1
|
Cleary DW, Campling J, Lahuerta M, Hayford K, Southern J, Gessner BD, Lo SW, Bentley SD, Faust SN, Clarke SC. Non-pharmaceutical interventions for COVID-19 transiently reduced pneumococcal and Haemophilus influenzae carriage in a cross-sectional pediatric cohort in Southampton, UK. Microbiol Spectr 2024; 12:e0022424. [PMID: 38990033 PMCID: PMC11302307 DOI: 10.1128/spectrum.00224-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The Southampton pneumococcal carriage study of children under 5 years old continued during the coronavirus disease 2019 (COVID-19) pandemic. Here, we present data from October 2018 to March 2023 describing prevalence of pneumococci and other pathobionts during the winter seasons before, during, and after the introduction of non-pharmaceutical interventions (NPIs) to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Nasopharyngeal swabs were collected from children attending outpatient clinics at a secondary care hospital and community healthcare sites. Pre-NPIs, in 2019/2020, the carriage prevalence of pneumococci at the hospital site was 32% (n = 161 positive/499 participants). During NPIs, this fell to 19% (n = 12/64), although based on fewer participants compared to previous years due to COVID-19 restrictions on health-care attendance. In 2021/2022, after NPIs had eased, prevalence rebounded to 33% (n = 15/46) [compared to NPIs period, χ2 (1, N = 110) =2.78, P = 0.09]. Carriage prevalence at community healthcare sites fell significantly from 27% (n = 127/470) in 2019/2020 to 19% during the NPI period (n = 44/228) in 2020/2021 [χ2 (1, N = 698) =4.95, P = 0.026]. No rebound was observed in 2021/2022 [19% (n = 56/288)]. However, in a multivariate logistic regression model, neither site had a significantly lower carriage prevalence during the NPI period compared to the post NPI period. A reduction in serotype diversity was observed in 2020/2021. Carriage of Haemophilus influenzae was particularly affected by NPIs with a significant reduction observed. In conclusion, among children under 5 years of age, transient, modest, and statistically non-significant alterations in carriage of both Streptococcus pneumoniae and H. influenzae were associated with SARS-CoV-2 NPIs.IMPORTANCEStreptococcus pneumoniae (the pneumococcus) continues to be a major contributor to global morbidity and mortality. Using our long-running pediatric study, we examined changes in pneumococcal carriage prevalence in nearly 3,000 children under the age of 5 years between the winters of 2018/2019 and 2022/2023. This period coincided with the severe acute respiratory syndrome coronavirus 2 pandemic and, in particular, the implementation of national strategies to limit disease transmission in the UK. We observed a transient reduction of both Streptococcus pneumoniae and Haemophilus influenzae in these populations during this period of non-pharmaceutical interventions. This aligned with the reduction in invasive pneumococcal disease seen in the UK and is therefore a likely contributor to this phenomenon.
Collapse
Affiliation(s)
- David W. Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Campling
- Vaccines Medical Affairs, Pfizer Ltd, Tadworth, United Kingdom
| | - Maria Lahuerta
- Global Respiratory Vaccines, Scientific and Medical Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Kyla Hayford
- Global Respiratory Vaccines, Scientific and Medical Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Jo Southern
- Evidence Generation, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Bradford D. Gessner
- Global Respiratory Vaccines, Scientific and Medical Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Saul N. Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
- NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
| | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, United Kingdom
- Global Health Research Institute, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Hansen K, Yamba Yamba L, Wasserstrom L, Rünow E, Göransson T, Nilsson A, Ahl J, Riesbeck K. Exploring the microbial landscape: uncovering the pathogens associated with community-acquired pneumonia in hospitalized patients. Front Public Health 2023; 11:1258981. [PMID: 38152664 PMCID: PMC10752608 DOI: 10.3389/fpubh.2023.1258981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Objectives This study aimed to investigate the etiology, clinical features, and outcomes of community-acquired pneumonia (CAP) in adults. Understanding the causative pathogens is essential for effective treatment and prevention. Design Between 2016-2018, 518 hospitalized adults with CAP and 241 controls without symptoms were prospectively enrolled. Urine samples were collected for pneumococcal urinary antigen tests and nasopharyngeal swabs for viral and bacterial analysis, combined with routine diagnostic care. Results Among the included CAP patients, Streptococcus pneumoniae was the most common pathogen, detected in 28% of patients, followed by Haemophilus influenzae in 16%. Viruses were identified in 28%, and concurrent viruses and bacteria were detected in 15%. There was no difference in mortality, length of stay, or symptoms at hospitalization when comparing patients with bacterial, viral, or mixed etiologies. Among the control subjects without respiratory symptoms, S. pneumoniae, H. influenzae, or Moraxella catarrhalis were detected in 5-7%, and viruses in 7%. Conclusion Streptococcus pneumoniae emerged as the predominant cause of CAP, followed closely by viruses and H. influenzae. Intriguingly, symptoms and outcome were similar regardless of etiology. These findings highlight the complexity of this respiratory infection and emphasize the importance of comprehensive diagnostic and treatment strategies.Clinical Trial Registration: ClinicalTrials.gov, identifier [NCT03606135].
Collapse
Affiliation(s)
- Karin Hansen
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
| | - Linda Yamba Yamba
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
| | - Lisa Wasserstrom
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
- Clinical Microbiology, Infection Control and Prevention, Laboratory Medicine, Lund, Sweden
| | - Elisabeth Rünow
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
| | - Tommy Göransson
- Clinical Microbiology, Infection Control and Prevention, Laboratory Medicine, Lund, Sweden
| | - Anna Nilsson
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
| | - Jonas Ahl
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine Lund University, Malmö, Sweden
- Clinical Microbiology, Infection Control and Prevention, Laboratory Medicine, Lund, Sweden
| |
Collapse
|
3
|
The natural history and genetic diversity of Haemophilus influenzae infecting the airways of adults with cystic fibrosis. Sci Rep 2022; 12:15765. [PMID: 36131075 PMCID: PMC9492733 DOI: 10.1038/s41598-022-19240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Haemophilus influenzae is a Gram-negative pathobiont, frequently recovered from the airways of persons with cystic fibrosis (pwCF). Previous studies of H. influenzae infection dynamics and transmission in CF predominantly used molecular methods, lacking resolution. In this retrospective cohort study, representative yearly H. influenzae isolates from all pwCF attending the Calgary Adult CF Clinic with H. influenzae positive sputum cultures between 2002 and 2016 were typed by pulsed-field gel electrophoresis. Isolates with shared pulsotypes common to ≥ 2 pwCF were sequenced by Illumina MiSeq. Phylogenetic and pangenomic analyses were used to assess genetic relatedness within shared pulsotypes, and epidemiological investigations were performed to assess potential for healthcare associated transmission. H. influenzae infection was observed to be common (33% of patients followed) and dynamic in pwCF. Most infected pwCF exhibited serial infections with new pulsotypes (75% of pwCF with ≥ 2 positive cultures), with up to four distinct pulsotypes identified from individual patients. Prolonged infection by a single pulsotype was only rarely observed. Intra-patient genetic diversity was observed at the single-nucleotide polymorphism and gene content levels. Seven shared pulsotypes encompassing 39% of pwCF with H. influenzae infection were identified, but there was no evidence, within our sampling scheme, of direct patient-to-patient infection transmission.
Collapse
|
4
|
Nakahashi-Ouchida R, Mori H, Yuki Y, Umemoto S, Hirano T, Uchida Y, Machita T, Yamanoue T, Sawada SI, Suzuki M, Fujihashi K, Akiyoshi K, Kurono Y, Kiyono H. Induction of Mucosal IgA-Mediated Protective Immunity Against Nontypeable Haemophilus influenzae Infection by a Cationic Nanogel-Based P6 Nasal Vaccine. Front Immunol 2022; 13:819859. [PMID: 35874779 PMCID: PMC9299436 DOI: 10.3389/fimmu.2022.819859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) strains form a major group of pathogenic bacteria that colonizes the nasopharynx and causes otitis media in young children. At present, there is no licensed vaccine for NTHi. Because NTHi colonizes the upper respiratory tract and forms biofilms that cause subsequent infectious events, a nasal vaccine that induces NTHi-specific secretory IgA capable of preventing biofilm formation in the respiratory tract is desirable. Here, we developed a cationic cholesteryl pullulan-based (cCHP nanogel) nasal vaccine containing the NTHi surface antigen P6 (cCHP-P6) as a universal vaccine antigen, because P6 expression is conserved among 90% of NTHi strains. Nasal immunization of mice with cCHP-P6 effectively induced P6-specific IgA in mucosal fluids, including nasal and middle ear washes. The vaccine-induced P6-specific IgA showed direct binding to the NTHi via the surface P6 proteins, resulting in the inhibition of NTHi biofilm formation. cCHP-P6 nasal vaccine thus protected mice from intranasal NTHi challenge by reducing NTHi colonization of nasal tissues and eventually eliminated the bacteria. In addition, the vaccine-induced IgA bound to different NTHi clinical isolates from patients with otitis media and inhibited NTHi attachment in a three-dimensional in vitro model of the human nasal epithelial surface. Therefore, the cCHP-P6 nanogel nasal vaccine induced effective protection in the airway mucosa, making it a strong vaccine candidate for preventing NTHi-induced infectious diseases, such as otitis media, sinusitis, and pneumonia.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
| | - Shingo Umemoto
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Takashi Hirano
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan
| | - Masashi Suzuki
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan
| | - Yuichi Kurono
- Department of Otolaryngology, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Waagsbø B, Buset EM, Longva JÅ, Bjerke M, Bakkene B, Ertesvåg AS, Holmen H, Nikodojevic M, Tran TT, Christensen A, Nilsen E, Damås JK, Heggelund L. Diagnostic stewardship aiming at expectorated or induced sputum promotes microbial diagnosis in community-acquired pneumonia. BMC Infect Dis 2022; 22:203. [PMID: 35236305 PMCID: PMC8889388 DOI: 10.1186/s12879-022-07199-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Studies on aetiology of community-acquired pneumonia (CAP) vary in terms of microbial sampling methods, anatomical locations, and laboratory analyses, since no gold standard exists. In this large, multicentre, retrospective, regional study from Norway, our primary objective was to report the results of a strategic diagnostic stewardship intervention, targeting diagnostic yield from lower respiratory tract sampling. The secondary objective was to report hospitalized CAP aetiology and the diagnostic yield of various anatomical sampling locations.
Methods Medical records from cases diagnosed with hospitalized CAP were collected retrospectively from March throughout May for three consecutive years at six hospitals. Between year one and two, we launched a diagnostic stewardship intervention at the emergency room level for the university teaching hospital only. The intervention was multifaceted aiming at upscaling specimen collection and enhancing collection techniques. Year one at the interventional hospital and every year at the five other emergency hospitals were used for comparison.
Results Of the 1280 included cases of hospitalized CAP, a microbiological diagnosis was established for 29.1% among 1128 blood cultures and 1444 respiratory tract specimens. Blood cultures were positive for a pathogenic respiratory tract microbe in 4.9% of samples, whereas upper and lower respiratory tract samples overall provided a probable microbiological diagnosis in 21.3% and 47.5%, respectively. Expectorated or induced sputum overall provided aetiology in 51.7% of the samples. At the interventional hospital, the number of expectorated or induced sputum samples were significantly increased, and diagnostic yield from expectorated or induced sputum was significantly enhanced from 41.2 to 62.0% after the intervention (p = 0.049). There was an over-representation of samples from the interventional hospital during the study period. Non-typeable Haemophilus influenza and Streptococcus pneumoniae accounted for 25.3% and 24.7% of microbiologically confirmed cases, respectively. Conclusion Expectorated or induced sputum outperformed other sampling methods in providing a reliable microbiological diagnosis for hospitalized CAP. A diagnostic stewardship intervention significantly improved diagnostic yield of lower respiratory tract sampling.
Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07199-4.
Collapse
Affiliation(s)
- Bjørn Waagsbø
- Regional Centre for Disease Control in Central Norway Regional Health Authority, St. Olavs Hospital Trondheim University Hospital, Trondheim, Norway.
| | | | - Jørn-Åge Longva
- Department of Medicine, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Merete Bjerke
- Central Norway Hospital Pharmacy Trust, Ålesund, Norway
| | | | | | - Hanne Holmen
- Central Norway Hospital Pharmacy Trust, Trondheim, Norway
| | | | - To Thy Tran
- Central Norway Hospital Pharmacy Trust, Trondheim, Norway
| | - Andreas Christensen
- Department of Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Nilsen
- Department of Microbiology, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Jan Kristian Damås
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, NTNU, Trondheim, Norway
| | - Lars Heggelund
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| |
Collapse
|
6
|
Abstract
The nasopharyngeal microbiome is a dynamic microbial interface of the aerodigestive tract, and a diagnostic window in the fight against respiratory infections and antimicrobial resistance. As its constituent bacteria, viruses and mycobacteria become better understood and sampling accuracy improves, diagnostics of the nasopharynx could guide more personalized care of infections of surrounding areas including the lungs, ears and sinuses. This review will summarize the current literature from a clinical perspective and highlight its growing importance in diagnostics and infectious disease management.
Collapse
Affiliation(s)
- Matthew Flynn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Otolaryngology Department, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - James Dooley
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
7
|
Lister AJJ, Le CF, Cheah ESG, Desa MNM, Cleary DW, Clarke SC. Serotype distribution of invasive, non-invasive and carried Streptococcus pneumoniae in Malaysia: a meta-analysis. Pneumonia (Nathan) 2021; 13:9. [PMID: 34030731 PMCID: PMC8147341 DOI: 10.1186/s41479-021-00086-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Pneumococcal pneumonia is the leading cause of under-five mortality globally. The surveillance of pneumococcal serotypes is therefore vital for informing pneumococcal vaccination policy and programmes. Pneumococcal conjugate vaccines (PCVs) have been available as an option in the private healthcare setting and beginning December 2020, PCV10 was incorporated as part of routine national immunisation programme (NIP) in Malaysia. We searched existing literature on pneumococcal serotype distribution across Malaysia to provide an overall view of this distribution before the implementation of PCV10. Methods Online databases (PubMed, Ovid MEDLINE and Scopus), reference lists of articles identified, and grey literature (Malaysian Ministry of Health website, WHO website) were systematically searched for relevant literature on pneumococcal serotype distribution across Malaysia up to 10th November 2020. No lower date limit was set to maximise the number of target reports returned. Results of serotypes were split by age categories, including ≤5 years, > 5 years and unreported for those that did not specify. Results The search returned 18 relevant results, with a total of 2040 isolates. The most common serotypes across all disease types were 19F (n = 313, 15.3% [95%CI: 13.8–17.0]), 23F (n = 166, 8.1% [95%CI: 7.0–9.4]), 14 (n = 166, 8.1% [95%CI: 7.0–9.4]), 6B (n = 163, 8.0% [95%CI: 6.9–9.2]) and 19A (n = 138, 6.8% [95%CI: 5.8–7.9]). Conclusion Four of the most common serotypes across all isolate sources in Malaysia are covered by PCV10, while PCV13 provides greater serotype coverage in comparison to PCV10. There is still a need for surveillance studies, particularly those investigating serotypes in children under 5 years of age, to monitor vaccine effectiveness and pneumococcal population dynamic following implementation of PCV10 into routine immunisation.
Collapse
Affiliation(s)
- Alex J J Lister
- Faculty of Medicine and Institute for Life Sciences, Infectious Disease Epidemiology Group, University of Southampton, Mailpoint 814, Level C, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton Foundation NHS Trust, Southampton, SO16 6YD, UK
| | - Cheng Foh Le
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Eddy Seong Guan Cheah
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, 31900, Kampar, Perak, Malaysia
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - David W Cleary
- Faculty of Medicine and Institute for Life Sciences, Infectious Disease Epidemiology Group, University of Southampton, Mailpoint 814, Level C, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton Foundation NHS Trust, Southampton, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, Infectious Disease Epidemiology Group, University of Southampton, Mailpoint 814, Level C, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton Foundation NHS Trust, Southampton, SO16 6YD, UK. .,NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK. .,Global Health Research Institute, University of Southampton, Southampton, UK. .,Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Mokrzan EM, Ahearn CP, Buzzo JR, Novotny LA, Zhang Y, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct. Biofilm 2020; 2:100039. [PMID: 33447823 PMCID: PMC7798465 DOI: 10.1016/j.bioflm.2020.100039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or β-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.
Collapse
Affiliation(s)
- Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian P Ahearn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yan Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
9
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
10
|
The Effect of the 10-Valent Pneumococcal Nontypeable Haemophilus influenzae Protein D Conjugate Vaccine on H. influenzae in Healthy Carriers and Middle Ear Infections in Iceland. J Clin Microbiol 2019; 57:JCM.00116-19. [PMID: 31068412 PMCID: PMC6595461 DOI: 10.1128/jcm.00116-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022] Open
Abstract
Vaccinations with the 10-valent pneumococcal conjugated vaccine (PHiD-CV) started in Iceland in 2011. Protein D (PD) from H. influenzae, which is coded for by the hpd gene, is used as a conjugate in the vaccine and may provide protection against PD-positive H. influenzae. Vaccinations with the 10-valent pneumococcal conjugated vaccine (PHiD-CV) started in Iceland in 2011. Protein D (PD) from H. influenzae, which is coded for by the hpd gene, is used as a conjugate in the vaccine and may provide protection against PD-positive H. influenzae. We aimed to evaluate the effect of PHiD-CV vaccination on H. influenzae in children, both in carriage and in acute otitis media (AOM). H. influenzae was isolated from nasopharyngeal swabs collected from healthy children attending 15 day care centers in 2009 and from 2012 to 2017 and from middle ear (ME) samples from children with AOM collected from 2012 to 2017. All isolates were identified using PCR for the hpd and fucK genes. Of the 3,600 samples collected from healthy children, 2,465 were culture positive for H. influenzae (68.5% carriage rate); of these, 151 (6.1%) contained hpd-negative isolates. Of the 2,847 ME samples collected, 889 (31.2%) were culture positive for H. influenzae; of these, 71 (8.0%) were hpd negative. Despite the same practice throughout the study, the annual number of ME samples reduced from 660 in 2012 to 330 in 2017. The proportions of hpd-negative isolates in unvaccinated versus vaccinated children were 5.6% and 7.0%, respectively, in healthy carriers, and 5.4% and 7.8%, respectively, in ME samples. The proportion of hpd-negative isolates increased with time in ME samples but not in healthy carriers. The number of ME samples from children with AOM decreased. The PHiD-CV had no effect on the proportion of the hpd gene in H. influenzae from carriage, but there was an increase in hpd-negative H. influenzae in otitis media. The proportions of hpd-negative isolates remained similar in vaccinated and unvaccinated children.
Collapse
|
11
|
Heinz E. The return of Pfeiffer's bacillus: Rising incidence of ampicillin resistance in Haemophilus influenzae. Microb Genom 2018; 4:e000214. [PMID: 30207515 PMCID: PMC6202453 DOI: 10.1099/mgen.0.000214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Haemophilus influenzae, originally named Pfeiffer's bacillus after its discoverer Richard Pfeiffer in 1892, was a major risk for global health at the beginning of the 20th century, causing childhood pneumonia and invasive disease as well as otitis media and other upper respiratory tract infections. The implementation of the Hib vaccine, targeting the major capsule type of H. influenzae, almost eradicated the disease in countries that adapted the vaccination scheme. However, a rising number of infections are caused by non-typeable H. influenzae (NTHi), which has no capsule and against which the vaccine therefore provides no protection, as well as other serotypes equally not recognised by the vaccine. The first line of treatment is ampicillin, but there is a steady rise in ampicillin resistance. This is both through acquired as well as intrinsic mechanisms, and is cause for serious concern and the need for more surveillance. There are also increasing reports of new modifications of the intrinsic ampicillin-resistance mechanism leading to resistance against cephalosporins and carbapenems, the last line of well-tolerated drugs, and ampicillin-resistant H. influenzae was included in the recently released priority list of antibiotic-resistant bacteria by the WHO. This review provides an overview of ampicillin resistance prevalence and mechanisms in the context of our current knowledge about population dynamics of H. influenzae.
Collapse
Affiliation(s)
- Eva Heinz
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|