1
|
Le Brun G, Nuytten M, Leprince A, Glinel K, Gillis A, Mahillon J, Raskin JP. Rapid and Specific Detection of Bacillus cereus Using Phage Protein-Based Lateral Flow Assays. ACS APPLIED BIO MATERIALS 2024. [PMID: 39498971 DOI: 10.1021/acsabm.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Rapid and precise diagnostic techniques are essential for identifying foodborne pathogens, including Bacillus cereus (B. cereus), which poses significant challenges to food safety. Traditional detection methods are limited by long incubation times and high costs. In this context, gold nanoparticle (AuNP)-based lateral flow assays (LFAs) are emerging as valuable tools for rapid screening. However, the use of antibodies in LFAs faces challenges, including complex production processes, ethical concerns, or variability. Here, we address these challenges by proposing an innovative approach using bacteriophage-derived proteins for pathogen detection on LFAs. We used the engineered endolysin cell-wall-binding domain (CBD) and distal tail proteins (Dit) from bacteriophages that specifically target B. cereus. The protein-binding properties, essential for the formation of efficient capture and detection biointerfaces in LFAs, were extensively characterized from the microstructural to the LFA device level. Machine-learning models leverage knowledge of the protein sequence to predict advantageous protein orientations on the nitrocellulose membrane and AuNPs. The study of the biointerface binding quantified the degree of attachment of AuNPs to bacteria, providing, for the first time, a microscopic model of the number of AuNPs binding to bacteria. It highlighted the binding of up to one hundred 40 nm AuNPs per bacterium in conditions mimicking LFAs. Eventually, phage proteins were demonstrated as efficient bioreceptors in a straightforward LFA prototype combining the two proteins, providing a rapid colorimetric response within 15 min upon the detection of 105 B. cereus cells. Recombinantly produced phage binding proteins present an opportunity to generate a customizable library of proteins with precise binding capabilities, offering a cost-effective and ethical alternative to antibodies. This study enhances our understanding of phage protein biointerfaces, laying the groundwork for their utilization as efficient bioreceptors in LFAs and rapid point-of-care diagnostic assays, thus potentially strengthening public health measures.
Collapse
Affiliation(s)
- Grégoire Le Brun
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Place du Levant 1, 1348 Louvain-la-Neuve, Belgium
| | - Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/12, 1348 Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/12, 1348 Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, UCLouvain, Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/12, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/12, 1348 Louvain-la-Neuve, Belgium
| | - Jean-Pierre Raskin
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Place du Levant 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Song L, Shen Y, Zhang H, Zhang H, Zhang Y, Wang M, Zhang M, Wang F, Zhou L, Wen C, Zhao Y. Comprehensive genomic analysis of Brevibacillus brevis BF19 reveals its biocontrol potential against bitter gourd wilt. BMC Microbiol 2024; 24:415. [PMID: 39425006 PMCID: PMC11488265 DOI: 10.1186/s12866-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
Bitter gourd wilt, a severe vascular disease triggered by the soilborne pathogen Fusarium oxysporum f. sp. momordicae (FOM), markedly constrains bitter gourd yield. In this study, a novel strain BF19 of Brevibacillus brevis was isolated and identified, exhibiting strong antimicrobial activity against FOM through in vivo and in vitro experiments. To comprehensively assess the biocontrol potential of strain BF19, we conducted phenotypic, phylogenetic, and comparative genomics analyses. Phenotypic analysis revealed that BF19 exhibited 53.33% biocontrol efficacy and significantly increased the average plant height, root fresh weight, and dry weight. Whole-genome sequencing and comparative genomic analysis revealed numerous potential genes associated with biocontrol mechanisms in BF19. Importantly, the integration of metabolic cluster prediction with liquid chromatography‒tandem mass spectrometry (LC‒MS/MS) revealed the presence of a macrobrevin antibiotic, a product of polyketide synthases (PKSs), predominantly in BF19 fermentation products. The effectiveness of the Br. brevis strain BF19 and its crude extract against bitter gourd wilt has also been confirmed. This study provides a genetic framework for future investigations on PKSs and establishes a scientific basis for optimizing field applications of microbial biopesticides derived from Br. brevis BF19.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yue Shen
- Food Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huihao Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Han Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mingyue Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Warneke R, Herzberg C, Klein M, Elfmann C, Dittmann J, Feussner K, Feussner I, Stülke J. Coenzyme A biosynthesis in Bacillus subtilis: discovery of a novel precursor metabolite for salvage and its uptake system. mBio 2024; 15:e0177224. [PMID: 39194188 PMCID: PMC11487621 DOI: 10.1128/mbio.01772-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis is used for many biotechnological applications, including the large-scale production of vitamins. For vitamin B5, a precursor for coenzyme A synthesis, there is so far no established fermentation process available, and the metabolic pathways that involve this vitamin are only partially understood. In this study, we have elucidated the complete pathways for the biosynthesis of pantothenate and coenzyme A in B. subtilis. Pantothenate can not only be synthesized but also be taken up from the medium. We have identified the enzymes and the transporter involved in the pantothenate biosynthesis and uptake. High-affinity vitamin B5 uptake in B. subtilis requires an ATP-driven energy coupling factor transporter with PanU (previously YhfU) as the substrate-specific subunit. Moreover, we have identified a salvage pathway for coenzyme A acquisition that acts on complex medium even in the absence of pantothenate synthesis. This pathway requires rewiring of sulfur metabolism resulting in the increased expression of a cysteine transporter. In the salvage pathway, the bacteria import cysteinopantetheine, a novel naturally occurring metabolite, using the cystine transport system TcyJKLMN. This work lays the foundation for the development of effective processes for vitamin B5 and coenzyme A production using B. subtilis. IMPORTANCE Vitamins are essential components of the diet of animals and humans. Vitamins are thus important targets for biotechnological production. While efficient fermentation processes have been developed for several vitamins, this is not the case for vitamin B5 (pantothenate), the precursor of coenzyme A. We have elucidated the complete pathway for coenzyme A biosynthesis in the biotechnological workhorse Bacillus subtilis. Moreover, a salvage pathway for coenzyme A synthesis was found in this study. Normally, this pathway depends on pantetheine; however, we observed activity of the salvage pathway on complex medium in mutants lacking the pantothenate biosynthesis pathway even in the absence of supplemented pantetheine. This required rewiring of metabolism by expressing a cystine transporter due to acquisition of mutations affecting the regulation of cysteine metabolism. This shows how the hidden "underground metabolism" can give rise to the rapid formation of novel metabolic pathways.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Moritz Klein
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Josi Dittmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Lu X, Li J, Huang C, Wang Z, Chen Y, Jiang S, Li J, Xie N. Development of New Multi-Glycosylation Routes to Facilitate the Biosynthesis of Sweetener Mogrosides from Bitter Immature Siraitia Grosvenorii Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18078-18088. [PMID: 39078882 DOI: 10.1021/acs.jafc.4c03154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Mogrosides, which have various pharmacological activities, are mainly extracted from Siraitia grosvenorii (Luo Han Guo) and are widely used as natural zero-calorie sweeteners. Unfortunately, the difficult cultivation and long maturation time of Luo Han Guo have contributed to a shortage of mogrosides. To overcome this obstacle, we developed a highly efficient biosynthetic method using engineered Escherichia coli to synthesize sweet mogrosides from bitter mogrosides. Three UDP-glycosyltransferase (UGT) genes with primary/branched glycosylation catalytic activity at the C3/C24 sites of mogrosides were screened and tested. Mutant M3, which could catalyze the glycosylation of nine types of mogrosides, was obtained through enhanced catalytic activity. This improvement in β-(1,6)-glycosidic bond formation was achieved through single nucleotide polymorphisms and direct evolution, guided by 3D structural analysis. A new multienzyme system combining three UGTs and UDP-glucose (UDPG) regeneration was developed to avoid the use of expensive UDPG. Finally, the content of sweet mogrosides in the immature Luo Han Guo extract increased significantly from 57% to 95%. This study not only established a new multienzyme system for the highly efficient production of sweet mogrosides from immature Luo Han Guo but also provided a guideline for the high-value utilization of rich bitter mogrosides from agricultural waste and residues.
Collapse
Affiliation(s)
- Xinyi Lu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Jianxiu Li
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Zhefei Wang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Yanchi Chen
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| | - Shuiyuan Jiang
- Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin 541006, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Nengzhong Xie
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China
| |
Collapse
|
5
|
Warneke R, Herzberg C, Weiß M, Schramm T, Hertel D, Link H, Stülke J. DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in Bacillus subtilis. J Bacteriol 2024; 206:e0019024. [PMID: 38832794 PMCID: PMC11270874 DOI: 10.1128/jb.00190-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger involved in diverse metabolic processes including osmolyte uptake, cell wall homeostasis, as well as antibiotic and heat resistance. This study investigates the role of the c-di-AMP receptor protein DarA in the osmotic stress response in Bacillus subtilis. Through a series of experiments, we demonstrate that DarA plays a central role in the cellular response to osmotic fluctuations. Our findings show that DarA becomes essential under extreme potassium limitation as well as upon salt stress, highlighting its significance in mediating osmotic stress adaptation. Suppressor screens with darA mutants reveal compensatory mechanisms involving the accumulation of osmoprotectants, particularly potassium and citrulline. Mutations affecting various metabolic pathways, including the citric acid cycle as well as glutamate and arginine biosynthesis, indicate a complex interplay between the osmotic stress response and metabolic regulation. In addition, the growth defects of the darA mutant during potassium starvation and salt stress in a strain lacking the high-affinity potassium uptake systems KimA and KtrAB can be rescued by increased affinity of the remaining potassium channel KtrCD or by increased expression of ktrD, thus resulting in increased potassium uptake. Finally, the darA mutant can respond to salt stress by the increased expression of MleN , which can export sodium ions.IMPORTANCEEnvironmental bacteria are exposed to rapidly changing osmotic conditions making an effective adaptation to these changes crucial for the survival of the cells. In Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in this adaptation by controlling (i) the influx of physiologically compatible organic osmolytes and (ii) the biosynthesis of such osmolytes. In several bacteria, cyclic di-adenosine monophosphate (c-di-AMP) can bind to a signal transduction protein, called DarA, in Bacillus subtilis. So far, no function for DarA has been discovered in any organism. We have identified osmotically challenging conditions that make DarA essential and have identified suppressor mutations that help the bacteria to adapt to those conditions. Our results indicate that DarA is a central component in the integration of osmotic stress with the synthesis of compatible amino acid osmolytes and with the homeostasis of potassium, the first response to osmotic stress.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin Weiß
- Department of General Microbiology, GZMB, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Thorben Schramm
- Interfaculty Institute for Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Dietrich Hertel
- Department of Plant Ecology and Ecosystems Research, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Jörg Stülke
- Interfaculty Institute for Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Cheng C, Su S, Bo S, Zheng C, Liu C, Zhang L, Xu S, Wang X, Gao P, Fan K, He Y, Zhou D, Gong Y, Zhong G, Liu Z. A Bacillus velezensis strain isolated from oats with disease-preventing and growth-promoting properties. Sci Rep 2024; 14:12950. [PMID: 38839805 PMCID: PMC11153497 DOI: 10.1038/s41598-024-63756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.
Collapse
Affiliation(s)
- Chao Cheng
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China.
| | - Shaofeng Su
- Inner Mongolia Academy of Agriculture and Husbandry Science, Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot, 010000, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Chengzhong Zheng
- Ulanqab Institute for Agricultural and Forestry Science, Ulanqab, 012000, China
| | - Chunfang Liu
- Ulanqab Center for Disease Control and Prevention, Ulanqab, 012000, China
| | - Linchong Zhang
- Jinyu Baoling Biological Drugs Co., LTD, Hohhot, 010000, China
| | - Songhe Xu
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Xiaoyun Wang
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Pengfei Gao
- Vocational and Technical College of Ulanqab, Ulanqab, 012000, China
| | - Kongxi Fan
- Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yiwei He
- School of Life Science and Technology, Jining Normal University, Ulanqab, 012000, China
| | - Di Zhou
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yanchun Gong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Gang Zhong
- Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia, Hohhot, 010000, China
| | - Zhiguo Liu
- Inner Mongolia Agricultural University, Hohhot, 010000, China.
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, 100000, China.
| |
Collapse
|
7
|
Warneke R, Herzberg C, Daniel R, Hormes B, Stülke J. Control of three-carbon amino acid homeostasis by promiscuous importers and exporters in Bacillus subtilis: role of the "sleeping beauty" amino acid exporters. mBio 2024; 15:e0345623. [PMID: 38470260 PMCID: PMC11005379 DOI: 10.1128/mbio.03456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis can acquire amino acids by import, de novo biosynthesis, or degradation of proteins and peptides. The accumulation of several amino acids inhibits the growth of B. subtilis, probably due to misincorporation into cellular macromolecules such as proteins or peptidoglycan or due to interference with other amino acid biosynthetic pathways. Here, we studied the adaptation of B. subtilis to toxic concentrations of the three-carbon amino acids L-alanine, β-alanine, and 2,3-diaminopropionic acid, as well as the two-carbon amino acid glycine. Resistance to the non-proteinogenic amino acid β-alanine, which is a precursor for coenzyme A biosynthesis, is achieved by mutations that either activate a cryptic amino acid exporter, AexA (previously YdeD), or inactivate the amino acid importers AimA, AimB (previously YbxG), and BcaP. The aexA gene is very poorly expressed under most conditions studied. However, mutations affecting the transcription factor AerA (previously YdeC) can result in strong constitutive aexA expression. AexA is the first characterized member of a group of amino acid exporters in B. subtilis, which are all very poorly expressed. Therefore, we suggest to call this group "sleeping beauty amino acid exporters." 2,3-Diaminopropionic acid can also be exported by AexA, and this amino acid also seems to be a natural substrate of AerA/AexA, as it can cause a slight but significant induction of aexA expression, and AexA also provides some natural resistance toward 2,3-diaminopropionic acid. Moreover, our work shows how low-specificity amino acid transporters contribute to amino acid homeostasis in B. subtilis.IMPORTANCEEven though Bacillus subtilis is one of the most-studied bacteria, amino acid homeostasis in this organism is not fully understood. We have identified import and export systems for the C2 and C3 amino acids. Our work demonstrates that the responsible amino acid permeases contribute in a rather promiscuitive way to amino acid uptake. In addition, we have discovered AexA, the first member of a group of very poorly expressed amino acid exporters in B. subtilis that we call "sleeping beauty amino acid exporters." The expression of these transporters is typically triggered by mutations in corresponding regulator genes that are acquired upon exposure to toxic amino acids. These exporters are ubiquitous in all domains of life. It is tempting to speculate that many of them are not expressed until the cells experience selective pressure by toxic compounds, and they protect the cells from rare but potentially dangerous encounters with such compounds.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University, Göttingen, Germany
| | - Richard Daniel
- Center for Bacterial Cell Biology, Biosciences Institute, Medical Faculty, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Björn Hormes
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University, Göttingen, Germany
| |
Collapse
|
8
|
Nuñez Santiago I, Machushynets NV, Mladic M, van Bergeijk DA, Elsayed SS, Hankemeier T, van Wezel GP. nanoRAPIDS as an analytical pipeline for the discovery of novel bioactive metabolites in complex culture extracts at the nanoscale. Commun Chem 2024; 7:71. [PMID: 38561415 PMCID: PMC10984978 DOI: 10.1038/s42004-024-01153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Microbial natural products form the basis of most of the antibiotics used in the clinic. The vast majority has not yet been discovered, among others because the hidden chemical space is obscured by previously identified (and typically abundant) antibiotics in culture extracts. Efficient dereplication is therefore key to the discovery of our future medicines. Here we present an analytical platform for the efficient identification and prioritization of low abundance bioactive compounds at nanoliter scale, called nanoRAPIDS. NanoRAPIDS encompasses analytical scale separation and nanofractionation of natural extracts, followed by the bioassay of interest, automated mass spectrometry identification, and Global Natural Products Social molecular networking (GNPS) for dereplication. As little as 10 μL crude extract is fractionated into 384 fractions. First, bioactive congeners of iturins and surfactins were identified in Bacillus, based on their bioactivity. Subsequently, bioactive molecules were identified in an extensive network of angucyclines elicited by catechol in cultures of Streptomyces sp. This allowed the discovery of a highly unusual N-acetylcysteine conjugate of saquayamycin, despite low production levels in an otherwise abundant molecular family. These data underline the utility and broad application of the technology for the prioritization of minor bioactive compounds in complex extracts.
Collapse
Affiliation(s)
- Isabel Nuñez Santiago
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Marija Mladic
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- DSM-Firmenich, Delft, The Netherlands
| | - Doris A van Bergeijk
- Department of Microbiology, KU Leuven, Immunology and Transplantation (Laboratory of Molecular Bacteriology), Leuven, Belgium
- VIB, Center for Microbiology, Leuven, Belgium
| | - Somayah S Elsayed
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
9
|
Mardoukhi MSY, Rapp J, Irisarri I, Gunka K, Link H, Marienhagen J, de Vries J, Stülke J, Commichau FM. Metabolic rewiring enables ammonium assimilation via a non-canonical fumarate-based pathway. Microb Biotechnol 2024; 17:e14429. [PMID: 38483038 PMCID: PMC10938345 DOI: 10.1111/1751-7915.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.
Collapse
Affiliation(s)
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Katrin Gunka
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
- Institut of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
10
|
Meißner J, Königshof M, Wrede K, Warneke R, Mardoukhi MSY, Commichau FM, Stülke J. Control of asparagine homeostasis in Bacillus subtilis: identification of promiscuous amino acid importers and exporters. J Bacteriol 2024; 206:e0042023. [PMID: 38193659 PMCID: PMC10882977 DOI: 10.1128/jb.00420-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
The Gram-positive model bacterium B. subtilis is able to import all proteinogenic amino acids from the environment as well as to synthesize them. However, the players involved in the acquisition of asparagine have not yet been identified for this bacterium. In this work, we used d-asparagine as a toxic analog of l-asparagine to identify asparagine transporters. This revealed that d- but not l-asparagine is taken up by the malate/lactate antiporter MleN. Specific strains that are sensitive to the presence of l-asparagine due to the lack of the second messenger cyclic di-AMP or due to the intracellular accumulation of this amino acid were used to isolate and characterize suppressor mutants that were resistant to the presence of otherwise growth-inhibiting concentrations of l-asparagine. These screens identified the broad-spectrum amino acid importers AimA and BcaP as responsible for the acquisition of l-asparagine. The amino acid exporter AzlCD allows detoxification of l-asparagine in addition to 4-azaleucine and histidine. This work supports the idea that amino acids are often transported by promiscuous importers and exporters. However, our work also shows that even stereo-enantiomeric amino acids do not necessarily use the same transport systems.IMPORTANCETransport of amino acid is a poorly studied function in many bacteria, including the model organism Bacillus subtilis. The identification of transporters is hampered by the redundancy of transport systems for most amino acids as well as by the poor specificity of the transporters. Here, we apply several strategies to use the growth-inhibitive effect of many amino acids under defined conditions to isolate suppressor mutants that exhibit either reduced uptake or enhanced export of asparagine, resulting in the identification of uptake and export systems for l-asparagine. The approaches used here may be useful for the identification of transporters for other amino acids both in B. subtilis and in other bacteria.
Collapse
Affiliation(s)
- Janek Meißner
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Manuel Königshof
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Wrede
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Wicke D, Neumann P, Gößringer M, Chernev A, Davydov S, Poehlein A, Daniel R, Urlaub H, Hartmann R, Ficner R, Stülke J. The previously uncharacterized RnpM (YlxR) protein modulates the activity of ribonuclease P in Bacillus subtilis in vitro. Nucleic Acids Res 2024; 52:1404-1419. [PMID: 38050972 PMCID: PMC10853771 DOI: 10.1093/nar/gkad1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Gößringer
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swetlana Davydov
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, GZMB, University Medical Centre Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August-University Göttingen, Germany
| | - Roland K Hartmann
- Institute for the Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Xia M, Munir S, Li Y, Ahmed A, He P, Wu Y, Li X, Tang P, Wang Z, He P, Wang Y, He Y. Bacillus subtilis YZ-1 surfactins are involved in effective toxicity against agricultural pests. PEST MANAGEMENT SCIENCE 2024; 80:333-340. [PMID: 37682584 DOI: 10.1002/ps.7759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Insect pests negatively affect crop quality and yield. The excessive use of chemical pesticides has serious impacts on the environment and food safety. Therefore, development of effective management strategies in the form of bio-agents have important agricultural applications. Tenebrio molitor, a storage pest, causes losses of grains, medicinal materials, and various agricultural and related products in the warehouse. Bacillus subtilis YZ-1 isolated from naturally deceased Pieris rapae has been found to exhibit significant toxicity against T. molitor. RESULTS Treatment with B. subtilis YZ-1 fermentation broth resulted in a 90-95% mortality rate of T. molitor within 36 h post-treatment, indicating some active substances may have insecticidal activity in the bacterial supernatant. A bioactivity-guided fractionation method was used to isolate the insecticidal compounds from YZ-1, which led to the identification of surfactins. Additionally, a surfactin deletion mutant YZ-1△srfAA was constructed and the surfactin production by the mutant YZ-1△srfAA was verified through liquid chromatography-mass spectrometry (LC-MS). Further, YZ-1△srfAA exhibited loss of insecticidal activity against T. molitor, Plutella xylostella and Achelura yunnanensis. The insecticidal activity and surfactins contents of several strains of Bacillus sp. were also tested and correlation was found between varying surfactins yield and insecticidal activity exhibited by different strains. CONCLUSION Conclusively, our results suggest that B. subtilis YZ-1 may provide a novel approach for plant protection against agricultural pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengyuan Xia
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zaiqiang Wang
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology and Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and a Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
13
|
Sun P, Xu S, Tian Y, Chen P, Wu D, Zheng P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. Int J Mol Sci 2024; 25:1222. [PMID: 38279222 PMCID: PMC10816480 DOI: 10.3390/ijms25021222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H) is a long-known class of two-component flavin-dependent monooxygenases from bacteria, including an oxygenase component (EC 1.14.14.9) and a reductase component (EC 1.5.1.36), with the latter being accountable for delivering the cofactor (reduced flavin) essential for o-hydroxylation. 4HPA3H has a broad substrate spectrum involved in key biological processes, including cellular catabolism, detoxification, and the biosynthesis of bioactive molecules. Additionally, it specifically hydroxylates the o-position of the C4 position of the benzene ring in phenolic compounds, generating high-value polyhydroxyphenols. As a non-P450 o-hydroxylase, 4HPA3H offers a viable alternative for the de novo synthesis of valuable natural products. The enzyme holds the potential to replace plant-derived P450s in the o-hydroxylation of plant polyphenols, addressing the current significant challenge in engineering specific microbial strains with P450s. This review summarizes the source distribution, structural properties, and mechanism of 4HPA3Hs and their application in the biosynthesis of natural products in recent years. The potential industrial applications and prospects of 4HPA3H biocatalysts are also presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (P.S.); (Y.T.); (P.C.); (D.W.)
| |
Collapse
|
14
|
Wang Y, Sun Z, Zhao Q, Yang X, Li Y, Zhou H, Zhao M, Zheng H. Whole-genome analysis revealed the growth-promoting and biological control mechanism of the endophytic bacterial strain Bacillus halotolerans Q2H2, with strong antagonistic activity in potato plants. Front Microbiol 2024; 14:1287921. [PMID: 38235428 PMCID: PMC10792059 DOI: 10.3389/fmicb.2023.1287921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Endophytes are colonizers of healthy plants and they normally exhibit biocontrol activities, such as reducing the occurrence of plant diseases and promoting plant growth. The endophytic bacterium Bacillus halotolerans Q2H2 (Q2H2) was isolated from the roots of potato plants and was found to have an antagonistic effect on pathogenic fungi. Methods Q2H2 was identified by morphological observations, physiological and biochemical identification, and 16S rRNA gene sequence analysis. Genes related to the anti-fungal and growth-promoting effects were analyzed using whole-genome sequencing and comparative genomic analysis. Finally, we analyzed the growth-promoting and biocontrol activities of Q2H2 in potato plants using pot experiments. Results Antagonism and non-volatile substance plate tests showed that Q2H2 had strong antagonism against Fusarium oxysporum, Fusarium commune, Fusarium graminearum, Fusarium brachygibbosum, Rhizoctonia solani and Stemphylium solani. The plate test showed that Q2H2 had the ability to produce proteases, cellulases, β-1,3-glucanase, dissolved organic phosphate, siderophores, indole-3-acetic acid (IAA), ammonia and fix nitrogen. The suitable growth ranges of Q2H2 under different forms of abiotic stress were pH 5-9, a temperature of 15-30°C, and a salt concentration of 1-5%. Though whole-genome sequencing, we obtained sequencing data of approximately 4.16 MB encompassed 4,102 coding sequences. We predicted 10 secondary metabolite gene clusters related to antagonism and growth promotion, including five known products surfactin, bacillaene, fengycin, bacilysin, bacillibactin, and subtilosin A. Average nucleotide identity and comparative genomic analyses revealed that Q2H2 was Bacillus halotolerans. Through gene function annotation, we analyzed genes related to antagonism and plant growth promotion in the Q2H2 genome. These included genes involved in phosphate metabolism (pstB, pstA, pstC, and pstS), nitrogen fixation (nifS, nifU, salA, and sufU), ammonia production (gudB, rocG, nasD, and nasE), siderophore production (fhuC, fhuG, fhuB, and fhuD), IAA production (trpABFCDE), biofilm formation (tasA, bslA, and bslB), and volatile compound production (alsD, ilvABCDEHKY, metH, and ispE), and genes encoding hydrolases (eglS, amyE, gmuD, ganB, sleL, and ydhD). The potato pot test showed that Q2H2 had an obvious growth-promoting effect on potato roots and better control of Fusarium wilt than carbendazim. Conclusion These findings suggest that the strain-specific genes identified in bacterial endophytes may reveal important antagonistic and plant growth-promoting mechanisms.
Collapse
Affiliation(s)
- Yuhu Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Qianqian Zhao
- Institute of Agro-Food Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yahui Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongli Zheng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
15
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Andryszkiewicz M, Cavanna D, Kovalkovicova N, Liu Y, Lunardi S, Chesson A. Safety evaluation of the food enzyme glucan 1,4- α-maltohydrolase from the genetically modified Bacillus subtilis strain BABSC. EFSA J 2024; 22:e8508. [PMID: 38222928 PMCID: PMC10784850 DOI: 10.2903/j.efsa.2024.8508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
The food enzyme glucan 1,4-α-maltohydrolase (4-α-d-glucan α-maltohydrolase, EC 3.2.1.133) is produced with the genetically modified Bacillus subtilis strain BABSC by Advanced Enzyme Technologies Ltd. The requirements for the qualified presumption of safety (QPS) approach have not been met. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in baking processes and starch processing for the production of glucose syrups and other starch hydrolysates. Since residual amounts of total organic solids (TOS) are removed, dietary exposure was not calculated for starch processing for the production of glucose syrups and other starch hydrolysates. For baking processes, the dietary exposure was estimated to be up to 0.101 mg TOS/kg body weight per day in European populations. No toxicological studies were provided by the applicant. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a respiratory allergen was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. In the absence of appropriate data to fully characterise the production strain, the Panel was unable to conclude on the safety of the food enzyme under the intended conditions of use.
Collapse
|
16
|
Zhou C, Yang G, Meng P, Qin W, Li Y, Lin Z, Hui W, Zhang H, Lu F. Identification and engineering of the aprE regulatory region and relevant regulatory proteins in Bacillus licheniformis 2709. Enzyme Microb Technol 2024; 172:110310. [PMID: 37925770 DOI: 10.1016/j.enzmictec.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 11/07/2023]
Abstract
Bacillus licheniformis 2709 is the main industrial producer of alkaline protease (AprE), but its biosynthesis is strictly controlled by a highly sophisticated transcriptional network. In this study, the UP elements of aprE located 74-98, 98-119 and 140-340 bp upstream of the transcriptional start site (TSS) were identified, which presented obvious effects on the transcription of aprE. To further analyze the transcriptional mechanism, the specific proteins binding to the approximately 500-bp DNA sequences were subsequently captured by reverse-chromatin immunoprecipitation (reverse-ChIP) and DNA pull-down (DPD) assays, which captured the transcriptional factors CggR, FruR, and YhcZ. The study demonstrated that CggR, FruR and YhcZ had no significant effect on cell growth and aprE expression. Then, aprE expression was significantly enhanced by deleting a potential negative regulatory factor binding site in the genome. The AprE enzyme activity in shake flasks of the genomic mutant BL ∆1 was 47% higher than in the original strain, while the aprE transcription level increased 3.16 times. The protocol established in this study provides a valuable reference for the high-level production of proteins in other Bacillus species. At the same time, it will help reveal the molecular mechanism of the transcriptional regulatory network of aprE and provide important theoretical guidance for further enhancing the yield of AprE.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China; Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China.
| | - Panpan Meng
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Weishuai Qin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Yanyan Li
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Zhenxian Lin
- School of biology and brewing engineering, Taishan University, Taian 271018, PR China
| | - Wei Hui
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key laboratory of industrial fermentation microbiology, Ministry of education, College of biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
17
|
Han SR, Park M, Kosaraju S, Lee J, Lee H, Lee JH, Oh TJ, Kang M. Evidential deep learning for trustworthy prediction of enzyme commission number. Brief Bioinform 2023; 25:bbad401. [PMID: 37991247 PMCID: PMC10664415 DOI: 10.1093/bib/bbad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current state-of-the-art models lack trustworthiness on the prediction of the multilabel classification problem with thousands of classes. Here, we demonstrate that a novel evidential deep learning model (named ECPICK) makes trustworthy predictions of enzyme commission (EC) numbers with data-driven domain-relevant evidence, which results in significantly enhanced predictive power and the capability to discover potential new motif sites. ECPICK learns complex sequential patterns of amino acids and their hierarchical structures from 20 million enzyme data. ECPICK identifies significant amino acids that contribute to the prediction without multiple sequence alignment. Our intensive assessment showed not only outstanding enhancement of predictive performance on the largest databases of Uniprot, Protein Data Bank (PDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG), but also a capability to discover new motif sites in microorganisms. ECPICK is a reliable EC number prediction tool to identify protein functions of an increasing number of uncharacterized enzymes.
Collapse
Affiliation(s)
- So-Ra Han
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - Mingyu Park
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Sai Kosaraju
- Department of Computer Science, University of Nevada, Las Vegas, NV, USA
| | - JeungMin Lee
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
| | - Hyun Lee
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Division of Computer Science and Engineering, Sun Moon University, Asan, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan, Republic of Korea
- Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Genome-based BioIT Convergence Institute, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, USA
| |
Collapse
|
18
|
Li L, Xiong S, Wang Q, Xue C, Xiao P, Qian G. Enhancement strategies of aerobic denitrification for efficient nitrogen removal from low carbon-to-nitrogen ratio shale oil wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129663. [PMID: 37573980 DOI: 10.1016/j.biortech.2023.129663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The strategy of high reflux ratio and long solids retention time was adopted to realize efficient nitrogen removal from real shale oil wastewater. This was undertaken with a low chemical oxygen demand to total nitrogen (COD/TN) ratio by strengthening aerobic denitrification in an anoxic/aerobic membrane bioreactor (A/O-MBR). The TN removal load climbed from 22 to 25 g N/(kg MLSS·d) as the COD/TN ratio declined from 8 to 3. The abundance of heterotrophic nitrifying and aerobic denitrifying (HNAD) bacteria increased by 13.8 times to 42.5%, displacing anoxic denitrifying bacteria as the predominant bacteria. The abundance of genes involved in denitrification (napAB, narGHI, norBC, nosZ) increased, however the genes related to assimilatory nitrate reduction (nirA, narB, nasC) decreased. The capacity of the dominant HNAD bacteria in an A/O-MBR to efficiently utilize a carbon source is the key to efficient nitrogen removal from shale oil wastewater with a low COD/TN ratio.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Shaojun Xiong
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Qichun Wang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenyao Xue
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ping Xiao
- Fushun Mining Group Co., Ltd., Fushun 113000, China
| | - Guangsheng Qian
- Centre for Regional Oceans, and Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
19
|
Wang L, Fan R, Ma H, Sun Y, Huang Y, Wang Y, Guo Q, Ren X, Xu L, Zhao J, Zhang L, Xu Y, Jin L, Dong Y, Quan C. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis Q-426. BMC Genomics 2023; 24:589. [PMID: 37794314 PMCID: PMC10548584 DOI: 10.1186/s12864-023-09662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The Q-426 strain isolated from compost samples has excellent antifungal activities against a variety of plant pathogens. However, the complete genome of Q-426 is still unclear, which limits the potential application of Q-426. RESULTS Genome sequencing revealed that Q-426 contains a single circular chromosome 4,086,827 bp in length, with 4691 coding sequences and an average GC content of 46.3%. The Q-426 strain has a high degree of collinearity with B. velezensis FZB42, B. velezensis SQR9, and B. amyloliquefaciens DSM7, and the strain was reidentified as B. velezensis Q-426 based on the homology analysis results. Many genes in the Q-426 genome have plant growth-promoting activity, including the secondary metabolites of lipopeptides. Genome mining revealed 14 clusters and 732 genes encoding secondary metabolites with predicted functions, including the surfactin, iturin, and fengycin families. In addition, twelve lipopeptides (surfactin, iturin and fengycin) were successfully detected from the fermentation broth of B. velezensis Q-426 by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS), which is consistent with the genome analysis results. We found that Q-426 produced indole-3-acetic acid (IAA) at 1.56 mg/l on the third day of incubation, which might promote the growth of plants. Moreover, we identified eighteen volatile compounds (VOCs, including 2-heptanone, 6-methylheptan-2-one, 5-methylheptan-2-one, 2-nonanone, 2-decanone, 2-undecanone, 2-dodecanone, 2-tridecanone, 2-tetradecanone, 2-nonadecanone, pentadecanoic acid, oleic acid, dethyl phthalate, dibutyl phthalate, methyl (9E,12E)-octadeca-9,12-dienoate), pentadecane, (6E,10E)-1,2,3,4,4a,5,8,9,12,12a-decahydro-1,4-methanobenzo[10]annulene, and nonanal) based on gas chromatograph-mass spectrometer (GC/MS) results. CONCLUSIONS We mined secondary metabolite-related genes from the genome based on whole-genome sequence results. Our study laid the theoretical foundation for the development of secondary metabolites and the application of B. velezensis Q-426. Our findings provide insights into the genetic characteristics responsible for the bioactivities and potential application of B. velezensis Q-426 as a plant growth-promoting strain in ecological agriculture.
Collapse
Affiliation(s)
- Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Ruochen Fan
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Haodi Ma
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yu Sun
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Yangzhu Huang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuxin Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Qinfeng Guo
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Xinxiu Ren
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Lukai Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Jing Zhao
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Liming Jin
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, Liaoning, China.
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China.
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, China.
| |
Collapse
|
20
|
Satoh K, Hoshino W, Hase Y, Kitamura S, Hayashi H, Furuta M, Oono Y. Lethal and mutagenic effects of different LET radiations on Bacillus subtilis spores. Mutat Res 2023; 827:111835. [PMID: 37562181 DOI: 10.1016/j.mrfmmm.2023.111835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
New, useful microorganism resources have been generated by ionizing radiation breeding technology. However, the mutagenic effects of ionizing radiation on microorganisms have not been systematically clarified. For a deeper understanding and characterization of ionizing radiation-induced mutations in microorganisms, we investigated the lethal effects of seven different linear energy transfer (LET) radiations based on the survival fraction (SF) and whole-genome sequencing analysis of the mutagenic effects of a dose resulting in an SF of around 1% in Bacillus subtilis spores. Consequently, the lower LET radiations (gamma [surface LET: 0.2 keV/µm] and 4He2+ [24 keV/µm]) showed low lethality and high mutation frequency (MF), resulting in the major induction of single-base substitutions. Whereas higher LET radiations (12C5+ [156 keV/µm] and 12C6+ [179 keV/µm]) showed high lethality and low MF, resulting in the preferential induction of deletion mutations. In addition, 12C6+ (111) ion beams likely possess characteristics of both low- and high-LET radiations simultaneously. A decrease in the relative biological effectiveness and an evaluation of the inactivation cross section indicated that 20Ne8+ (468 keV/µm) and 40Ar13+ (2214 keV/µm) ion beams had overkill effects. In conclusion, in the mutation breeding of microorganisms, it should be possible to regulate the proportions, types, and frequencies of induced mutations by selecting an ionizing radiation of an appropriate LET in accordance with the intended purpose.
Collapse
Affiliation(s)
- Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
| | - Wataru Hoshino
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Yoshihiro Hase
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Satoshi Kitamura
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hidenori Hayashi
- Faculty of Engineering, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yutaka Oono
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
21
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
22
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
23
|
Bi X, Cheng Y, Xu X, Lv X, Liu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis. Biotechnol Bioeng 2023; 120:1623-1639. [PMID: 36788025 DOI: 10.1002/bit.28355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | | | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
24
|
Anwar N, Jiang Y, Ma W, Yao Y, Li J, Ababaikeli G, Li G, Ma T. Culturable bacteria diversity in stem liquid and resina from Populus euphratica and screening of plant growth-promoting bacteria. BMC Microbiol 2022; 22:322. [PMID: 36581840 PMCID: PMC9798617 DOI: 10.1186/s12866-022-02731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Populus euphratica Olivier is a kind of tree capable of growing in extremely arid desert and semi-desert environments. In this study, a culture-dependent method was used to analyze the bacterial diversity of stem liquid of P. euphratica and resina of P. euphratica, and to further evaluate plant growth promoting (PGP) activity. RESULTS A total of 434 bacteria were isolated from stem fluid and resina of P. euphratica in Ebinur Lake Wetland Nature Reserve and Mulei Primitive forest. The results of taxonomic composition analysis shows that Gammaproteobacteria, Firmicutes, and Actinobacteria_c are the three dominant groups in all the communities, and the representative genera are Bacillus, Nesterenkonia and Halomonas. The diversity analysis shows that the culturable bacterial community diversity of P. euphratica in Ebinur Lake Wetland Nature Reserve is higher than that in Mulei Primitive forest, and the bacterial community diversity of P. euphratica stem fluid is higher than that of resina. According to PGP activity evaluation, 158 functional bacteria with plant growth promoting potential were screened. Among them, 61 strains havephosphorus solubilizing abilities, 80 strains have potassium solubilizing abilities, 32 strains have nitrogen fixation abilities, and 151 strains have iron ammonia salt utilization abilities. The germination rate, plant height, and dry weight of the maize seedlings treated with strains BB33-1, TC10 and RC6 are significantly higher than those of the control group. CONCLUSION In this study, a large number of culturable bacteria were isolated from P. euphratica, which provides new functional bacteria sources for promoting plant growth.
Collapse
Affiliation(s)
- Nusratgul Anwar
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yuhang Jiang
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Wenbo Ma
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yuhao Yao
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jue Li
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Gulibahaer Ababaikeli
- grid.464477.20000 0004 1761 2847College of Life Sciences, Xinjiang Normal University, Urumqi, 830054 China
| | - Guoqiang Li
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Ting Ma
- grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
25
|
How To Deal with Toxic Amino Acids: the Bipartite AzlCD Complex Exports Histidine in Bacillus subtilis. J Bacteriol 2022; 204:e0035322. [PMID: 36377869 PMCID: PMC9765041 DOI: 10.1128/jb.00353-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis can use several amino acids as sources of carbon and nitrogen. However, some amino acids inhibit the growth of this bacterium. This amino acid toxicity is often enhanced in strains lacking the second messenger cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP). We observed that the presence of histidine is also toxic for a B. subtilis strain that lacks all three c-di-AMP synthesizing enzymes. However, suppressor mutants emerged, and whole-genome sequencing revealed mutations in the azlB gene that encode the repressor of the azl operon. This operon encodes an exporter and an importer for branched-chain amino acids. The suppressor mutations result in an overexpression of the azl operon. Deletion of the azlCD genes encoding the branched-chain amino acid exporter restored the toxicity of histidine, indicating that this exporter is required for histidine export and for resistance to otherwise toxic levels of the amino acid. The higher abundance of the amino acid exporter AzlCD increased the extracellular concentration of histidine, thus confirming the new function of AzlCD as a histidine exporter. Unexpectedly, the AzlB-mediated repression of the operon remains active even in the presence of amino acids, suggesting that the expression of the azl operon requires the mutational inactivation of AzlB. IMPORTANCE Amino acids are building blocks for protein biosynthesis in each living cell. However, due to their reactivity and the similarity between several amino acids, they may also be involved in harmful reactions or in noncognate interactions and thus may be toxic. Bacillus subtilis can deal with otherwise toxic histidine by overexpressing the bipartite amino acid exporter AzlCD. Although encoded in an operon that also contains a gene for an amino acid importer, the corresponding genes are not expressed, irrespective of the availability of amino acids in the medium. This suggests that the azl operon is a last resort by which to deal with histidine stress that can be expressed due to the mutational inactivation of the cognate repressor AzlB.
Collapse
|
26
|
Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Appl Environ Microbiol 2022; 88:e0096022. [PMID: 36121214 PMCID: PMC9552604 DOI: 10.1128/aem.00960-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in exoenzyme production can be enhanced by environmental stresses such as graphene oxide (GO) stress, but the link between the two events is still unclear. In this work, the effect of GO as an environmental stress factor on exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) biosynthesis was investigated in Bacillus subtilis Z2, and a plausible mechanism by which cytosolic Ca2+ regulates lignocellulolytic enzyme production in B. subtilis Z2 subjected to GO stress was proposed. The filter paper-hydrolyzing (FPase [representing total cellulase]), carboxymethylcellulase (CMCase [representing endoglucanase]), and β-glucosidase activities and extracellular protein concentration of the wild-type strain under 10 μg/mL GO stress were 1.37-, 1.64-, 1.24-, and 1.16-fold those of the control (without GO stress), respectively. Correspondingly, the transcription levels of lignocellulolytic enzyme genes, cytosolic Ca2+ level, and biomass concentration of B. subtilis were all increased. With lignocellulolytic enzyme from B. subtilis used to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 265.53 mg/g, and the removal rates of cellulose, hemicellulose, and lignin were 52.4%, 30.1%, and 7.5%, respectively. Furthermore, transcriptome data revealed that intracellular Ca2+ homeostasis played a key role in regulating the levels of gene transcription related to the synthesis of lignocellulolytic enzymes and exoenzymes. Finally, the use of Ca2+ inhibitors (LaCl3 and EDTA) and deletion of spcF (a calmodulin-like protein gene) further demonstrated that the overexpression of those genes was regulated via calcium signaling in B. subtilis subjected to GO stress. IMPORTANCE To effectively convert lignocellulose into fermentable sugars, high lignocellulolytic enzyme loading is needed. Graphene oxide (GO) has been shown to promote exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) production in some microorganisms; however, the regulatory mechanism of the biosynthesis of lignocellulolytic enzymes under GO stress remains unclear. In this work, the lignocellulolytic enzyme production of B. subtilis under GO stress was investigated, and the potential mechanism by which B. subtilis enhanced lignocellulolytic enzyme production through the calcium signaling pathway under GO stress was proposed. This work revealed the role of calcium signaling in the production of enzymes under external environmental stress and provided a direction to facilitate lignocellulolytic enzyme production by B. subtilis.
Collapse
|
27
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
28
|
Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression. Commun Biol 2022; 5:888. [PMID: 36042261 PMCID: PMC9427783 DOI: 10.1038/s42003-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes. The establishment of non-pathogenic engineered endosymbionts through B. subtilis is presented, with the aim of delivering mammalian transcription factors to the host cell for therapeutics and research.
Collapse
|
29
|
A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms 2022; 10:microorganisms10091720. [PMID: 36144322 PMCID: PMC9505155 DOI: 10.3390/microorganisms10091720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
By integrating phylogenomic and comparative analyses of 1104 high-quality genome sequences, we identify the core proteins and the lineage-specific fingerprint proteins of the various evolutionary clusters (clades/groups/species) of the Bacillus genus. As fingerprints, we denote those core proteins of a certain lineage that are present only in that particular lineage and absent in any other Bacillus lineage. Thus, these lineage-specific fingerprints are expected to be involved in particular adaptations of that lineage. Intriguingly, with a few notable exceptions, the majority of the Bacillus species demonstrate a rather low number of species-specific fingerprints, with the majority of them being of unknown function. Therefore, species-specific adaptations are mostly attributed to highly unstable (in evolutionary terms) accessory proteomes and possibly to changes at the gene regulation level. A series of comparative analyses consistently demonstrated that the progenitor of the Cereus Clade underwent an extensive genomic expansion of chromosomal protein-coding genes. In addition, the majority (76–82%) of the B. subtilis proteins that are essential or play a significant role in sporulation have close homologs in most species of both the Subtilis and the Cereus Clades. Finally, the identification of lineage-specific fingerprints by this study may allow for the future development of highly specific vaccines, therapeutic molecules, or rapid and low-cost molecular tests for species identification.
Collapse
|
30
|
Ge Z, Kuang Z, Chen J, Chen J, Liu T, She Z, Lu Y. Comparative genomics analysis of Bacillus velezensis LOH112 isolated from a nonagenarian provides insights into its biocontrol and probiotic traits. Gene 2022; 835:146644. [PMID: 35680027 DOI: 10.1016/j.gene.2022.146644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
Bacillus velezensis has recently received increasing attention as a biological fungicide and a potential probiotic agent because of its broad spectrum of antibacterial and antifungal activities. Here, we evaluated the beneficial traits of a newly isolated B. velezensis strain LOH112 using comprehensive bioinformatics and comparative genomic analyses and in vitro experimental approaches. Whole genome sequencing and assembly results showed that the genome of LOH112 consists of a circular chromosome and a circular plasmid, which encodes proteins involved in important biological processes such as sporulation, quorum sensing, and antibiotic synthesis. LOH112 contains 13 secondary metabolism gene clusters responsible for the production of antimicrobial compounds. In vitro experiments showed that LOH112 effectively inhibits several fungi and Gram-positive pathogenic bacteria, hydrolyzes protein and cellulose, and is capable of forming strong adhesive biofilms. Furthermore, comparative genomics revealed that LOH112 contains 34 strain-specific orthologous gene clusters, including two caseinolytic protease P (clpP) genes responsible for proteomic homeostasis. Selective pressure analysis indicated that the transmembrane transporter and ATP-dependent alanine/valine adenylase genes were strongly positively selected, which may endow LOH112 with better biocontrol ability and potential probiotic properties. Collectively, these results not only provide insights into a deeper understanding of the genomic characterization of LOH112 but also imply the potential application of LOH112 as biocontrol and probiotic agents.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiqi Kuang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianhao Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
31
|
Disruption of the Cytoplasmic Membrane Structure and Barrier Function Underlies the Potent Antiseptic Activity of Octenidine in Gram-Positive Bacteria. Appl Environ Microbiol 2022; 88:e0018022. [PMID: 35481757 PMCID: PMC9128513 DOI: 10.1128/aem.00180-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The antimicrobial killing mechanism of octenidine (OCT), a well-known antiseptic is poorly understood. We recently reported its interaction with Gram-negative bacteria by insertion of OCT into the outer and cytoplasmic membrane of Escherichia coli, resulting in a chaotic lipid rearrangement and rapid disruption of the cell envelope. Its action primarily disturbs the packing order of the hydrophobic moiety of a lipid, which consequently might result in a cascade of multiple effects at a cellular level. Here, we investigated OCT's impact on two different Gram-positive bacteria, Enterococcus hirae and Bacillus subtilis, and their respective model membranes. In accordance with our previous results, OCT induced membrane disorder in all investigated model systems. Electron and fluorescence microscopy clearly demonstrated changes in cellular structure and membrane integrity. These changes were accompanied by neutralization of the surface charge in both E. hirae and B. subtilis and membrane disturbances associated with permeabilization. Similar permeabilization and disordering of the lipid bilayer was also observed in model membranes. Furthermore, experiments performed on strongly versus partly anionic membranes showed that the lipid disordering effect induced by OCT is a result of maximized hydrophobic over electrostatic forces without distinct neutralization of the surface charge or discrimination between the lipid head groups. Indeed, mutants lacking specific lipid head groups were also susceptible to OCT to a similar extent as the wild type. The observed unspecific mode of action of OCT underlines its broad antimicrobial profile and renders the development of bacterial resistance to this molecule less likely. IMPORTANCE OCT is a well-established antiseptic molecule routinely used in a large field of clinical applications. Since the spread of antimicrobial resistance has restricted the use of antibiotics worldwide, topically applied antiseptics like OCT, with a broad spectrum of antimicrobial activity and high safety profile, gain increasing importance for effective infection prevention and therapy. To eliminate a wide spectrum of disease-causing microorganisms, a compound's antiseptic activity should be unspecific or multitarget. Our results demonstrate an unspecific mechanism of action for OCT, which remained largely unknown for years. OCT disturbs the barrier function of a bacterial cell, a function that is absolutely fundamental for survival. Because OCT does not distinguish between lipids, the building blocks of bacterial membranes, its mode of action might be attributed to all bacteria, including (multi)drug-resistant isolates. Our results underpin OCT's potent antiseptic activity for successful patient outcome.
Collapse
|
32
|
Kohm K, Floccari VA, Lutz VT, Nordmann B, Mittelstädt C, Poehlein A, Dragoš A, Commichau FM, Hertel R. The Bacillus phage SPβ and its relatives: a temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components. Environ Microbiol 2022; 24:2098-2118. [PMID: 35293111 DOI: 10.1111/1462-2920.15964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
The Bacillus phage SPβ has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPβ-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPβ-like phages. We extracted 55 SPβ-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPβ-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPβ transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | | | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Birthe Nordmann
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Carolin Mittelstädt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, 37077, Germany
| | - Anna Dragoš
- Biotechnical Faculty, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, 01968, Germany
| |
Collapse
|
33
|
Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. PHYTOPATHOLOGY 2022; 112:549-560. [PMID: 34293909 DOI: 10.1094/phyto-03-21-0128-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gray mold caused by Botrytis cinerea is one of the most widespread and damaging diseases in cannabis crops worldwide. With challenging restrictions on pesticide use and few effective control measures, biocontrol agents are needed to manage this disease. The aim of this study was to identify bacterial biocontrol agents with wide-spectrum activity against B. cinerea and other cannabis fungal pathogens. Twelve Bacillus and Pseudomonas strains were first screened with in vitro confrontational assays against 10 culturable cannabis pathogens, namely B. cinerea, Sclerotinia sclerotiorum, Fusarium culmorum, F. sporotrichoides, F. oxysporum, Nigrospora sphaerica, N. oryzae, Alternaria alternata, Phoma sp., and Cercospora sp. Six strains displaying the highest inhibitory activity, namely Bacillus velezensis LBUM279, FZB42, LBUM1082, Bacillus subtilis LBUM979, P. synxantha LBUM223, and P. protegens Pf-5, were further assessed in planta where all, except LBUM223, significantly controlled gray mold development on cannabis leaves. Notably, LBUM279 and FZB42 reduced disease severity by at least half compared with water-treated plants and prevented lesion development and/or sporulation up to 9 days after pathogen inoculation. Genomes of LBUM279, LBUM1082, and LBUM979 were sequenced de novo and taxonomic affiliations were determined to ensure nonrelatedness with pathogenic strains. Moreover, the genomes were exempt of detrimental genes encoding major toxins and virulence factors that could otherwise pose a biosafety risk when used on crops. Eighteen gene clusters of potential biocontrol interest were also identified. To our knowledge, this is the first reported attempt to control cannabis fungal diseases in planta by direct antagonism with beneficial bacteria.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Gabrielle Cantin
- Institute of Health and Life Sciences, Collège La Cité, Ottawa, ON K1K 4R3, Canada
| | - David L Joly
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
34
|
Johnson CM, Harden MM, Grossman AD. Interactions between mobile genetic elements: An anti-phage gene in an integrative and conjugative element protects host cells from predation by a temperate bacteriophage. PLoS Genet 2022; 18:e1010065. [PMID: 35157704 PMCID: PMC8880864 DOI: 10.1371/journal.pgen.1010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Most bacterial genomes contain horizontally acquired and transmissible mobile genetic elements, including temperate bacteriophages and integrative and conjugative elements. Little is known about how these elements interact and co-evolved as parts of their host genomes. In many cases, it is not known what advantages, if any, these elements provide to their bacterial hosts. Most strains of Bacillus subtilis contain the temperate phage SPß and the integrative and conjugative element ICEBs1. Here we show that the presence of ICEBs1 in cells protects populations of B. subtilis from predation by SPß, likely providing selective pressure for the maintenance of ICEBs1 in B. subtilis. A single gene in ICEBs1 (yddK, now called spbK for SPß killing) was both necessary and sufficient for this protection. spbK inhibited production of SPß, during both activation of a lysogen and following de novo infection. We found that expression spbK, together with the SPß gene yonE constitutes an abortive infection system that leads to cell death. spbK encodes a TIR (Toll-interleukin-1 receptor)-domain protein with similarity to some plant antiviral proteins and animal innate immune signaling proteins. We postulate that many uncharacterized cargo genes in ICEs may confer selective advantage to cells by protecting against other mobile elements. Chromosomes from virtually all organisms contain genes that were horizontally acquired. In bacteria, many of the horizontally acquired genes are located in mobile genetic elements, elements that promote their own transfer from one cell to another. These elements include viruses and conjugative elements that are parts of the host genome and they can contain genes involved in metabolism, pathogenesis, symbiosis, and antibiotic resistances. Interactions between these elements are poorly understood. Furthermore, the majority of these elements confer no obvious benefit to host cells. We found that the presence of an integrative and conjugative element (ICE) in a bacterial genome protects host cells from predation by a bacteriophage (virus). There is a single gene in the integrative and conjugative element that confers this protection, and one gene in the bacteriophage that likely works together with the ICE gene. When expressed at the same time, these two genes cause cell death, before functional viruses can be made and released to kill other cells. We postulate that other ICEs may confer selective advantage to their host cells by protecting against other mobile elements.
Collapse
Affiliation(s)
- Christopher M. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - M. Michael Harden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bacillus velezensis: A Treasure House of Bioactive Compounds of Medicinal, Biocontrol and Environmental Importance. FORESTS 2021. [DOI: 10.3390/f12121714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacillus velezensis gram-positive bacterium, is frequently isolated from diverse niches mainly soil, water, plant roots, and fermented foods. B. velezensis is ubiquitous, non-pathogenic and endospore forming. Being frequently isolated from diverse plant holobionts it is considered host adapted microorganism and recognized of high economic importance given its ability to promote plant growth under diverse biotic and abiotic stress conditions. Additionally, the species suppress many plant diseases, including bacterial, oomycete, and fungal diseases. It is also able after plant host root colonization to induce unique physiological situation of host plant called primed state. Primed host plants are able to respond more rapidly and/or effectively to biotic or abiotic stress. Moreover, B. velezenis have the ability to resist diverse environmental stresses and help host plants to cope with, including metal and xenobiotic stresses. Within species B. velezensis strains have unique abilities allowing them to adopt different life styles. Strain level abilities knowledge is warranted and could be inferred using the ever-expanding new genomes list available in genomes databases. Pangenome analysis and subsequent identification of core, accessory and unique genomes is actually of paramount importance to decipher species full metabolic capacities and fitness across diverse environmental conditions shaping its life style. Despite the crucial importance of the pan genome, its assessment among large number of strains remains sparse and systematic studies still needed. Extensive knowledge of the pan genome is needed to translate genome sequencing efforts into developing more efficient biocontrol agents and bio-fertilizers. In this study, a genome survey of B. velezensis allowed us to (a) highlight B. velezensis species boundaries and show that Bacillus suffers taxonomic imprecision that blurs the debate over species pangenome; (b) identify drivers of their successful acquisition of specific life styles and colonization of new niches; (c) describe strategies they use to promote plant growth and development; (d) reveal the unlocked strain specific orphan secondary metabolite gene clusters (biosynthetic clusters with corresponding metabolites unknown) that product identification is still awaiting to amend our knowledge of their putative role in suppression of pathogens and plant growth promotion, and (e) to describe a dynamic pangenome with a secondary metabolite rich accessory genome.
Collapse
|
36
|
Michalik S, Reder A, Richts B, Faßhauer P, Mäder U, Pedreira T, Poehlein A, van Heel AJ, van Tilburg AY, Altenbuchner J, Klewing A, Reuß DR, Daniel R, Commichau FM, Kuipers OP, Hamoen LW, Völker U, Stülke J. The Bacillus subtilis Minimal Genome Compendium. ACS Synth Biol 2021; 10:2767-2771. [PMID: 34587446 DOI: 10.1021/acssynbio.1c00339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To better understand cellular life, it is essential to decipher the contribution of individual components and their interactions. Minimal genomes are an important tool to investigate these interactions. Here, we provide a database of 105 fully annotated genomes of a series of strains with sequential deletion steps of the industrially relevant model bacterium Bacillus subtilis starting with the laboratory wild type strain B. subtilis 168 and ending with B. subtilis PG38, which lacks approximately 40% of the original genome. The annotation is supported by sequencing of key intermediate strains as well as integration of literature knowledge for the annotation of the deletion scars and their potential effects. The strain compendium presented here represents a comprehensive genome library of the entire MiniBacillus project. This resource will facilitate the more effective application of the different strains in basic science as well as in biotechnology.
Collapse
Affiliation(s)
- Stephan Michalik
- C_FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Alexander Reder
- C_FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Björn Richts
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Patrick Faßhauer
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Ulrike Mäder
- C_FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Tiago Pedreira
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Anja Poehlein
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Auke J. van Heel
- Department of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Amanda Y. van Tilburg
- Department of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Josef Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Anika Klewing
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Daniel R. Reuß
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Fabian M. Commichau
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
- FG Synthetic Microbiology, Brandenburg University of Technology, 01958 Senftenberg, Germany
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Leendert W. Hamoen
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Uwe Völker
- C_FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Jörg Stülke
- Institute of Microbiology and Genetics, GZMB, Georg-August University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
38
|
Abstract
Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.
| |
Collapse
|
39
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Faßhauer P, Busche T, Kalinowski J, Mäder U, Poehlein A, Daniel R, Stülke J. Functional Redundancy and Specialization of the Conserved Cold Shock Proteins in Bacillus subtilis. Microorganisms 2021; 9:1434. [PMID: 34361870 PMCID: PMC8307031 DOI: 10.3390/microorganisms9071434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Many bacteria encode so-called cold shock proteins. These proteins are characterized by a conserved protein domain. Often, the bacteria have multiple cold shock proteins that are expressed either constitutively or at low temperatures. In the Gram-positive model bacterium Bacillussubtilis, two of three cold shock proteins, CspB and CspD, belong to the most abundant proteins suggesting a very important function. To get insights into the role of these highly abundant proteins, we analyzed the phenotypes of single and double mutants, tested the expression of the csp genes and the impact of CspB and CspD on global gene expression in B. subtilis. We demonstrate that the simultaneous loss of both CspB and CspD results in a severe growth defect, in the loss of genetic competence, and the appearance of suppressor mutations. Overexpression of the third cold shock protein CspC could compensate for the loss of CspB and CspD. The transcriptome analysis revealed that the lack of CspB and CspD affects the expression of about 20% of all genes. In several cases, the lack of the cold shock proteins results in an increased read-through at transcription terminators suggesting that CspB and CspD might be involved in the control of transcription termination.
Collapse
Affiliation(s)
- Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (T.B.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; (T.B.); (J.K.)
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany;
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany; (A.P.); (R.D.)
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany; (A.P.); (R.D.)
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
42
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Glandorf B, Herman L, Liu Y, Chesson A. Safety evaluation of the food enzyme maltogenic α-amylase from the genetically modified Bacillus subtilis strain ROM. EFSA J 2021; 19:e06634. [PMID: 34136005 PMCID: PMC8193509 DOI: 10.2903/j.efsa.2021.6634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food enzyme maltogenic α-amylase (glucan 1,4-α-maltohydrolase; EC 3.2.1.133) is produced with the genetically modified Bacillus subtilis strain ROM by DSM Food Specialities B.V. The genetic modifications do not give rise to safety concerns. The maltogenic α-amylase is considered free from viable cells of the production organism and its recombinant DNA. The food enzyme is intended to be used in baking processes. Based on the maximum use levels recommended for the baking processes and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.065 mg TOS/kg body weight (bw) per day. As the production strain of B. subtilis ROM qualifies for the Qualified Presumption of Safety approach to safety assessment and no issue of concern arose from the production process, no toxicological data are required. Similarity of the amino acid sequence of the food enzyme to those of known allergens was searched and six matches were found. The Panel considered that under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions by dietary exposure cannot be excluded, but the likelihood for this to occur is considered to be low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
43
|
Silano V, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen IL, Tlustos C, Van Loveren H, Vernis L, Zorn H, Engel KH, Jany KD, Kärenlampi S, Marcon F, Penninks A, Smith A, Andryszkiewicz M, Gomes A, Kovalkovicova N, Liu Y, Chesson A. Safety evaluation of the food enzyme endo-1,3(4)-β-glucanase from the genetically modified Bacillus subtilis strain DP-Ezm28. EFSA J 2021; 19:e06431. [PMID: 33727966 PMCID: PMC7931123 DOI: 10.2903/j.efsa.2021.6431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The food enzyme endo‐1,3(4)‐β‐glucanase (3(or 4)‐β‐d‐glucan 3(4)‐glucanohydrolase; EC 3.2.1.6) is produced with a genetically modified Bacillus subtilis strain DP‐Ezm28 by Danisco US Inc. The genetic modifications do not give rise to safety concerns. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. The food enzyme is intended to be used in distilled alcohol production and brewing processes. Since residual amounts of total organic solids (TOS) are removed by distillation, dietary exposure was only calculated for brewing processes. Based on the maximum use levels recommended for brewing processes and individual data from the EFSA Comprehensive European Food Database, dietary exposure to the food enzyme–total organic solids was estimated to be up to 0.183 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90‐day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,000 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, results in a margin of exposure of at least 5464. Similarity of the amino acid sequence to those of known allergens was searched and two matches were found. The Panel considered that, under the intended conditions of use, the risk of allergic sensitisation and elicitation reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is considered low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
44
|
Hou Q, Kolodkin-Gal I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol 2021; 96:5872479. [PMID: 32672816 DOI: 10.1093/femsec/fiaa142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
A sustainable future increasing depends on our capacity to utilize beneficial plant microbiomes to meet our growing needs. Plant microbiome symbiosis is a hallmark of the beneficial interactions between bacteria and their host. Specifically, colonization of plant roots by biocontrol agents and plant growth-promoting bacteria can play an important role in maintaining the optimal rhizosphere environment, supporting plant growth and promoting its fitness. Rhizosphere communities confer immunity against a wide range of foliar diseases by secreting antibiotics and activating plant defences. At the same time, the rhizosphere is a highly competitive niche, with multiple microbial species competing for space and resources, engaged in an arms race involving the production of a vast array of antibiotics and utilization of a variety of antibiotic resistance mechanisms. Therefore, elucidating the mechanisms that govern antibiotic production and resistance in the rhizosphere is of great significance for designing beneficial communities with enhanced biocontrol properties. In this review, we used Bacillus subtilis and B. amyloliquefaciens as models to investigate the genetics of antibiosis and the potential for its translation of into improved plant microbiome performance.
Collapse
Affiliation(s)
- Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9020426. [PMID: 33669534 PMCID: PMC7922931 DOI: 10.3390/microorganisms9020426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence demonstrates the potential of various microbes to enhance plant productivity in cropping systems although their successful field application may be impaired by several biotic and abiotic constraints. In the present work, we aimed at developing multifunctional synthetic microbial consortia to be used in combination with suitable bioactive compounds for improving crop yield and quality. Plant growth-promoting microorganisms (PGPMs) with different functional attributes were identified by a bottom-up approach. A comprehensive literature survey on PGPMs associated with maize, wheat, potato and tomato, and on commercial formulations, was conducted by examining peer-reviewed scientific publications and results from relevant European projects. Metagenome fragment recruitments on genomes of potential PGPMs represented in databases were also performed to help identify plant growth-promoting (PGP) strains. Following evidence of their ability to coexist, isolated PGPMs were synthetically assembled into three different microbial consortia. Additionally, the effects of bioactive compounds on the growth of individually PGPMs were tested in starvation conditions. The different combination products based on microbial and non-microbial biostimulants (BS) appear worth considering for greenhouse and open field trials to select those potentially adoptable in sustainable agriculture.
Collapse
|
46
|
Geissler AS, Anthon C, Alkan F, González-Tortuero E, Poulsen LD, Kallehauge TB, Breüner A, Seemann SE, Vinther J, Gorodkin J. BSGatlas: a unified Bacillus subtilis genome and transcriptome annotation atlas with enhanced information access. Microb Genom 2021; 7:000524. [PMID: 33539279 PMCID: PMC8208703 DOI: 10.1099/mgen.0.000524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
A large part of our current understanding of gene regulation in Gram-positive bacteria is based on Bacillus subtilis, as it is one of the most well studied bacterial model systems. The rapid growth in data concerning its molecular and genomic biology is distributed across multiple annotation resources. Consequently, the interpretation of data from further B. subtilis experiments becomes increasingly challenging in both low- and large-scale analyses. Additionally, B. subtilis annotation of structured RNA and non-coding RNA (ncRNA), as well as the operon structure, is still lagging behind the annotation of the coding sequences. To address these challenges, we created the B. subtilis genome atlas, BSGatlas, which integrates and unifies multiple existing annotation resources. Compared to any of the individual resources, the BSGatlas contains twice as many ncRNAs, while improving the positional annotation for 70 % of the ncRNAs. Furthermore, we combined known transcription start and termination sites with lists of known co-transcribed gene sets to create a comprehensive transcript map. The combination with transcription start/termination site annotations resulted in 717 new sets of co-transcribed genes and 5335 untranslated regions (UTRs). In comparison to existing resources, the number of 5' and 3' UTRs increased nearly fivefold, and the number of internal UTRs doubled. The transcript map is organized in 2266 operons, which provides transcriptional annotation for 92 % of all genes in the genome compared to the at most 82 % by previous resources. We predicted an off-target-aware genome-wide library of CRISPR-Cas9 guide RNAs, which we also linked to polycistronic operons. We provide the BSGatlas in multiple forms: as a website (https://rth.dk/resources/bsgatlas/), an annotation hub for display in the UCSC genome browser, supplementary tables and standardized GFF3 format, which can be used in large scale -omics studies. By complementing existing resources, the BSGatlas supports analyses of the B. subtilis genome and its molecular biology with respect to not only non-coding genes but also genome-wide transcriptional relationships of all genes.
Collapse
Affiliation(s)
- Adrian Sven Geissler
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christian Anthon
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ferhat Alkan
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Enrique González-Tortuero
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- Present address: School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Line Dahl Poulsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 1165 Copenhagen, Denmark
| | | | | | - Stefan Ernst Seemann
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
47
|
Krüger L, Herzberg C, Rath H, Pedreira T, Ischebeck T, Poehlein A, Gundlach J, Daniel R, Völker U, Mäder U, Stülke J. Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genet 2021; 17:e1009092. [PMID: 33481774 PMCID: PMC7857571 DOI: 10.1371/journal.pgen.1009092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.
Collapse
Affiliation(s)
- Larissa Krüger
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tiago Pedreira
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Gundlach
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Smith V, Josefsen M, Lindbäck T, Hegna IK, Finke S, Tourasse NJ, Nielsen-LeRoux C, Økstad OA, Fagerlund A. MogR Is a Ubiquitous Transcriptional Repressor Affecting Motility, Biofilm Formation and Virulence in Bacillus thuringiensis. Front Microbiol 2020; 11:610650. [PMID: 33424814 PMCID: PMC7793685 DOI: 10.3389/fmicb.2020.610650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Flagellar motility is considered an important virulence factor in different pathogenic bacteria. In Listeria monocytogenes the transcriptional repressor MogR regulates motility in a temperature-dependent manner, directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a mogR homolog are members of the Bacillus cereus group, which includes motile species such as B. cereus and Bacillus thuringiensis as well as the non-motile species Bacillus anthracis, Bacillus mycoides and Bacillus pseudomycoides. Furthermore, the main motility locus in B. cereus group bacteria, carrying the genes for flagellar synthesis, appears to be more closely related to L. monocytogenes than to Bacillus subtilis, which belongs to a separate phylogenetic group of Bacilli and does not carry a mogR ortholog. Here, we show that in B. thuringiensis, MogR overexpression results in non-motile cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in B. thuringiensis. Overexpression of a MogR variant mutated in two amino acids within the putative DNA binding domain restored phenotypes to those of an empty vector control. In accordance, introduction of these mutations resulted in complete loss in MogR binding to its candidate flagellar locus target site in vitro. In contrast to L. monocytogenes, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in B. thuringiensis 407. Interestingly, mogR was found to be conserved also in non-motile B. cereus group species such as B. mycoides and B. pseudomycoides, which both carry major gene deletions in the flagellar motility locus and where in B. pseudomycoides mogR is the only gene retained. Furthermore, mogR is expressed in non-motile B. anthracis. Altogether this provides indications of an expanded set of functions for MogR in B. cereus group species, beyond motility regulation. In conclusion, MogR constitutes a novel B. thuringiensis pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.
Collapse
Affiliation(s)
- Veronika Smith
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Malin Josefsen
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Toril Lindbäck
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sarah Finke
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Nicolas J Tourasse
- CNRS, INSERM, ARNA, UMR 5320, U1212, University of Bordeaux, Bordeaux, France
| | | | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Annette Fagerlund
- Laboratory for Microbial Dynamics (LaMDa), Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
49
|
Xu P, Xie S, Liu W, Jin P, Wei D, Yaseen DG, Wang Y, Miao W. Comparative Genomics Analysis Provides New Strategies for Bacteriostatic Ability of Bacillus velezensis HAB-2. Front Microbiol 2020; 11:594079. [PMID: 33281792 PMCID: PMC7705179 DOI: 10.3389/fmicb.2020.594079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
Biocontrol formulations prepared from biocontrol bacteria are increasingly applied in sustainable agriculture. Notably, inoculants prepared from Bacillus strains have been proven efficient and environmentally friendly alternatives to chemical bactericides. The bacterium Bacillus velezensis HAB-2 (formerly classified as B. amyloliquefaciens HAB-2) is used as a biological control agent in agricultural fields. In this study, we reported a high-quality genome sequence of HAB-2 using third-generation sequencing technology (PacBio RS II). The 3.89 Mb genome encoded 3,820 predicted genes. Comparative analysis among the genome sequences of reference strains B. velezensis FZB42, B. amyloliquefaciens DSM7 and B. subtilis 168 with the HAB-2 genome revealed obvious differences in the variable part of the genomes, while the core genome shared by FZB42 and HAB-2 was similar (96.14%). However, there were differences in the prophage region among the four strains. The numbers of prophage regions and coding genes in HAB-2 and FZB42 were smaller than the other two strains. The HAB-2 genome showed superior ability to produce secondary metabolites and harbored 13 gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Furthermore, there were two unique clusters: one cluster which encoded lanthipeptide was involved in mersacidin synthesis and another cluster which encoded ladderane was shown to direct an unknown compound. Multidomain enzymes, such as non-ribosomal peptide synthetase and polyketide synthase, control the biosynthesis of secondary metabolites and rely on 4'-phosphopantetheinyl transferases (PPTases). Key genes lpaH2 and a encoded PPTases in HAB-2 encoded 224 and 120 amino acids, respectively. The genomic features revealed that HAB-2 possesses immense potential to synthesize antimicrobial acting secondary metabolites by regulating and controlling gene clusters. The prophage regions and genes encoding PPTases may provide novel insight for the bacteriostatic mechanism of Bacillus in the biological control of plant diseases.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Shangqian Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- College of Forestry, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Pengfei Jin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dandan Wei
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dahar Ghulam Yaseen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
50
|
Pramastya H, Xue D, Abdallah II, Setroikromo R, Quax WJ. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. N Biotechnol 2020; 60:159-167. [PMID: 33148534 DOI: 10.1016/j.nbt.2020.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
The anti-malarial drug artemisinin, produced naturally in the plant Artemisia annua, experiences unstable and insufficient supply as its production relies heavily on the plant source. To meet the massive demand for this compound, metabolic engineering of microbes has been studied extensively. In this study, we focus on improving the production of amorphadiene, a crucial artemisinin precursor, in Bacillus subtilis. The expression level of the plant-derived amorphadiene synthase (ADS) was upregulated by fusion with green fluorescent protein (GFP). Furthermore, a co-expression system of ADS and a synthetic operon carrying the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway genes was established. Subsequently, farnesyl pyrophosphate synthase (FPPS), a key enzyme in formation of the sesquiterpene precursor farnesyl pyrophosphate (FPP), was expressed to supply sufficient substrate for ADS. The consecutive combination of these features yielded a B. subtilis strain expressing chromosomally integrated GFP-ADS followed by FPPS and a plasmid encoded synthetic operon showing a stepwise increased production of amorphadiene. An experimental design-aided systematic medium optimization was used to maximize the production level for the most promising engineered B. subtilis strain, resulting in an amorphadiene yield of 416 ± 15 mg/L, which is 20-fold higher than that previously reported in B. subtilis and more than double the production in Escherichia coli or Saccharomyces cerevisiae on a shake flask fermentation level.
Collapse
Affiliation(s)
- Hegar Pramastya
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands; Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, 40132, Bandung, Indonesia
| | - Dan Xue
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Ingy I Abdallah
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|