1
|
Malhotra V, Okon BP, Satsangi AT, Das S, Waturuocha UW, Vashist A, Clark-Curtiss JE, Saini DK. Mycobacterium tuberculosis PknK Substrate Profiling Reveals Essential Transcription Terminator Protein Rho and Two-Component Response Regulators PrrA and MtrA as Novel Targets for Phosphorylation. Microbiol Spectr 2022; 10:e0135421. [PMID: 35404097 PMCID: PMC9045387 DOI: 10.1128/spectrum.01354-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein kinase K regulates growth adaptation by facilitating mycobacterial survival in response to a variety of in vitro and in vivo stress conditions. Here, we further add that pknK transcription is responsive to carbon and nitrogen starvation signals. The increased survival of an M. tuberculosis ΔpknK mutant strain under carbon- and nitrogen-limiting growth conditions compared to the wild-type (WT) H37Rv suggests an integral role of PknK in regulating growth during metabolic stress. To identify the downstream targets of PknK-mediated signaling, we compared phosphoproteomic and transcription profiles of mycobacterial strains overexpressing WT and phosphorylation-defective PknK. Results implicate PknK as a signaling protein that can regulate several enzymes involved in central metabolism, transcription regulation, and signal transduction. A key finding of this study was the identification of two essential two-component response regulator (RR) proteins, PrrA and MtrA, and Rho transcription terminator, as unique targets for PknK. We confirm that PknK interacts with and phosphorylates PrrA, MtrA, and Rho in vivo. PknK-mediated phosphorylation of MtrA appears to increase binding of the RR to the cognate probe DNA. However, dual phosphorylation of MtrA and PrrA response regulators by PknK and their respective cognate sensor kinases in vitro showed nominal additive effect on the mobility of the protein-DNA complex, suggesting the presence of a potential fine-tuning of the signal transduction pathway which might respond to multiple cues. IMPORTANCE Networks of gene regulation and signaling cascades are fundamental to the pathogenesis of Mycobacterium tuberculosis in adapting to the continuously changing intracellular environment in the host. M. tuberculosis protein kinase K is a transcription regulator that responds to diverse environmental signals and facilitates stress-induced growth adaptation in culture and during infection. This study identifies multiple signaling interactions of PknK and provides evidence that PknK can change the transcriptional landscape during growth transitions by connecting distinctly different signal transduction and regulatory pathways essential for mycobacterial survival.
Collapse
Affiliation(s)
- Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Blessing P. Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Akash T. Satsangi
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Sumana Das
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Uchenna Watson Waturuocha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Josephine E. Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021; 9:microorganisms9122442. [PMID: 34946045 PMCID: PMC8707513 DOI: 10.3390/microorganisms9122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stp∆stk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Liang-Sheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Hao-Tian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Qing-Gen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
3
|
Naz S, Singh Y, Nandicoori VK. Deletion of serine/threonine-protein kinase pknL from Mycobacterium tuberculosis reduces the efficacy of isoniazid and ethambutol. Tuberculosis (Edinb) 2021; 128:102066. [PMID: 33690080 DOI: 10.1016/j.tube.2021.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Serine/threonine-protein kinases in Mycobacterium tuberculosis (Mtb) form a preeminent regulatory system required to establish and maintain the infection in the host. Herein, we sought to decipher the biological role of PknL with the help of a gene replacement mutant RvΔpknL. Deletion of pknL results in the compromised growth under redox stress. The mutant showed significant survival defects in peritoneal macrophages, a significant decrease in the ability to establish infections and disseminate to the spleen in the murine model of infection. While the absence of pknL has no impact on either MIC or CFUs of ciprofloxacin and rifampicin treated bacilli, it increases the survival ~1.5-2.5 log fold upon isoniazid or ethambutol treatment. Collectively, data suggests that PknL aids in combating stress conditions in vitro, ex vivo, and in vivo and reduces the efficacy of isoniazid and ethambutol.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
4
|
Wenzel M, Dekker MP, Wang B, Burggraaf MJ, Bitter W, van Weering JRT, Hamoen LW. A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Commun Biol 2021; 4:306. [PMID: 33686188 PMCID: PMC7940657 DOI: 10.1038/s42003-021-01809-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Transmission electron microscopy of cell sample sections is a popular technique in microbiology. Currently, ultrathin sectioning is done on resin-embedded cell pellets, which consumes milli- to deciliters of culture and results in sections of randomly orientated cells. This is problematic for rod-shaped bacteria and often precludes large-scale quantification of morphological phenotypes due to the lack of sufficient numbers of longitudinally cut cells. Here we report a flat embedding method that enables observation of thousands of longitudinally cut cells per single section and only requires microliter culture volumes. We successfully applied this technique to Bacillus subtilis, Escherichia coli, Mycobacterium bovis, and Acholeplasma laidlawii. To assess the potential of the technique to quantify morphological phenotypes, we monitored antibiotic-induced changes in B. subtilis cells. Surprisingly, we found that the ribosome inhibitor tetracycline causes membrane deformations. Further investigations showed that tetracycline disturbs membrane organization and localization of the peripheral membrane proteins MinD, MinC, and MreB. These observations are not the result of ribosome inhibition but constitute a secondary antibacterial activity of tetracycline that so far has defied discovery.
Collapse
Affiliation(s)
- Michaela Wenzel
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands.
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
- Chemical Biology, Department for Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Marien P Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Biwen Wang
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Maroeska J Burggraaf
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines, and Systems, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, Amsterdam University Medical Centers - Location VUMC, 1081 HZ, Amsterdam, The Netherlands.
| | - Leendert W Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019; 2:349. [PMID: 31552302 PMCID: PMC6754383 DOI: 10.1038/s42003-019-0594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.
Collapse
Affiliation(s)
- Uma S. Gautam
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Present Address: Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. LaSalle St., Durham, NC 27710 USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
- Center for Experimental Infectious Diseases Research, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Priyanka Kumari
- All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Tianhua Niu
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, 70112 LA USA
| | - Jaya S. Tyagi
- All India Institute of Medical Sciences, New Delhi, 110029 India
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute Faridabad, Haryana, 121001 India
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, 70112 LA USA
| |
Collapse
|
6
|
Zakharevich NV, Nezametdinova VZ, Averina OV, Chekalina MS, Alekseeva MG, Danilenko VN. Complete Genome Sequence of Bifidobacterium angulatum GT102: Potential Genes and Systems of Communication with Host. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
8
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
9
|
Sun J, Yang LL, Chen X, Kong DX, Liu R. Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions. J Proteome Res 2018; 17:3810-3823. [PMID: 30269499 DOI: 10.1021/acs.jproteome.8b00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is one of the biggest infectious disease killers caused by Mycobacterium tuberculosis (MTB). Studying the protein-protein interactions (PPIs) between MTB and human can deepen our understanding of the pathogenesis of TB and offer new clues to the treatment against MTB infection, but the experimentally validated interactions are especially scarce in this regard. Herein we proposed an integrated framework that combined template-, domain-domain interaction-, and machine learning-based methods to predict MTB-human PPIs. As a result, we established a network composed of 13 758 PPIs including 451 MTB proteins and 3167 human proteins ( http://liulab.hzau.edu.cn/MTB/ ). Compared to known human targets of various pathogens, our predicted human targets show a similar tendency in terms of the network topological properties and enrichment in important functional genes. Additionally, these human targets largely have longer sequence lengths, more protein domains, more disordered residues, lower evolutionary rates, and older protein ages. Functional analysis demonstrates that these proteins show strong preferences toward the phosphorylation, kinase activity, and signaling transduction processes and the disease and immune related pathways. Dissecting the cross-talk among top-ranked pathways suggests that the cancer pathway may serve as a bridge in MTB infection. Triplet analysis illustrates that the paired targets interacting with the same partner are adjacent to each other in the intraspecies network and tend to share similar expression patterns. Finally, we identified 36 potential anti-MTB human targets by integrating known drug target information and molecular properties of proteins.
Collapse
|
10
|
Chaurasiya SK. Tuberculosis: Smart manipulation of a lethal host. Microbiol Immunol 2018; 62:361-379. [PMID: 29687912 DOI: 10.1111/1348-0421.12593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co-infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host- and pathogen-related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.
Collapse
Affiliation(s)
- Shivendra K Chaurasiya
- Host-pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP-470003, India
| |
Collapse
|
11
|
Evaluation of isoprinosine to be repurposed as an adjunct anti-tuberculosis chemotherapy. Med Hypotheses 2018; 115:77-80. [PMID: 29685203 DOI: 10.1016/j.mehy.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Isoprinosine (Inos) or immunovir is a synthetic purine derivative with immune-modulatory and antiviral properties. The drug shows apparent in vivo enhancement of host immune responses by inducing pro-inflammatory cytokines and rapid proliferation of T-cell subsets. Strikingly, the cytokines induced by Inos also play crucial roles in providing immune resistance against Mycobacterium tuberculosis (Mtb). Inos has been licensed for several antiviral diseases; however, its efficacy against Mtb has not been tested yet. Since Mtb subverts the host immune system to survive within the host. Therefore, we hypothesized that the immune-stimulatory properties of Inos can be explored as an adjunct therapy for the management of tuberculosis. We have also outlined a systematic direction of study to evaluate if Inos could be repurposed for tuberculosis. The in vivo studies for therapeutic evaluation of Inos alone or in combination with the first line anti-TB drugs in a suitable TB disease model would provide a clearer picture of its utility as a host-directed anti-TB drug and may endow us with a new application of an existing drug to combat tuberculosis.
Collapse
|
12
|
Liu J, Dong Y, Wang N, Li S, Yang Y, Wang Y, Awan F, Lu C, Liu Y. Tetrahymena thermophila Predation Enhances Environmental Adaptation of the Carp Pathogenic Strain Aeromonas hydrophila NJ-35. Front Cell Infect Microbiol 2018; 8:76. [PMID: 29594069 PMCID: PMC5861188 DOI: 10.3389/fcimb.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Persistence of Aeromonas hydrophila in aquatic environments is the principle cause of fish hemorrhagic septicemia. Protistan predation has been considered to be a strong driving force for the evolution of bacterial defense strategies. In this study, we investigated the adaptive traits of A. hydrophila NJ-35, a carp pathogenic strain, in response to Tetrahymena thermophila predation. After subculturing with Tetrahymena, over 70% of A. hydrophila colonies were small colony variants (SCVs). The SCVs displayed enhanced biofilm formation, adhesion, fitness, and resistance to bacteriophage infection and oxidative stress as compared to the non-Tetrahymena-exposed strains. In contrast, the SCVs exhibited decreased intracellular bacterial number in RAW264.7 macrophages and were highly attenuated for virulence in zebrafish. Considering the outer membrane proteins (OMPs) are directly involved in bacterial interaction with the external surroundings, we investigated the roles of OMPs in the antipredator fitness behaviors of A. hydrophila. A total of 38 differentially expressed proteins were identified in the SCVs by quantitative proteomics. Among them, three lipoproteins including SurA, Slp, and LpoB, and a serine/threonine protein kinase (Stpk) were evidenced to be associated with environmental adaptation of the SCVs. Also, the three lipoproteins were involved in attenuated virulence of SCVs through the proinflammatory immune response mediated by TLR2. This study provides an important contribution to the understanding of the defensive traits of A. hydrophila against protistan predators.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Yang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation. Biochem J 2017; 474:4119-4136. [PMID: 29101285 DOI: 10.1042/bcj20170596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.
Collapse
|
14
|
Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, Benelli G, Arulselvan P, Rajan M, Kumar Subbiah S. Genomic plasticity between human and mycobacterial DNA: A review. Tuberculosis (Edinb) 2017; 107:38-47. [DOI: 10.1016/j.tube.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
|
15
|
Habib Z, Xu W, Jamal M, Rehman K, Dai J, Fu ZF, Chen X, Cao G. Adaptive gene profiling of Mycobacterium tuberculosis during sub-lethal kanamycin exposure. Microb Pathog 2017; 112:243-253. [PMID: 28966063 DOI: 10.1016/j.micpath.2017.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Resistance to anti-tuberculosis drugs is a formidable obstacle to effective tuberculosis (TB) treatment and prevention globally. New forms of multidrug, extensive drug and total drug resistance Mycobacterium tuberculosis (Mtb) causing a serious threat to human as well as animal's population. Mtb shows diverse adaptability under stress conditions especially antibiotic treatment, however underlying physiological mechanism remained elusive. In present study, we investigated Mtb's response and adaptation with reference to gene expression during sub-lethal kanamycin exposure. Mtb were cultured under sub-lethal drug and control conditions, where half were sub-cultured every 3-days to observe serial adaptation under same conditions and the remaining were subjected to RNA-seq. We identified 98 up-regulated and 198 down-regulated responsive genes compared to control through differential analysis, of which Ra1750 and Ra3160 were the most responsive genes. In adaptive analysis, we found Ra1750, Ra3160, Ra3161, Ra3893 and Ra2492 up-regulation at early stage and gradually showed low expression levels at the later stages of drug exposure. The adaptive expression of Ra1750, Ra3160 and Ra3161 were further confirmed by real time qPCR. These results suggested that these genes contributed in Mtb's physiological adaptation during sub-lethal kanamycin exposure. Our findings may aid to edify these potential targets for drug development against drug resistance tuberculosis.
Collapse
Affiliation(s)
- Zeshan Habib
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Weize Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Muhammad Jamal
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Khaista Rehman
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Jinxia Dai
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zhen Fang Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Xi Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Gang Cao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Bio-Medcial Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
16
|
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
|
17
|
Refaya AK, Sharma D, Kumar V, Bisht D, Narayanan S. A Serine/threonine kinase PknL, is involved in the adaptive response of Mycobacterium tuberculosis. Microbiol Res 2016; 190:1-11. [PMID: 27393993 DOI: 10.1016/j.micres.2016.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis adapts itself to various environmental stress conditions to thrive inside the phagosome for establishing a chronic infection. Serine/threonine protein kinases (STPKs) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Some of these STPKs are involved in regulating the growth of the mycobacterium under nutrient stress and starvation conditions. In this study, we have investigated the role of PknL, a STPK in the adaptive responses of M. tuberculosis by conditional inactivation of the gene using antisense technology. The inhibition of PknL in the knockdown strain was validated by RT-PCR. The in vitro growth kinetics of M. tuberculosis strain following inhibition of PknL was found to be bacteriostatic. The knock down strain of PknL exhibited a better survival in pH 5.5 when compared to its growth in pH 7.0. Similarly, it also exhibited more resistance to both SDS(0.01%) and Lysozyme stress (2.5mg/ml), indicating that loss of PknL enhances the growth of mycobacterium under stress conditions. SEM pictographs also represent an increase in the cell length of the knock down strain compared to Wild type stressing its role in cellular integrity. Lastly, the proteome analysis of differentially expressing PknL strains by 2D gel electrophoresis and mass spectrometry identified 19 differentially expressed proteins. Our findings have shown that PknL plays an important role in sensing the host environment and adapting itself in slowing down the growth of the pathogen and persisting within the host.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy road, Chetpet, Chennai, 600 031, India.
| | - Divakar Sharma
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Virendra Kumar
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Deepa Bisht
- National JALMA Institute for Leprosy & other Mycobacterial Diseases, Taj Ganj, Agra 282004, India.
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, #1, Mayor Sathiyamoorthy road, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
18
|
Abstract
The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis.
Collapse
|
19
|
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95. [PMID: 26502963 DOI: 10.1007/s12275-015-5333-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.
Collapse
|
20
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
21
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Danot O. How 'arm-twisting' by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND). Nucleic Acids Res 2015; 43:3089-99. [PMID: 25740650 PMCID: PMC4381067 DOI: 10.1093/nar/gkv158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/11/2015] [Indexed: 11/14/2022] Open
Abstract
Signal transduction ATPases with numerous domains (STAND) get activated through inducer-dependent assembly into multimeric platforms. This switch relies on the conversion of their nucleotide-binding oligomerization domain (NOD) from a closed, ADP-bound form to an open, ATP-bound form. The NOD closed form is stabilized by contacts with the arm, a domain that connects the NOD to the inducer-binding domain called the sensor. How the inducer triggers NOD opening remains unclear. Here, I pinpointed the NOD-arm interface of the MalT STAND transcription factor, and I generated a MalT variant in which this interface can be covalently locked on demand, thereby trapping the NOD in the closed state. By characterizing this locked variant, I found that the inducer is recognized in two steps: it first binds to the sole sensor with low affinity, which then triggers the recruitment of the arm to form a high-affinity arm-sensor inducer-binding site. Strikingly, this high-affinity binding step was incompatible with arm-NOD contacts maintaining the NOD closed. Through this toggling between two mutually exclusive states reminiscent of a single-pole double-throw switch, the arm couples inducer binding to NOD opening, shown here to precede nucleotide exchange. This scenario likely holds for other STANDs like mammalian NLR innate immunity receptors.
Collapse
Affiliation(s)
- Olivier Danot
- Institut Pasteur, Molecular Genetics Unit, Microbiology Department, F-75015 Paris, France CNRS, ERL3526, F-75015 Paris, France
| |
Collapse
|
23
|
Nagarajan SN, Upadhyay S, Chawla Y, Khan S, Naz S, Subramanian J, Gandotra S, Nandicoori VK. Protein kinase A (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J Biol Chem 2015; 290:9626-45. [PMID: 25713147 DOI: 10.1074/jbc.m114.611822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 01/09/2023] Open
Abstract
The essential mycobacterial protein kinases PknA and PknB play crucial roles in modulating cell shape and division. However, the precise in vivo functional aspects of PknA have not been investigated. This study aims to dissect the role of PknA in mediating cell survival in vitro as well as in vivo. We observed aberrant cell shape and severe growth defects when PknA was depleted. Using the mouse infection model, we observe that PknA is essential for survival of the pathogen in the host. Complementation studies affirm the importance of the kinase, juxtamembrane, and transmembrane domains of PknA. Surprisingly, the extracytoplasmic domain is dispensable for cell growth and survival in vitro. We find that phosphorylation of the activation loop at Thr(172) of PknA is critical for bacterial growth. PknB has been previously suggested to be the receptor kinase, which activates multiple kinases, including PknA, by trans-phosphorylating their activation loop residues. Using phospho-specific PknA antibodies and conditional pknB mutant, we find that PknA autophosphorylates its activation loop independent of PknB. Fluorescently tagged PknA and PknB show distinctive distribution patterns within the cell, suggesting that although both kinases are known to modulate cell shape and division, their modes of action are likely to be different. This is supported by our findings that expression of kinase-dead PknA versus kinase-dead PknB in mycobacterial cells leads to different cellular phenotypes. Data indicate that although PknA and PknB are expressed as part of the same operon, they appear to be regulating cellular processes through divergent signaling pathways.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India, the Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, India, and
| | - Sandeep Upadhyay
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yogesh Chawla
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shazia Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saba Naz
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jayashree Subramanian
- the Department of Biotechnology, Nehru Arts and Science College, Coimbatore 641105, India, and
| | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110020, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|
24
|
Phosphorylation regulates mycobacterial proteasome. J Microbiol 2014; 52:743-54. [PMID: 25224505 DOI: 10.1007/s12275-014-4416-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.
Collapse
|
25
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
26
|
Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. J Mol Graph Model 2014; 52:11-9. [PMID: 24955490 DOI: 10.1016/j.jmgm.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen. PknI is one of the 11 functional Serine/Threonine Protein Kinases which is predicted to regulate the cell division of M. tuberculosis. In order to find newer drugs and vaccine we need to understand the pathogenesis of the disease. We have used the bioinformatics approach to identify the functionally active residues of PknI and to confirm the same with wet lab experiments. In the current study, we have created homology model for PknI and have done comparative structural analysis of PknI with other kinases. Molecular docking studies were done with a library of kinase inhibitors and T95 was found as the potent inhibitor for PknI. Based on structure based pharmacophore analysis of kinase substrate complexes, Lys 41 along with Asp90, Val92 and Asp96 were identified as functionally important residues. Further, we used site directed mutagenesis technique to mutate Lys 41 to Met resulting in defective cell division of Mycobacterium smegmatis mc(2). Overall, the proposed model together with its binding features gained from pharmacophore docking studies helped in identifying ligand inhibitor specific to PknI which was confirmed by laboratory experiments.
Collapse
|
27
|
Parandhaman DK, Narayanan S. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2014; 4:31. [PMID: 24634891 PMCID: PMC3943388 DOI: 10.3389/fcimb.2014.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India ; Department of Immunology, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India
| |
Collapse
|
28
|
Canova MJ, Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J Biol Chem 2014; 289:9473-9. [PMID: 24554701 DOI: 10.1074/jbc.r113.529917] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Collapse
Affiliation(s)
- Marc J Canova
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, 34095 Montpellier Cedex 05, France
| | | |
Collapse
|
29
|
PknE, a serine/threonine protein kinase of Mycobacterium tuberculosis initiates survival crosstalk that also impacts HIV coinfection. PLoS One 2014; 9:e83541. [PMID: 24421891 PMCID: PMC3885422 DOI: 10.1371/journal.pone.0083541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Serine threonine protein kinases (STPK) play a major role in the pathogenesis of Mycobacterium tuberculosis. Here, we examined the role of STPK pknE, using a deletion mutant ΔpknE in the modulation of intracellular signaling events that favor M. tuberculosis survival. Phosphorylation kinetics of MAPK (p38MAPK, Erk½ and SAPK/JNK) was defective in ΔpknE compared to wild-type infected macrophages. This defective signaling dramatically delayed and reduced the phosphorylation kinetics of transcription factors ATF-2 and c-JUN in ΔpknE infected macrophages. MAPK inhibitors instead of reducing the phosphorylation in ΔpknE infected macrophages, revealed crosstalks with Erk½ signaling influenced by SAPK/JNK and p38 pathways independently. Modulations in intra cellular signaling altered the expression of coreceptors CCR5 and CXCR4 in ΔpknE infected macrophages. In conclusion, pknE plays a role in MAPK crosstalks that enables intracellular survival of M. tuberculosis. This survival strategy also impacts HIV/TB coinfection.
Collapse
|
30
|
Nezametdinova VZ, Zakharevich NV, Alekseeva MG, Averina OV, Mavletova DA, Danilenko VN. Identification and characterization of the serine/threonine protein kinases in Bifidobacterium. Arch Microbiol 2014; 196:125-36. [PMID: 24395073 DOI: 10.1007/s00203-013-0949-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Six genes encoding the bifidobacterial Hanks-type (eukaryote-like) serine/threonine protein kinases (STPK) were identified and classified. The genome of each bifidobacterial strain contains four conserved genes and one species-specific gene. Bifidobacterium longum and Bifidobacterium bifidum possess the unique gene found only in these species. The STPK genes of Russian industrial probiotic strain B. longum B379M were cloned and sequenced. The expression of these genes in Escherichia coli and bifidobacteria was observed. Autophosphorylation of the conserved STPK Pkb5 and species-specific STPK Pkb2 was demonstrated. This is the first report on Hanks-type STPK in bifidobacteria.
Collapse
Affiliation(s)
- Venera Z Nezametdinova
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, 119991, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
31
|
Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides. Molecules 2013; 18:10648-70. [PMID: 24002140 PMCID: PMC6270397 DOI: 10.3390/molecules180910648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022] Open
Abstract
In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenyl)amino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenyl)amino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD₅₀ > 20 μmol/L) against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC₅₀ value of the most active compound 7-chloro-4-[(3-trifluoromethylphenyl)amino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.
Collapse
|
32
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
33
|
Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Appl Environ Microbiol 2013; 79:1718-29. [PMID: 23315736 DOI: 10.1128/aem.03695-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Collapse
|
34
|
Kumari R, Saxena R, Tiwari S, Tripathi DK, Srivastava KK. Rv3080c regulates the rate of inhibition of mycobacteria by isoniazid through FabD. Mol Cell Biochem 2012. [PMID: 23180244 DOI: 10.1007/s11010-012-1514-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mycobacterial FASII multi-enzyme complex has been identified to be a target of Ser/Thr protein kinases (STPKs) of Mycobacterium tuberculosis (MTB), with substrates, including the malonyl-CoA:ACP transacylase (FabD) and the β-ketoacyl-ACP synthases KasA and KasB. These proteins are phosphorylated by various kinases in vitro. The present study links the correlation of FASII pathway with serine threonine protein kinase of MTB. In the preliminary finding, we have shown that mycobacterial protein Rv3080c (PknK) phosphorylates FabD and the knockdown of PknK protein in mycobacteria down regulates FabD expression. This event leads to the differential inhibition of mycobacteria in the presence of isoniazid (INH), as the inhibition of growth of mycobacteria in the presence of INH is enhanced in PknK deficient mycobacteria.
Collapse
Affiliation(s)
- Ruma Kumari
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | | | | | | | | |
Collapse
|
35
|
Kumar D, Palaniyandi K, Challu VK, Kumar P, Narayanan S. PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses. Arch Microbiol 2012; 195:75-80. [DOI: 10.1007/s00203-012-0848-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/25/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
36
|
Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2012; 4:3-66. [PMID: 23076359 PMCID: PMC3544749 DOI: 10.4161/viru.22329] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.
Collapse
|
37
|
Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol Cell Biochem 2012; 369:67-74. [DOI: 10.1007/s11010-012-1369-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
|
38
|
Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. J Bacteriol 2012; 194:4184-96. [PMID: 22661693 DOI: 10.1128/jb.00585-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis serine/threonine protein kinases (STPKs) are responsible for orchestrating critical metabolic and physiological changes that dictate mycobacterial growth adaptation. Previously, we established that PknK participates in regulatory pathways that slow the growth of M. tuberculosis in a variety of in vitro stress environments and during persistent infection in mice. In the present study, we have elaborated on the mechanism of PknK-mediated regulation. Through transcription profiling of wild-type H37Rv and a ΔpknK mutant strain during logarithmic and stationary growth phases, we determined that PknK regulates the expression of a large subset of tRNA genes so that regulation is synchronized with growth phase and cellular energy status. Elevated levels of wild-type M. tuberculosis PknK (PknK(Mtb)), but not phosphorylation-defective PknK(Mtb), in Mycobacterium smegmatis cause significant retardation of the growth rate and altered colony morphology. We investigated a role for PknK in translational control and established that PknK directs the inhibition of in vitro transcription and translation processes in a phosphorylation-dependent manner. Increasing concentrations of ATP or PknK exert cooperative effects and enhance the inhibitory function of PknK. Furthermore, truncation and mutational analyses of PknK revealed that PknK is autoregulated via intramolecular interactions with its C-terminal region. Significantly, the invariant lysine 55 residue was only essential for activity in the full-length PknK protein, and the truncated mutant proteins were active. A model for PknK autoregulation is proposed and discussed.
Collapse
|
39
|
pknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms. INFECTION GENETICS AND EVOLUTION 2012; 12:737-47. [DOI: 10.1016/j.meegid.2011.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/05/2011] [Accepted: 09/09/2011] [Indexed: 02/07/2023]
|
40
|
Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS. Signalling mechanisms in Mycobacteria. Tuberculosis (Edinb) 2011; 91:432-40. [PMID: 21570916 DOI: 10.1016/j.tube.2011.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/28/2011] [Accepted: 04/10/2011] [Indexed: 11/18/2022]
Abstract
The importance of inter- and intracellular signal transduction in all forms of life cannot be underestimated. A large number of genes dedicated to cellular signalling are found in almost all sequenced genomes, and Mycobacteria are no exception. What appears to be interesting in Mycobacteria is that well characterized signalling mechanisms used by bacteria, such as the histidine-aspartate phosphorelay seen in two-component systems, are found alongside signalling components that closely mimic those seen in higher eukaryotes. This review will describe the important contribution made by researchers in India towards the identification and characterization of proteins involved in two-component signalling, protein phosphorylation and cyclic nucleotide metabolism.
Collapse
|
41
|
Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli. J Bacteriol 2010; 192:5181-91. [PMID: 20693326 DOI: 10.1128/jb.00522-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal transduction ATPases with numerous domains (STAND) are sophisticated signaling proteins that are related to AAA+ proteins and control various biological processes, including apoptosis, gene expression, and innate immunity. They function as tightly regulated switches, with the off and on positions corresponding to an ADP-bound, monomeric form and an ATP-bound, multimeric form, respectively. Protein activation is triggered by inducer binding to the sensor domain. ATP hydrolysis by the nucleotide-binding oligomerization domain (NOD) ensures the generation of the ADP-bound form. Here, we use MalT, an Escherichia coli transcription activator, as a model system to identify STAND conserved motifs involved in ATP hydrolysis besides the catalytic acidic residue. Alanine substitution of the conserved polar residue (H131) that is located two residues downstream from the catalytic residue (D129) blocks ATP hydrolysis and traps MalT in an active, ATP-bound, multimeric form. This polar residue is also conserved in AAA+. Based on AAA+ X-ray structures, we proposed that it is responsible for the proper positioning of the catalytic and the sensor I residues for the hydrolytic attack. Alanine substitution of the putative STAND sensor I (R160) abolished MalT activity. Substitutions of R171 impaired both ATP hydrolysis and multimerization, which is consistent with an arginine finger function and provides further evidence that ATP hydrolysis is primarily catalyzed by MalT multimers.
Collapse
|