1
|
Abdullah MR, Batuecas MT, Jennert F, Voß F, Westhoff P, Kohler TP, Molina R, Hirschmann S, Lalk M, Hermoso JA, Hammerschmidt S. Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. J Mol Biol 2020; 433:166723. [PMID: 33242497 DOI: 10.1016/j.jmb.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Greifswald, Germany
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Franziska Jennert
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Philipp Westhoff
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain; Present Address: Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, Copenhagen, 2200, Denmark
| | - Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Michael Lalk
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain.
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
2
|
Omadacycline Efficacy against Enterococcus faecalis Isolated in China: In Vitro Activity, Heteroresistance, and Resistance Mechanisms. Antimicrob Agents Chemother 2020; 64:AAC.02097-19. [PMID: 31871086 PMCID: PMC7038293 DOI: 10.1128/aac.02097-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the in vitro antimicrobial activity, heteroresistance emergence, and resistance mechanism of omadacycline (OMC) in clinical Enterococcus faecalis isolates from China. A total of 276 isolates were collected retrospectively in China from 2011 to 2015. The MICs of OMC, doxycycline (DOX), and minocycline (MIN) against E. faecalis were determined by broth microdilution. Tetracycline (TET)-specific resistance genes and multilocus sequence typing (MLST) of the isolates were investigated using PCR. This study aimed to evaluate the in vitro antimicrobial activity, heteroresistance emergence, and resistance mechanism of omadacycline (OMC) in clinical Enterococcus faecalis isolates from China. A total of 276 isolates were collected retrospectively in China from 2011 to 2015. The MICs of OMC, doxycycline (DOX), and minocycline (MIN) against E. faecalis were determined by broth microdilution. Tetracycline (TET)-specific resistance genes and multilocus sequence typing (MLST) of the isolates were investigated using PCR. The detection frequency of OMC heteroresistance in E. faecalis was evaluated with population analysis profiling (PAP). The mechanism of OMC heteroresistance and resistance in E. faecalis was examined by amplifying 30S ribosomal subunit genes, RNA sequencing (RNA-Seq), and in vitro recombination experiments. The OMC MICs of clinical E. faecalis isolates ranged from ≤0.06 to 1.0 mg/liter, and 42% of the E. faecalis isolates with an OMC MIC of 1.0 mg/liter were found to be sequence type 16 (ST16). Six OMC-heteroresistant isolates with MIC values of ≤0.5 mg/liter were detected among 238 E. faecalis isolates. The resistant subpopulations of heteroresistant isolates showed OMC MICs in the range of 2 to 4 mg/liter and were found without 30S ribosomal subunit gene mutations. Moreover, RNA sequencing and in vitro recombination experiments demonstrated that overexpression of a bone morphogenetic protein (BMP) family ATP-binding cassette (ABC) transporter substrate-binding protein, OG1RF_RS00630, facilitated OMC heteroresistance in E. faecalis. In conclusion, OMC exhibited better activity against clinical E. faecalis isolates from China than that of DOX or MIN, and overexpression of OG1RF_RS00630 in E. faecalis facilitated the development of OMC heteroresistance.
Collapse
|