy E Peto
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Martin J Llewelyn
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton, United Kingdom.,Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - David H Wyllie
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Centre for Molecular and Cellular Physiology, Jenner Institute, Oxford, United Kingdom
| | - Daniel J Wilson
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, United Kingdom.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,Institute for Emerging Infections, Oxford Martin School, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Bårnes GK, Brynildsrud OB, Børud B, Workalemahu B, Kristiansen PA, Beyene D, Aseffa A, Caugant DA. Whole genome sequencing reveals within-host genetic changes in paired meningococcal carriage isolates from Ethiopia. BMC Genomics 2017; 18:407. [PMID: 28545446 PMCID: PMC5445459 DOI: 10.1186/s12864-017-3806-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022] Open
Abstract
Background Meningococcal colonization is a prerequisite for transmission and disease, but the bacterium only very infrequently causes disease while asymptomatic carriage is common. Carriage is highly dynamic, showing a great variety across time and space within and across populations, but also within individuals. The understanding of genetic changes in the meningococcus during carriage, when the bacteria resides in its natural niche, is important for understanding not only the carriage state, but the dynamics of the entire meningococcal population. Results Paired meningococcal isolates, obtained from 50 asymptomatic carriers about 2 months apart were analyzed with whole genome sequencing (WGS). Phylogenetic analysis revealed that most paired isolates from the same individual were closely related, and the average and median number of allelic differences between paired isolates defined as the same strain was 35. About twice as many differences were seen between isolates from different individuals within the same sequence type (ST). In 8%, different strains were detected at different time points. A difference in ST was observed in 6%, including an individual who was found to carry three different STs over the course of 9 weeks. One individual carried different strains from the same ST. In total, 566 of 1605 cgMLST genes had undergone within-host genetic changes in one or more pairs. The most frequently changed cgMLST gene was relA that was changed in 47% of pairs. Across the whole genome, pilE, differed mostly, in 85% of the pairs. The most frequent mechanisms of genetic difference between paired isolates were phase variation and recombination, including gene conversion. Different STs showed variation with regard to which genes that were most frequently changed, mostly due to absence/presence of phase variation. Conclusions This study revealed within-host genetic differences in meningococcal isolates during short-term asymptomatic carriage. The most frequently changed genes were genes belonging to the pilin family, the restriction/modification system, opacity proteins and genes involved in glycosylation. Higher resolution genome-wide sequence typing is necessary to resolve the diversity of isolates and reveals genetic differences not discovered by traditional typing schemes, and would be the preferred choice of technology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3806-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guro K Bårnes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Børud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Paul A Kristiansen
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway
| | - Demissew Beyene
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Hamlin Fistula Ethiopia, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
28
|
Within-Host Sampling of a Natural Population Shows Signs of Selection on Pde1 during Bacterial Meningitis. Infect Immun 2017; 85:85/3/e01061-16. [PMID: 28232521 DOI: 10.1128/iai.01061-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|