1
|
Tourrette E, Torres RC, Svensson SL, Matsumoto T, Miftahussurur M, Fauzia KA, Alfaray RI, Vilaichone RK, Tuan VP, Wang D, Yadegar A, Olsson LM, Zhou Z, Yamaoka Y, Thorell K, Falush D. An ancient ecospecies of Helicobacter pylori. Nature 2024; 635:178-185. [PMID: 39415013 PMCID: PMC11541087 DOI: 10.1038/s41586-024-07991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2024] [Indexed: 10/18/2024]
Abstract
Helicobacter pylori disturbs the stomach lining during long-term colonization of its human host, with sequelae including ulcers and gastric cancer1,2. Numerous H. pylori virulence factors have been identified, showing extensive geographic variation1. Here we identify a 'Hardy' ecospecies of H. pylori that shares the ancestry of 'Ubiquitous' H. pylori from the same region in most of the genome but has nearly fixed single-nucleotide polymorphism differences in 100 genes, many of which encode outer membrane proteins and host interaction factors. Most Hardy strains have a second urease, which uses iron as a cofactor rather than nickel3, and two additional copies of the vacuolating cytotoxin VacA. Hardy strains currently have a limited distribution, including in Indigenous populations in Siberia and the Americas and in lineages that have jumped from humans to other mammals. Analysis of polymorphism data implies that Hardy and Ubiquitous coexisted in the stomachs of modern humans since before we left Africa and that both were dispersed around the world by our migrations. Our results also show that highly distinct adaptive strategies can arise and be maintained stably within bacterial populations, even in the presence of continuous genetic exchange between strains.
Collapse
Affiliation(s)
- Elise Tourrette
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Roberto C Torres
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Sarah L Svensson
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | | | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine and Center of Excellence in Digestive Diseases, Thammasat University, Bangkok, Thailand
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Difei Wang
- Cancer Genomics Research Lab, Frederick National Lab for Cancer Research, Rockville, MD, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.
- Universitas Airlangga, Surabaya, Indonesia.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
- Research center for global and local infectious diseases, Oita University, Yufu, Japan.
| | - Kaisa Thorell
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel Falush
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Linz B, Sticht H, Tegtmeyer N, Backert S. Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. Trends Microbiol 2024; 32:847-857. [PMID: 38485609 DOI: 10.1016/j.tim.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 09/06/2024]
Abstract
Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg; 91054 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Backert S, Tegtmeyer N, Horn AHC, Sticht H, Linz B. Two remarkable serine/leucine polymorphisms in Helicobacter pylori: functional importance for serine protease HtrA and adhesin BabA. Cell Commun Signal 2024; 22:250. [PMID: 38698410 PMCID: PMC11064359 DOI: 10.1186/s12964-024-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) account for significant genomic variability in microbes, including the highly diverse gastric pathogen Helicobacter pylori. However, data on the effects of specific SNPs in pathogen-host interactions are scarce. Recent functional studies unravelled how a serine/leucine polymorphism in serine protease HtrA affects the formation of proteolytically active trimers and modulates cleavage of host cell-to-cell junction proteins during infection. A similar serine/leucine mutation in the carbohydrate binding domain of the adhesin BabA controls binding of ABO blood group antigens, enabling binding of either only the short Lewis b/H antigens of blood group O or also the larger antigens of blood groups A and B. Here we summarize the functional importance of these two remarkable bacterial SNPs and their effect on the outcome of pathogen-host interactions.
Collapse
Affiliation(s)
- Steffen Backert
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany.
| | - Nicole Tegtmeyer
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany
| | - Anselm H C Horn
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, Erlangen, 91054, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, Erlangen, 91054, Germany
| | - Bodo Linz
- Department Biology, Division of Microbiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, 91058, Germany
| |
Collapse
|
4
|
Sharafutdinov I, Tegtmeyer N, Linz B, Rohde M, Vieth M, Tay ACY, Lamichhane B, Tuan VP, Fauzia KA, Sticht H, Yamaoka Y, Marshall BJ, Backert S. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 2023; 31:1345-1358.e6. [PMID: 37490912 DOI: 10.1016/j.chom.2023.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in various human genes are key factors in carcinogenesis. However, whether SNPs in bacterial pathogens are similarly crucial in cancer development is unknown. Here, we analyzed 1,043 genomes of the stomach pathogen Helicobacter pylori and pinpointed a SNP in the serine protease HtrA (position serine/leucine 171) that significantly correlates with gastric cancer. Our functional studies reveal that the 171S-to-171L mutation triggers HtrA trimer formation and enhances proteolytic activity and cleavage of epithelial junction proteins occludin and tumor-suppressor E-cadherin. 171L-type HtrA, but not 171S-HtrA-possessing H. pylori, inflicts severe epithelial damage, enhances injection of oncoprotein CagA into epithelial cells, increases NF-κB-mediated inflammation and cell proliferation through nuclear accumulation of β-catenin, and promotes host DNA double-strand breaks, collectively triggering malignant changes. These findings highlight the 171S/L HtrA mutation as a unique bacterial cancer-associated SNP and as a potential biomarker for risk predictions in H. pylori infections.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Alfred Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Binit Lamichhane
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Choray Hospital, Ho Chi Minh, Vietnam; Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry J Marshall
- Helicobacter Research Laboratory, Marshall Centre for Infectious Diseases Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, 6009 Perth, Australia; University of Western Australia, Marshall Centre, M504, Crawley, WA, Australia; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
5
|
Phuc BH, Tuan VP, Binh TT, Tung PH, Tri TD, Dung HDQ, Thuan NPM, Fauzia KA, Tshibangu-Kabamba E, Alfaray RI, Saruuljavkhlan B, Matsumoto T, Akada J, Yamaoka Y. Comparative genomics of two Vietnamese Helicobacter pylori strains, CHC155 from a non-cardia gastric cancer patient and VN1291 from a duodenal ulcer patient. Sci Rep 2023; 13:8869. [PMID: 37258611 DOI: 10.1038/s41598-023-35527-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Helicobacter pylori is involved in the etiology and severity of several gastroduodenal diseases; however, plasticity of the H. pylori genome makes complete genome assembly difficult. We report here the full genomes of H. pylori strains CHC155 and VN1291 isolated from a non-cardia gastric cancer patient and a duodenal ulcer patient, respectively, and their virulence demonstrated by in vitro infection. Whole-genome sequences were obtained by combining long- and short-reads with a hybrid-assembly approach. Both CHC155 and VN1291 genome possessed four kinds of genomic island: a cag pathogenicity island (cagPAI), two type 4 secretion system islands within an integrative and conjugative element (tfs ICE), and prophage. CHC155 and VN1291 carried East Asian-type cagA and vacA s1m1, and outer membrane protein genes, including two copies of oipA. Corresponded to genetic determinants of antibiotic resistance, chromosomal mutations were identified in CHC155 (rdxA, gyrA, and 23S rRNA) and VN1291 (rdxA, 23S rRNA, and pbp1A). In vitro infection of AGS cells by both strains induced the cell scattering phenotype, tyrosine phosphorylation of CagA, and promoted high levels of IL8 secretion, indicating fully intact phenotypes of the cagPAI. Virulence genes in CHC155 and VN1291 genomes are crucial for H. pylori pathogenesis and are risk factors in the development of gastric cancer and duodenal ulcer. Our in vitro studies indicate that the strains CHC155 and VN1291 carry the pathogenic potential.
Collapse
Grants
- 21K08010 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 21K07898 Ministry of Education, Culture, Sports, Science and Technology, Japan
- 221S0002 Ministry of Education, Culture, Sports, Science and Technology, Japan
Collapse
Affiliation(s)
- Bui Hoang Phuc
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Faculty of Applied Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Thanh Binh
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Pham Huu Tung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Dinh Tri
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Ho Dang Quy Dung
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | | | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Evariste Tshibangu-Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan.
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Wang XY, Wang LL, Xu L, Liang SZ, Yu MC, Zhang QY, Dong QJ. Evaluation of polygenic risk score for risk prediction of gastric cancer. World J Gastrointest Oncol 2023; 15:276-285. [PMID: 36908320 PMCID: PMC9994049 DOI: 10.4251/wjgo.v15.i2.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023] Open
Abstract
Genetic variations are associated with individual susceptibility to gastric cancer. Recently, polygenic risk score (PRS) models have been established based on genetic variants to predict the risk of gastric cancer. To assess the accuracy of current PRS models in the risk prediction, a systematic review was conducted. A total of eight eligible studies consisted of 544842 participants were included for evaluation of the performance of PRS models. The overall accuracy was moderate with Area under the curve values ranging from 0.5600 to 0.7823. Incorporation of epidemiological factors or Helicobacter pylori (H. pylori) status increased the accuracy for risk prediction, while selection of single nucleotide polymorphism (SNP) and number of SNPs appeared to have little impact on the model performance. To further improve the accuracy of PRS models for risk prediction of gastric cancer, we summarized the association between gastric cancer risk and H. pylori genomic variations, cancer associated bacteria members in the gastric microbiome, discussed the potentials for performance improvement of PRS models with these microbial factors. Future studies on comprehensive PRS models established with human SNPs, epidemiological factors and microbial factors are indicated.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li-Li Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Lin Xu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Zhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Meng-Chao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Qiu-Yue Zhang
- Department of Clinical Laboratory, the Eighth Medical Center of the General Hospital of the People’s Liberation Army, Beijing 100000, China
| | - Quan-Jiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
7
|
Song L, Song M, Rabkin CS, Chung Y, Williams S, Torres J, Corvalan AH, Gonzalez R, Bellolio E, Shome M, LaBaer J, Qiu J, Camargo MC. Identification of anti-Helicobacter pylori antibody signatures in gastric intestinal metaplasia. J Gastroenterol 2023; 58:112-124. [PMID: 36301365 PMCID: PMC9610335 DOI: 10.1007/s00535-022-01933-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and non-atrophic gastritis (NAG) controls. METHODS We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with ≥ 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). RESULTS Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in > 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p < 0.001], anti-HP0547/CagA [4.6, p < 0.001], anti-HP0596/Tipα [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/Tipα [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001). CONCLUSIONS Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Alejandro H Corvalan
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Robinson Gonzalez
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Bellolio
- Hospital Dr. Hernán Henríquez Aravena, Temuco, Chile
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Mahasish Shome
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
8
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
9
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
10
|
Paragomi P, Dabo B, Pelucchi C, Bonzi R, Bako AT, Sanusi NM, Nguyen QH, Zhang ZF, Palli D, Ferraroni M, Vu KT, Yu GP, Turati F, Zaridze D, Maximovitch D, Hu J, Mu L, Boccia S, Pastorino R, Tsugane S, Hidaka A, Kurtz RC, Lagiou A, Lagiou P, Camargo MC, Curado MP, Lunet N, Vioque J, Boffetta P, Negri E, La Vecchia C, Luu HN. The Association between Peptic Ulcer Disease and Gastric Cancer: Results from the Stomach Cancer Pooling (StoP) Project Consortium. Cancers (Basel) 2022; 14:4905. [PMID: 36230828 PMCID: PMC9563899 DOI: 10.3390/cancers14194905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth most common type of cancer and the fourth most common cause of cancer-related mortality. Although the risk of GC and peptic ulcer disease (PUD) is known to be increased by H. pylori infection, evidence regarding the direct relationship between PUD and GC across ethnicities is inconclusive. Therefore, we investigated the association between PUD and GC in the Stomach cancer Pooling (StoP) consortium. METHODS History of peptic ulcer disease was collected using a structured questionnaire in 11 studies in the StoP consortium, including 4106 GC cases and 6922 controls. The two-stage individual-participant data meta-analysis approach was adopted to generate a priori. Unconditional logistic regression and Firth's penalized maximum likelihood estimator were used to calculate study-specific odds ratios (ORs) and 95% confidence intervals (CIs) for the association between gastric ulcer (GU)/duodenal ulcer (DU) and risk of GC. RESULTS History of GU and DU was thoroughly reported and used in association analysis, respectively, by 487 cases (12.5%) and 276 controls (4.1%), and 253 cases (7.8%) and 318 controls (6.0%). We found that GU was associated with an increased risk of GC (OR = 3.04, 95% CI: 2.07-4.49). No association between DU and GC risk was observed (OR = 1.03, 95% CI: 0.77-1.39). CONCLUSIONS In the pooled analysis of 11 case-control studies in a large consortium (i.e., the Stomach cancer Pooling (StoP) consortium), we found a positive association between GU and risk of GC and no association between DU and GC risk.
Collapse
Affiliation(s)
- Pedram Paragomi
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Bashir Dabo
- Epidemiology and Biostatistics Concentration, College of Public Health, University of South Florida, Tampa, FL 33620, USA
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano 700006, Nigeria
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy
| | - Abdulaziz T. Bako
- Center for Health Data Science and Analytics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nabila Muhammad Sanusi
- Faculty of Clinical Sciences, College of Health Sciences, Bayero University, Kano 700006, Nigeria
| | - Quan H. Nguyen
- Institute for Molecular Bioscience, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zuo-Feng Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health and Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network, ISPRO, 50139 Florence, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy
| | - Khanh Truong Vu
- Department of Gastroenterology and Pancreato-Hepatobiliary, Tam Anh General Hospital, Hanoi 100000, Vietnam
| | - Guo-Pei Yu
- Medical Informatics Center, Peking University, Beijing 100871, China
| | - Federica Turati
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy
| | - David Zaridze
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Center for Oncology, 115478 Moscow, Russia
| | - Dmitry Maximovitch
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Center for Oncology, 115478 Moscow, Russia
| | - Jinfu Hu
- Department of Epidemiology, Harbin Medical University, Harbin 150081, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health - Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Roberta Pastorino
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health - Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8636, Japan
| | - Akihisa Hidaka
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo 104-0045, Japan
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Centre, New York, NY 10065, USA
| | - Areti Lagiou
- Department of Public and Community Health, School of Public Health, University of West Attica, 115 21 Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115-5810, USA
| | - M. Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20892, USA
| | - Maria Paula Curado
- Centro Internacional de Pesquisa, A. C. Camargo Cancer Center, 01509-010 São Paulo, Brazil
| | - Nuno Lunet
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Jesus Vioque
- Department, Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernandez (ISABIAL-UMH), 46020 Alicante, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brooke University, Stony Brook, NY 11794, USA
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy
| | - Hung N. Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Wang XY, Wang LL, Liang SZ, Yang C, Xu L, Yu MC, Wang YX, Dong QJ. Prediction of gastric cancer risk by a polygenic risk score of Helicobacter pylori. World J Gastrointest Oncol 2022; 14:1844-1855. [PMID: 36187384 PMCID: PMC9516638 DOI: 10.4251/wjgo.v14.i9.1844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetic variants of Helicobacter pylori (H. pylori) are involved in gastric cancer occurrence. Single nucleotide polymorphisms (SNPs) of H. pylori that are associated with gastric cancer have been reported. The combined effect of H. pylori SNPs on the risk of gastric cancer remains unclear.
AIM To assess the performance of a polygenic risk score (PRS) based on H. pylori SNPs in predicting the risk of gastric cancer.
METHODS A total of 15 gastric cancer-associated H. pylori SNPs were selected. The associations between these SNPs and gastric cancer were further validated in 1022 global strains with publicly available genome sequences. The PRS model was established based on the validated SNPs. The performance of the PRS for predicting the risk of gastric cancer was assessed in global strains using quintiles and random forest (RF) methods. The variation in the performance of the PRS among different populations of H. pylori was further examined.
RESULTS Analyses of the association between selected SNPs and gastric cancer in the global dataset revealed that the risk allele frequencies of six SNPs were significantly higher in gastric cancer cases than non-gastric cancer cases. The PRS model constructed subsequently with these validated SNPs produced significantly higher scores in gastric cancer. The odds ratio (OR) value for gastric cancer gradually increased from the first to the fifth quintile of PRS, with the fifth quintile having an OR value as high as 9.76 (95% confidence interval: 5.84-16.29). The results of RF analyses indicated that the area under the curve (AUC) value for classifying gastric cancer and non-gastric cancer was 0.75, suggesting that the PRS based on H. pylori SNPs was capable of predicting the risk of gastric cancer. Assessing the performance of the PRS among different H. pylori populations demonstrated that it had good predictive power for cancer risk for hpEurope strains, with an AUC value of 0.78.
CONCLUSION The PRS model based on H. pylori SNPs had a good performance for assessment of gastric cancer risk. It would be useful in the prediction of final consequences of the H. pylori infection and beneficial for the management of the infection in clinical settings.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li-Li Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Zhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200000, China
| | - Lin Xu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Meng-Chao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yi-Xuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Quan-Jiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
12
|
Wilkinson DJ, Dickins B, Robinson K, Winter JA. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach. Gut Microbes 2022; 14:2152306. [PMID: 36469575 PMCID: PMC9728471 DOI: 10.1080/19490976.2022.2152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, UK
| | - Benjamin Dickins
- School of Science and Technology, Nottingham Trent University, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jody Anne Winter
- School of Science and Technology, Nottingham Trent University, UK
- CONTACT Jody Anne Winter School of Science and Technology, Nottingham Trent University Clifton Campus, Clifton Lane, NottinghamNG118NS, UK
| |
Collapse
|