1
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
2
|
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, Delmotte F. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew. THE NEW PHYTOLOGIST 2024; 243:1490-1505. [PMID: 39021210 DOI: 10.1111/nph.19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Collapse
Affiliation(s)
- Manon Paineau
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Pere Mestre
- INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Isabelle D Mazet
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Carole Couture
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Fabrice Legeai
- INRAE, IGEPP, F-35650, Le-Rheu, France
- INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
- Genome Center, University of California Davis, Davis, 95616, CA, USA
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| |
Collapse
|
3
|
de la Rosa S, Schol CR, Ramos Peregrina Á, Winter DJ, Hilgers AM, Maeda K, Iida Y, Tarallo M, Jia R, Beenen HG, Rocafort M, de Wit PJGM, Bowen JK, Bradshaw RE, Joosten MHAJ, Bai Y, Mesarich CH. Sequential breakdown of the Cf-9 leaf mould resistance locus in tomato by Fulvia fulva. THE NEW PHYTOLOGIST 2024; 243:1522-1538. [PMID: 38922927 DOI: 10.1111/nph.19925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.
Collapse
Affiliation(s)
- Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Christiaan R Schol
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Ángeles Ramos Peregrina
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - David J Winter
- Bioinformatics Group, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Anne M Hilgers
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Kazuya Maeda
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Yuichiro Iida
- Laboratory of Plant Pathology, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, 573-0101, Japan
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Ruifang Jia
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Henriek G Beenen
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Ltd, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Rosie E Bradshaw
- Laboratory of Molecular Plant Pathology, School of Food Technology and Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, 4410, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, 4410, New Zealand
| |
Collapse
|
4
|
Monguillot JH, Arias RS, Orner VA, Massa AN, Sobolev VS, Lima NB, Paredes J, Oddino C, Carmona M, Conforto C. Draft genome sequence data of Nothopassalora personata, peanut foliar pathogen from Argentina. Data Brief 2024; 53:110158. [PMID: 38375136 PMCID: PMC10875216 DOI: 10.1016/j.dib.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Late leaf spot (LLS) caused by the Ascomycete Nothopassalora personata (N.p.) (Syn. Cercosporidium personatum) is the main foliar disease of peanuts in Argentina and in peanut producing areas of the world, causing up to 70% yield losses. The extremely slow growth of this fungus in culture, that takes around one month to form a 1 cm colony (0.45 mm/day), and the lack of adequate young tissues from where to extract nucleic acids, have hindered genetic studies of this pathogen. Here, we report the first genome sequence of a N. personata isolate from South America, as well as genetic variants on its conserved genes, and the complete sequence of its mating-type locus MAT1-2 idiomorph. The N. personata isolate IPAVE 0302 was obtained from peanut leaves in Córdoba, Argentina. The whole genome sequencing of IPAVE 0302 was performed as paired end 150 bp NovaSeq 6000 and de novo assembled. Clean reads were mapped to the reference genome for this species NRRL 64463 and the genetic variants on highly conserved genes and throughout the genome were analyzed. Sequencing data were submitted to NCBI GenBank Bioproject PRJNA948451, accession number SRR23957761. Additional Fasta files are available from Harvard Dataverse (https://doi.org/10.7910/DVN/9AGPMG and https://doi.org/10.7910/DVN/YDO3V6). The data reported here will be the basis for the analysis of genetic diversity of the LLS pathogen of peanut in Argentina, information that is critical to make decisions on management strategies.
Collapse
Affiliation(s)
- Joaquin H. Monguillot
- Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, IPAVE-CIAP-INTA, Av. 11 de Septiembre, Córdoba 4755, Argentina
- Unidad de Fitopatologia y Modelizacion Agricola, Consejo Nacional de Investigaciones Científcas y Técnicas, UFyMA-CONICET, Av 11 de Septiembre, Córdoba 4755, Argentina
| | - Renee S. Arias
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Peanut Research Laboratory (NPRL), 1011 Forrester dr. S.E., Dawson, GA, USA
| | - Valerie A. Orner
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Peanut Research Laboratory (NPRL), 1011 Forrester dr. S.E., Dawson, GA, USA
| | - Alicia N. Massa
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Peanut Research Laboratory (NPRL), 1011 Forrester dr. S.E., Dawson, GA, USA
| | - Victor S. Sobolev
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Peanut Research Laboratory (NPRL), 1011 Forrester dr. S.E., Dawson, GA, USA
| | - Nelson Bernardi Lima
- Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, IPAVE-CIAP-INTA, Av. 11 de Septiembre, Córdoba 4755, Argentina
- Unidad de Fitopatologia y Modelizacion Agricola, Consejo Nacional de Investigaciones Científcas y Técnicas, UFyMA-CONICET, Av 11 de Septiembre, Córdoba 4755, Argentina
- Facultad de Ciencias Agrarias, UNCA, Av. Belgrano 300, Catamarca, Argentina
| | - Juan Paredes
- Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, IPAVE-CIAP-INTA, Av. 11 de Septiembre, Córdoba 4755, Argentina
- Unidad de Fitopatologia y Modelizacion Agricola, Consejo Nacional de Investigaciones Científcas y Técnicas, UFyMA-CONICET, Av 11 de Septiembre, Córdoba 4755, Argentina
| | - Claudio Oddino
- Facultad de Agronomía y Veterinaria, IMICO, Ruta Nacional 36 km 601, Río Cuarto, Córdoba, Argentina
| | - Marcelo Carmona
- Facultad de Agronomía, Universidad de Buenos Aires, Cátedra de Fitopatología, Av. S. Martín, Buenos Aires 4453, Argentina
| | - Cinthia Conforto
- Instituto de Patologia Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, IPAVE-CIAP-INTA, Av. 11 de Septiembre, Córdoba 4755, Argentina
- Unidad de Fitopatologia y Modelizacion Agricola, Consejo Nacional de Investigaciones Científcas y Técnicas, UFyMA-CONICET, Av 11 de Septiembre, Córdoba 4755, Argentina
| |
Collapse
|
5
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA.
| |
Collapse
|
6
|
Homma F, Huang J, van der Hoorn RAL. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat Commun 2023; 14:6040. [PMID: 37758696 PMCID: PMC10533508 DOI: 10.1038/s41467-023-41721-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Adapted plant pathogens from various microbial kingdoms produce hundreds of unrelated small secreted proteins (SSPs) with elusive roles. Here, we used AlphaFold-Multimer (AFM) to screen 1879 SSPs of seven tomato pathogens for interacting with six defence-related hydrolases of tomato. This screen of 11,274 protein pairs identified 15 non-annotated SSPs that are predicted to obstruct the active site of chitinases and proteases with an intrinsic fold. Four SSPs were experimentally verified to be inhibitors of pathogenesis-related subtilase P69B, including extracellular protein-36 (Ecp36) and secreted-into-xylem-15 (Six15) of the fungal pathogens Cladosporium fulvum and Fusarium oxysporum, respectively. Together with a P69B inhibitor from the bacterial pathogen Xanthomonas perforans and Kazal-like inhibitors of the oomycete pathogen Phytophthora infestans, P69B emerges as an effector hub targeted by different microbial kingdoms, consistent with a diversification of P69B orthologs and paralogs. This study demonstrates the power of artificial intelligence to predict cross-kingdom interactions at the plant-pathogen interface.
Collapse
Affiliation(s)
- Felix Homma
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Jie Huang
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, OX1 3RB, Oxford, UK.
| |
Collapse
|
7
|
Zaccaron AZ, Neill T, Corcoran J, Mahaffee WF, Stergiopoulos I. A chromosome-scale genome assembly of the grape powdery mildew pathogen Erysiphe necator reveals its genomic architecture and previously unknown features of its biology. mBio 2023; 14:e0064523. [PMID: 37341476 PMCID: PMC10470754 DOI: 10.1128/mbio.00645-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023] Open
Abstract
Erysiphe necator is an obligate fungal pathogen that causes grape powdery mildew, globally the most important disease on grapevines. Previous attempts to obtain a quality genome assembly for this pathogen were hindered by its high repetitive DNA content. Here, chromatin conformation capture (Hi-C) with long-read PacBio sequencing was combined to obtain a chromosome-scale assembly and a high-quality annotation for E. necator isolate EnFRAME01. The resulting 81.1 Mb genome assembly is 98% complete and consists of 34 scaffolds, 11 of which represent complete chromosomes. All chromosomes contain large centromeric-like regions and lack synteny to the 11 chromosomes of the cereal PM pathogen Blumeria graminis. Further analysis of their composition showed that repeats and transposable elements (TEs) occupy 62.7% of their content. TEs were almost evenly interspersed outside centromeric and telomeric regions and massively overlapped with regions of annotated genes, suggesting that they could have a significant functional impact. Abundant gene duplicates were observed as well, particularly in genes encoding candidate secreted effector proteins. Moreover, younger in age gene duplicates exhibited more relaxed selection pressure and were more likely to be located physically close in the genome than older duplicates. A total of 122 genes with copy number variations among six isolates of E. necator were also identified and were enriched in genes that were duplicated in EnFRAME01, indicating they may reflect an adaptive variation. Taken together, our study illuminates higher-order genomic architectural features of E. necator and provides a valuable resource for studying genomic structural variations in this pathogen. IMPORTANCE Grape powdery mildew caused by the ascomycete fungus Erysiphe necator is economically the most important and recurrent disease in vineyards across the world. The obligate biotrophic nature of E. necator hinders the use of typical genetic methods to elucidate its pathogenicity and adaptation to adverse conditions, and thus comparative genomics has been a major method to study its genome biology. However, the current reference genome of E. necator isolate C-strain is highly fragmented with many non-coding regions left unassembled. This incompleteness prohibits in-depth comparative genomic analyses and the study of genomic structural variations (SVs) that are known to affect several aspects of microbial life, including fitness, virulence, and host adaptation. By obtaining a chromosome-scale genome assembly and a high-quality gene annotation for E. necator, we reveal the organization of its chromosomal content, unearth previously unknown features of its biology, and provide a reference for studying genomic SVs in this pathogen.
Collapse
Affiliation(s)
- Alex Z. Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Tara Neill
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Walter F. Mahaffee
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| |
Collapse
|
8
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Becerra S, Baroncelli R, Boufleur TR, Sukno SA, Thon MR. Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. Front Microbiol 2023; 14:1129319. [PMID: 37032845 PMCID: PMC10076810 DOI: 10.3389/fmicb.2023.1129319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
The fungal pathogen Colletotrichum graminicola causes the anthracnose of maize (Zea mays) and is responsible for significant yield losses worldwide. The genome of C. graminicola was sequenced in 2012 using Sanger sequencing, 454 pyrosequencing, and an optical map to obtain an assembly of 13 pseudochromosomes. We re-sequenced the genome using a combination of short-read (Illumina) and long-read (PacBio) technologies to obtain a chromosome-level assembly. The new version of the genome sequence has 13 chromosomes with a total length of 57.43 Mb. We detected 66 (23.62 Mb) structural rearrangements in the new assembly with respect to the previous version, consisting of 61 (21.98 Mb) translocations, 1 (1.41 Mb) inversion, and 4 (221 Kb) duplications. We annotated the genome and obtained 15,118 predicted genes and 3,614 new gene models compared to the previous version of the assembly. We show that 25.88% of the new assembly is composed of repetitive DNA elements (13.68% more than the previous assembly version), which are mostly found in gene-sparse regions. We describe genomic compartmentalization consisting of repeat-rich and gene-poor regions vs. repeat-poor and gene-rich regions. A total of 1,140 secreted proteins were found mainly in repeat-rich regions. We also found that ~75% of the three smallest chromosomes (minichromosomes, between 730 and 551 Kb) are strongly affected by repeat-induced point mutation (RIP) compared with 28% of the larger chromosomes. The gene content of the minichromosomes (MCs) comprises 121 genes, of which 83.6% are hypothetical proteins with no predicted function, while the mean percentage of Chr1-Chr10 is 36.5%. No predicted secreted proteins are present in the MCs. Interestingly, only 2% of the genes in Chr11 have homologs in other strains of C. graminicola, while Chr12 and 13 have 58 and 57%, respectively, raising the question as to whether Chrs12 and 13 are dispensable. The core chromosomes (Chr1-Chr10) are very different with respect to the MCs (Chr11-Chr13) in terms of the content and sequence features. We hypothesize that the higher density of repetitive elements and RIPs in the MCs may be linked to the adaptation and/or host co-evolution of this pathogenic fungus.
Collapse
Affiliation(s)
- Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Thaís R. Boufleur
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agrobiotechnology Research (CIALE), University of Salamanca, Villamayor, Spain
| |
Collapse
|
11
|
Rojas-Gätjens D, Avey-Arroyo J, Chaverri P, Rojas-Jimenez K, Chavarría M. Differences in fungal communities in the fur of two- and three-toed sloths revealed by ITS metabarcoding. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848210 DOI: 10.1099/mic.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Sloths have dense fur on which insects, algae, bacteria and fungi coexist. Previous studies using cultivation-dependent methods and 18S rRNA sequencing revealed that the fungal communities in their furs comprise members of the phyla Ascomycota and Basidiomycota. In this note, we increase the resolution and knowledge of the mycobiome inhabiting the fur of the two- (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths. Targeted amplicon metagenomic analysis of ITS2 nrDNA sequences obtained from 10 individuals of each species inhabiting the same site revealed significant differences in the structure of their fungal communities and also in the alpha-diversity estimators. The results suggest a specialization by host species and that the host effect is stronger than that of sex, age and animal weight. Capnodiales were the dominant order in sloths' fur and Cladosporium and Neodevriesia were the most abundant genera in Bradypus and Choloepus, respectively. The fungal communities suggest that the green algae that inhabit the fur of sloths possibly live lichenized with Ascomycota fungal species. The data shown in this note offer a more detailed view of the fungal content in the fur of these extraordinary animals and could help explain other mutualistic relationships in this complex ecosystem.
Collapse
Affiliation(s)
- Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | | | - Priscila Chaverri
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
12
|
Cox MP, Guo Y, Winter DJ, Sen D, Cauldron NC, Shiller J, Bradley EL, Ganley AR, Gerth ML, Lacey RF, McDougal RL, Panda P, Williams NM, Grunwald NJ, Mesarich CH, Bradshaw RE. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Front Microbiol 2022; 13:1038444. [PMID: 36406440 PMCID: PMC9667082 DOI: 10.3389/fmicb.2022.1038444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
Collapse
Affiliation(s)
- Murray P. Cox
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J. Winter
- Institute of Environmental Science and Research (ESR), Porirua, New Zealand
| | | | - Nicholas C. Cauldron
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | | - Ellie L. Bradley
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Austen R. Ganley
- School of Biological Sciences and Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Monica L. Gerth
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Randy F. Lacey
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Niklaus J. Grunwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, OR, United States
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Tarallo M, McDougal RL, Chen Z, Wang Y, Bradshaw RE, Mesarich CH. Characterization of two conserved cell death elicitor families from the Dothideomycete fungal pathogens Dothistroma septosporum and Fulvia fulva (syn. Cladosporium fulvum). Front Microbiol 2022; 13:964851. [PMID: 36160260 PMCID: PMC9493481 DOI: 10.3389/fmicb.2022.964851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Dothistroma septosporum (Ds) and Fulvia fulva (Ff; previously called Cladosporium fulvum) are two closely related Dothideomycete fungal species that cause Dothistroma needle blight in pine and leaf mold in tomato, respectively. During host colonization, these pathogens secrete virulence factors termed effectors to promote infection. In the presence of corresponding host immune receptors, however, these effectors activate plant defenses, including a localized cell death response that halts pathogen growth. We identified two apoplastic effector protein families, Ecp20 and Ecp32, which are conserved between the two pathogens. The Ecp20 family has four paralogues in both species, while the Ecp32 family has four paralogues in D. septosporum and five in F. fulva. Both families have members that are highly expressed during host infection. Members of the Ecp20 family have predicted structural similarity to proteins with a β-barrel fold, including the Alt a 1 allergen from Alternaria alternata, while members of the Ecp32 family have predicted structural similarity to proteins with a β-trefoil fold, such as trypsin inhibitors and lectins. Using Agrobacterium tumefaciens-mediated transient transformation assays, each family member was assessed for its ability to trigger cell death in leaves of the non-host species Nicotiana benthamiana and N. tabacum. Using this approach, FfEcp20-2, DsEcp20-3, and FfEcp20-3 from the Ecp20 family, and all members from the Ecp32 family, except for the Ds/FfEcp32-4 pair, triggered cell death in both species. This cell death was dependent on secretion of the effectors to the apoplast. In line with recognition by an extracellular immune receptor, cell death triggered by Ds/FfEcp20-3 and FfEcp32-3 was compromised in N. benthamiana silenced for BAK1 or SOBIR1, which encode extracellular co-receptors involved in transducing defense response signals following apoplastic effector recognition. We then investigated whether DsEcp20-3 and DsEcp20-4 triggered cell death in the host species Pinus radiata by directly infiltrating purified protein into pine needles. Strikingly, as in the non-host species, DsEcp20-3 triggered cell death, while DsEcp20-4 did not. Collectively, our study describes two new candidate effector families with cell death-eliciting activity from D. septosporum and F. fulva and provides evidence that members of these families are recognized by plant immune receptors.
Collapse
Affiliation(s)
- Mariana Tarallo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|