1
|
Marmion M, Macori G, Barroug S, Soro AB, Bourke P, Tiwari BK, Whyte P, Scannell AGM. Added insult to injury? The response of meat-associated pathogens to proposed antimicrobial interventions. Appl Microbiol Biotechnol 2024; 108:87. [PMID: 38189954 PMCID: PMC10774175 DOI: 10.1007/s00253-023-12849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
Modern requirements for 'green label' meat products have led to the design of novel antimicrobial innovations which prioritise quality, safety and longevity. Plasma-functionalised water (PFW), ultraviolet light and natural antimicrobial compositions have been investigated and optimised for control of foodborne pathogens like Campylobacter jejuni and Salmonella enterica serovar Typhimurium. However, given the adaptive mechanisms present in bacteria under external stresses, it is imperative to understand the effect that sublethal treatment may have on the bacterial transcriptome. In this study, Salmonella Typhimurium and C. jejuni were treated with sublethal doses of ultraviolet light, a citrus juice/essential oil marinade, and 'spark' or 'glow' cold plasma generation system-produced PFW. Immediately after treatment, cells were lysed and RNA was extracted and purified. mRNA was converted to cDNA by reverse transcription-PCR and sequenced by an Illumina MiSeq® system. Sequences were filtered and analysed using the Tuxedo workflow. Sublethal treatment of Campylobacter jejuni and Salmonella Typhimurium led to increased immediate cellular and metabolic activity, as well as diversification in protein and metabolic functioning. There was further expression of pathogenesis and virulence-associated traits associated with spark PFW and marinade treatment of Salmonella Typhimurium. However, similar concerns were not raised with glow PFW or UV-treated samples. This study provides science-based evidence of the efficacy of multi-hurdle antimicrobial system using green-label marinades and PFW or UV to inactivate pathogens without upregulating virulence traits in surviving cells. This study will inform policymakers and food industry stakeholders and reinforces the need to incorporate in-line novel technologies to ensure consumer safety. KEY POINTS: • Salmonella and C. jejuni showed increased cell activity in immediate response to stress. • Virulence genes showed increased expression when treated with natural antimicrobials and sPFW. • Reduced immediate transcriptomic response to gPFW and UV treatment indicates lower risk.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.
| | - Guerrino Macori
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Soukaina Barroug
- UCD School of Biosystems and Engineering, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Arturo B Soro
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Paula Bourke
- UCD School of Biosystems and Engineering, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| |
Collapse
|
2
|
Østergaard MZ, Nielsen FD, Meinfeldt MH, Kirkpatrick CL. The uncharacterized PA3040-3042 operon is part of the cell envelope stress response and a tobramycin resistance determinant in a clinical isolate of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0387523. [PMID: 38949386 PMCID: PMC11302039 DOI: 10.1128/spectrum.03875-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Bacteriophages (hereafter "phages") are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of antiphage defense systems allowing them to resist phage lysis to a greater or lesser extent. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation, particularly in a clinical isolate of P. aeruginosa in which it also altered tobramycin resistance. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress. Our results suggest that this operon may be a cryptic but important locus for P. aeruginosa stress tolerance. IMPORTANCE An important category of bacterial stress response systems is bacteriophage defense, where systems are triggered by bacteriophage infection and activate a response which may either destroy the phage genome or destroy the infected cell so that the rest of the population survives. In some bacteria, the cell envelope stress response is activated by bacteriophage infection, but it is unknown whether this contributes to the survival of the infection. We have found that a conserved uncharacterized operon (PA3040-PA3042) of the cell envelope stress regulon in Pseudomonas aeruginosa, which has very few dedicated phage defense systems, responds to phage infection and stationary phase as well as envelope stress and is important for growth and biofilm formation in a clinical isolate of P. aeruginosa, even in the absence of phages. As homologs of these genes are found in other bacteria, they may be a novel component of the general stress response.
Collapse
Affiliation(s)
- Magnus Z. Østergaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming D. Nielsen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Mette H. Meinfeldt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Clare L. Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Tsai S, Tikekar RV. The effect of emulsifier type and oil inclusion on stress-related gene expression of Salmonella typhimurium in oil-in-water emulsion. J Food Sci 2024; 89:1211-1224. [PMID: 38224194 DOI: 10.1111/1750-3841.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Salmonella has been associated with numerous outbreaks from contaminated food products, including emulsions. Emulsions are influenced by emulsifier type and oil presence, which can have varying degrees of stress or protection on bacteria. Although our previous research has shown that emulsifier solutions, rather than emulsions, provide a protective effect on Salmonella typhimurium after thermal treatment, the underlying mechanism remains unclear. This study selected S. typhimurium as the model microorganism and utilized the same emulsifiers (Tween 20, Tween 80, Triton X-100) to create emulsifier solutions and emulsions with the same oil fraction (60% (v/v)) to examine their effect on the expression of nine selected genes (rpoE, rpoH, otsB, proV, fadA, fabA, dnaK, ibpA, ompC) associated with stress response. Specifically, the study observed variations in gene expression under normal and thermal stress at 55°C. After 20-h incubation, Triton X-100 emulsion caused an upregulation of stress-related genes, rpoE, otsB, and fabA, suggesting stressful environment. After thermal treatment, S. typhimurium in Triton X-100 solution showed a longer 5-log reduction time with increased proV and decreased fabA and ompC expression, suggesting enhanced thermal protection compared to its emulsion. Conversely, Tween 80 solution increased fabA and ompC expression, indicating greater membrane fluidity and passive diffusion, potentially reducing thermal resistance. However, according to the upregulation of ibpA, this effect was likely mitigated by the overproduction of heat shock proteins. Notably, Triton X-100 environments exhibited the most significant gene expression changes after heat treatment, whereas Tween 80 without oil was the most inhospitable for bacterial survival. These findings inform bacterial responses under various conditions, aiding food safety strategies.
Collapse
Affiliation(s)
- Shawn Tsai
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Ku RH, Li LH, Liu YF, Hu EW, Lin YT, Lu HF, Yang TC. Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA299-356-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0108023. [PMID: 37284772 PMCID: PMC10433810 DOI: 10.1128/spectrum.01080-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal β-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to β-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fu Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Ayibieke A, Nishiyama A, Senoh M, Hamabata T. Gene expression analysis during the conversion from a viable but nonculturable to culturable state in Vibrio cholerae. Gene 2023; 863:147289. [PMID: 36804851 DOI: 10.1016/j.gene.2023.147289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
We previously reported that Vibrio cholerae in a viable but non-culturable (VBNC) state can be converted to a culturable state by treatment with catalase. This finding enabled us to develop an assay system to observe the time course of the conversion from VBNC to culturable in V. cholerae. VBNC cells began to convert to culturable cells as early as 2 h after catalase supplementation. Gene expression in VBNC cells during catalase treatment was analyzed using RNA microarray. Many ribosomal DNA genes were stimulated 6 h post catalase exposure, suggesting that the conversion-driving signal started prior to 6 h. Focusing on the period prior to cell proliferation, we found that 16 genes might be involved in the conversion mechanism in V. cholerae, and they showed enhanced expression at 2 h and 4 h after catalase addition. These upregulated genes included phage shock proteins (pspA, B, and C), alternative sigma factor (rpoE) and its negative regulator (rseA), cobW C terminal domain-containing protein, damage-inducible helicase (dinG), cholerae toxin secretion protein epsM, HTH-type transcription regulator (iscR), mechanosensitive ion channel family protein, anthranilate synthase component I, fructose-specific IIBC component, molybdenum import ATP-binding protein (modC), LysE family translocator, putative organic hydroperoxide resistance protein, and a hypothetical protein. This study identified genes involved in the catalase-induced conversion of V. cholerae VBNC cells to a culturable state and provided valuable insights into the mechanisms involved in the conversion process.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Ayae Nishiyama
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan
| | - Mitsutoshi Senoh
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, 208-0011 Tokyo, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, 162-8655 Tokyo, Japan.
| |
Collapse
|
6
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. The genetic response of Salmonella Typhimurium during trans-cinnamaldehyde assisted heat treatment and its correlation with bacterial resistance in different low moisture food components. Food Microbiol 2023; 113:104271. [PMID: 37098431 DOI: 10.1016/j.fm.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Our previous study found that water activity (aw)- and matrix-dependent bacterial resistance wasdeveloped in Salmonella Typhimurium during antimicrobial-assisted heat treatment in low moisture foods (LMFs) matrices. To better understand the molecular mechanism behind the observed bacterial resistance, gene expression analysis was conducted on S. Typhimurium adapted to different conditions with or without the trans-cinnamaldehyde (CA)-assisted heat treatment via quantitative polymerase chain reaction (qPCR). Expression profiles of nine stress-related genes were analyzed. The upregulation of rpoH and dnaK and downregulation of ompC were observed during bacterial adaptation in LMF matrices and the combined heat treatment, which likely contributed to the bacterial resistance during the combined treatment. Their expression profiles were partially consistent with the previously-observed effect of aw or matrix on bacterial resistance. The upregulation of rpoE, otsB, proV, and fadA was also observed during adaptation in LMF matrices and might contribute to desiccation resistance, but likely did not contribute to bacterial resistance during the combined heat treatment. The observed upregulation of fabA and downregulation of ibpA could not be directly linked to bacterial resistance to either desiccation or the combined heat treatment. The results may assist the development of more efficient processing methods against S. Typhimurium in LMFs.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
7
|
Qiu Y, Ozturk S, Cui X, Qin W, Wu Q, Liu S. Increased heat tolerance and transcriptome analysis of Salmonella enterica Enteritidis PT 30 heat-shocked at 42 ℃. Food Res Int 2023; 167:112636. [PMID: 37087231 DOI: 10.1016/j.foodres.2023.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In this study, we compared the heat tolerance parameter (D65℃) values of Salmonella enterica serovar Enteritidis PT 30 (S. Enteritidis ) heat adapted at different degrees (at 42 ℃ for 20-180 min) and cultivated using two methods. The treated group with the highest D65℃ value (LP-42 ℃-60 min) and the untreated groups (Control-TSB and Control-TSA) were subjected to transcriptome analysis. Heat-adaptation increased the D65℃ values of S. Enteritidis by 24.5-60.8%. The D65℃ values of the LP-42 ℃-60 min group (1.85 ± 0.13 min, 7.7% higher) was comparable to that of the Control-TSA. A total of 483 up- and 443 downregulated genes of S. enteritidis were identified in the LP-42 ℃-60 min group (log2fold change > 1, adjusted p-value < 0.05). Among these genes, 5 co-expressed and 15 differentially expressed genes in the LP-42 ℃-60 min and Control-TSA grops possibly contributed to the high D65℃ values of S. Enteritidis . The Rpo regulon was involved in the heat adaptation of S. Enteritidis , as evidenced by the significant upregulation of rpoS, rpoN, and rpoE. KEGG enrichment pathways, such as biosynthesis of secondary metabolites, tricarboxylic acid, and ribosomes were identified and mapped to reveal the molecular mechanisms of S. enteritidis during heat adaptation. This study quantified the enhanced heat tolerance of S. Enteritidis heat adapted at different degrees of heat-adaptation. The results of this study may serve as a basis for elucidating the molecular mechanisms underlying the enhanced heat tolerance at the transcriptome level.
Collapse
Affiliation(s)
- Yan Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Samet Ozturk
- Department of Food Engineering, Gümüşhane University, Gümüşhane, Turkey
| | - Xinyao Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
8
|
Gibbons E, Tamanna M, Cherayil BJ. The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One 2022; 17:e0279372. [PMID: 36525423 PMCID: PMC9757558 DOI: 10.1371/journal.pone.0279372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Typhi are enteropathogens that differ in host range and the diseases that they cause. We found that exposure to a combination of hypotonicity and the detergent Triton X-100 significantly reduced the viability of the S. Typhi strain Ty2 but had no effect on the S. Typhimurium strain SL1344. Further analysis revealed that hypotonicity was the critical factor: incubation in distilled water alone was sufficient to kill Ty2, while the addition of sodium chloride inhibited killing in a dose-dependent manner. Ty2's loss of viability in water was modified by culture conditions: bacteria grown in well-aerated shaking cultures were more susceptible than bacteria grown under less aerated static conditions. Ty2, like many S. Typhi clinical isolates, has an inactivating mutation in the rpoS gene, a transcriptional regulator of stress responses, whereas most S. Typhimurium strains, including SL1344, have the wild-type gene. Transformation of Ty2 with a plasmid expressing wild-type rpoS, but not the empty vector, significantly increased survival in distilled water. Moreover, an S. Typhi strain with wild-type rpoS had unimpaired survival in water. Inactivation of the wild-type gene in this strain significantly reduced survival, while replacement with an arabinose-inducible allele of rpoS restored viability in water under inducing conditions. Our observations on rpoS-dependent differences in susceptibility to hypotonic conditions may be relevant to the ability of S. Typhi and S. Typhimurium to tolerate the various environments they encounter during the infectious cycle. They also have implications for the handling of these organisms during experimental manipulations.
Collapse
Affiliation(s)
- Eamon Gibbons
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Mehbooba Tamanna
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Medical Sciences Program, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Karash S, Jiang T, Kwon YM. Genome-wide characterization of Salmonella Typhimurium genes required for the fitness under iron restriction. BMC Genom Data 2022; 23:55. [PMID: 35869435 PMCID: PMC9308263 DOI: 10.1186/s12863-022-01069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Iron is a crucial element for bacterial survival and virulence. During Salmonella infection, the host utilizes a variety of mechanisms to starve the pathogen from iron. However, Salmonella activates distinctive defense mechanisms to acquire iron and survive in iron-restricted host environments. Yet, the comprehensive set of the conditionally essential genes that underpin Salmonella survival under iron-restricted niches has not been fully explored. Results Here, we employed transposon sequencing (Tn-seq) method for high-resolution elucidation of the genes in Salmonella Typhimurium (S. Typhimurium) 14028S strain required for the growth under the in vitro conditions with four different levels of iron restriction achieved by iron chelator 2,2′-dipyridyl (Dip): mild (100 and 150 μM), moderate (250 μM) and severe iron restriction (400 μM). We found that the fitness of the mutants reduced significantly for 28 genes, suggesting the importance of these genes for the growth under iron restriction. These genes include sufABCDSE, iron transport fepD, siderophore tonB, sigma factor E ropE, phosphate transport pstAB, and zinc exporter zntA. The siderophore gene tonB was required in mild and moderate iron-restricted conditions, but it became dispensable in severe iron-restricted conditions. Remarkably, rpoE was required in moderate and severe iron restrictions, leading to complete attenuation of the mutant under these conditions. We also identified 30 genes for which the deletion of the genes resulted in increased fitness under iron-restricted conditions. Conclusions The findings broaden our knowledge of how S. Typhimurium survives in iron-deficient environments, which could be utilized for the development of new therapeutic strategies targeting the pathways vital for iron metabolism, trafficking, and scavenging. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01069-3.
Collapse
|
10
|
Maczuga N, Tran ENH, Morona R. Subcellular localization of the enterobacterial common antigen GT-E-like glycosyltransferase, WecG. Mol Microbiol 2022; 118:403-416. [PMID: 36006410 PMCID: PMC9804384 DOI: 10.1111/mmi.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Enterobacterales have developed a specialized outer membrane polysaccharide (enterobacterial common antigen [ECA]). ECA biosynthesis begins on the cytoplasmic side of the inner membrane (IM) where glycosyltransferases sequentially add sugar moieties to form a complete repeat unit which is then translocated across the IM by WzxE before being polymerized into short linear chains by WzyE/WzzE. Research into WecG, the enzyme responsible for generating ECA lipid-II, has not progressed beyond Barr et al. (1988) who described WecG as a membrane protein. Here we revise our understanding of WecG and re-characterize it as a peripherally associated membrane protein. Through the use of Western immunoblotting we show that WecG in Shigella flexneri is maintained to the IM via its three C-terminal helices and further identify key residues in helix II which are critical for this interaction which has allowed us to identify WecG as a GT-E glycosyltransferase. We investigate the possibility of protein complexes and ultimately show that ECA lipid-I maintains WecG to the membrane which is crucial for its function. This research is the first since Barr et al. (1988) to investigate the biochemistry of WecG and reveals possible novel drug targets to inhibit WecG and thus ECA function and cell viability.
Collapse
Affiliation(s)
- Nicholas Maczuga
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Elizabeth N. H. Tran
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Renato Morona
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
11
|
UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses. Photochem Photobiol Sci 2022; 21:1459-1472. [PMID: 35551642 DOI: 10.1007/s43630-022-00236-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is an extremely versatile microorganism that survives in a wide variety of niches. It is capable to respond rapidly to changes in the environment by producing secondary metabolites and virulence factors, including alginate. Alginate is an extracellular polysaccharide that protects the bacteria from antibiotics and oxidative agents, and enhances cell adhesion to solid surfaces in the process of biofilm formation. In the present study, we analyzed the role of alginate in the response of P. aeruginosa to lethal doses of ultraviolet-A (UVA) radiation, the major fraction of solar UV radiation reaching the Earth's surface. We also studied the role of alginate in the context of the adaptive responses generated when P. aeruginosa is exposed to sublethal doses of UVA radiation. The survival studies demonstrated that alginate has a key role in the resistance of P. aeruginosa to the oxidative stress generated by lethal UVA doses, both in planktonic cells and in static biofilms. In addition, the presence of alginate proved to be essential in the occurrence of adaptive responses such as induction of biofilm formation and cross-protection against hydrogen peroxide and sodium hypochlorite, both generated by exposure to low UVA doses. Finally, we demonstrated that the increase of biofilm formation is accompanied by an increase in alginate concentration in the biofilm matrix, possibly through the ppGpp-dependent induction of genes related to alginate regulation (algR and algU) and biosynthesis (algD operon). Given the importance of alginate in biofilm formation and its protective roles, better understanding of the mechanisms associated to its functions and synthesis is relevant, given the normal exposure of P. aeruginosa to UVA radiation and other types of oxidative stresses.
Collapse
|
12
|
The Rcs System Contributes to the Motility Defects of the Twin-Arginine Translocation System Mutant of Extraintestinal Pathogenic Escherichia coli. J Bacteriol 2022; 204:e0061221. [PMID: 35311558 DOI: 10.1128/jb.00612-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellum-mediated bacterial motility is important for bacteria to take up nutrients, adapt to environmental changes, and establish infection. The twin-arginine translocation system (Tat) is an important protein export system, playing a critical role in bacterial physiology and pathogenesis. It has been observed for a long time that the Tat system is critical for bacterial motility. However, the underlying mechanism remains unrevealed. In this study, a comparative transcriptomics analysis was performed with extraintestinal pathogenic Escherichia coli (ExPEC), which identified a considerable number of genes differentially expressed when the Tat system was disrupted. Among them, a large proportion of flagellar biosynthesis genes showed downregulation, indicating that transcription regulation plays an important role in mediating the motility defects. We further identified three Tat substrate proteins, MdoD, AmiA, and AmiC, that were responsible for the nonmotile phenotype. The Rcs system was deleted in the Δtat, the ΔmdoD, and the ΔamiAΔamiC strains, which restored the motility of ΔmdoD and partially restored the motility of Δtat and ΔamiAΔamiC. The flagella were also observed in all of the ΔtatΔrcsDB, ΔmdoDΔrcsDB, and ΔamiAΔamiCΔrcsDB strains, but not in the Δtat, ΔmdoD, and ΔamiAΔamiC strains, by using transmission electron microscopy. Quantitative reverse transcription-PCR data revealed that the regulons of the Rcs system displayed differential expression in the tat mutant, indicating that the Rcs signaling was activated. Our results suggest that the Rcs system plays an important role in mediating the motility defects of the tat mutant of ExPEC. IMPORTANCE The Tat system is an important protein export system critical for bacterial physiology and pathogenesis. It has been observed for a long time that the Tat system is critical for bacterial motility. However, the underlying mechanism remains unrevealed. In this study, we combine transcriptomics analysis and bacterial genetics, which reveal that transcription regulation plays an important role in mediating the motility defects of the tat mutant of extraintestinal pathogenic Escherichia coli. The Tat substrate proteins responsible for the motility defects are identified. We further show that the Rcs system contributes to the motility suppression. We for the first time reveal the link between the Tat system and bacterial motility, which is important for understanding the physiological functions of the Tat system.
Collapse
|
13
|
Wang H, Yang Z, Swingle B, Kvitko BH. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:326-336. [PMID: 33264045 DOI: 10.1094/mpmi-09-20-0254-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven, in part, by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, or behavior, singly or in combination, to improve chances of survival. The broadly conserved ECF sigma factor AlgU affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
| | - Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
- The Plant Center, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
14
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
15
|
Abstract
The Gram-negative envelope is a complex structure that consists of the inner membrane, the periplasm, peptidoglycan and the outer membrane, and protects the bacterial cell from the environment. Changing environmental conditions can cause damage, which triggers the envelope stress responses to maintain cellular homeostasis. In this Review, we explore the causes, both environmental and intrinsic, of envelope stress, as well as the cellular stress response pathways that counter these stresses. Furthermore, we discuss the damage to the cell that occurs when these pathways are aberrantly activated either in the absence of stress or to an excessive degree. Finally, we review the mechanisms whereby the σE response constantly acts to prevent cell death caused by highly toxic unfolded outer membrane proteins. Together, the recent work that we discuss has provided insights that emphasize the necessity for proper levels of stress response activation and the detrimental consequences that can occur in the absence of proper regulation.
Collapse
|
16
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
|
18
|
Ethanol Stimulates Trehalose Production through a SpoT-DksA-AlgU-Dependent Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:JB.00794-18. [PMID: 30936375 DOI: 10.1128/jb.00794-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa frequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of the treZ gene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription of treZ and other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasR ΔrhlR strain. A network analysis using a model, eADAGE, built from publicly available P. aeruginosa transcriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63-71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in which treZ and coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulated treZ transcript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in the P. aeruginosa transcriptional response to ethanol.IMPORTANCE Pseudomonas aeruginosa is often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.
Collapse
|
19
|
Klein G, Raina S. Regulated Assembly of LPS, Its Structural Alterations and Cellular Response to LPS Defects. Int J Mol Sci 2019; 20:ijms20020356. [PMID: 30654491 PMCID: PMC6358824 DOI: 10.3390/ijms20020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Distinguishing feature of the outer membrane (OM) of Gram-negative bacteria is its asymmetry due to the presence of lipopolysaccharide (LPS) in the outer leaflet of the OM and phospholipids in the inner leaflet. Recent studies have revealed the existence of regulatory controls that ensure a balanced biosynthesis of LPS and phospholipids, both of which are essential for bacterial viability. LPS provides the essential permeability barrier function and act as a major virulence determinant. In Escherichia coli, more than 100 genes are required for LPS synthesis, its assembly at inner leaflet of the inner membrane (IM), extraction from the IM, translocation to the OM, and in its structural alterations in response to various environmental and stress signals. Although LPS are highly heterogeneous, they share common structural elements defining their most conserved hydrophobic lipid A part to which a core polysaccharide is attached, which is further extended in smooth bacteria by O-antigen. Defects or any imbalance in LPS biosynthesis cause major cellular defects, which elicit envelope responsive signal transduction controlled by RpoE sigma factor and two-component systems (TCS). RpoE regulon members and specific TCSs, including their non-coding arm, regulate incorporation of non-stoichiometric modifications of LPS, contributing to LPS heterogeneity and impacting antibiotic resistance.
Collapse
Affiliation(s)
- Gracjana Klein
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Satish Raina
- Unit of Bacterial Genetics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|