1
|
Miguel-Ruano V, Acebrón I, Lee M, Martín-Galiano AJ, Freton C, de José UP, Ramachandran B, Gago F, Kjos M, Hesek D, Grangeasse C, Håvarstein LS, Straume D, Mobashery S, Hermoso JA. Characterization of VldE (Spr1875), a Pneumococcal Two-State l,d-Endopeptidase with a Four-Zinc Cluster in the Active Site. ACS Catal 2024; 14:18786-18798. [PMID: 39722888 PMCID: PMC11667670 DOI: 10.1021/acscatal.4c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The Streptococcus pneumoniae protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875MT3) connected by a long linker. Assays of the full-length protein and Spr1875MT3 with PG-based synthetic substrates by liquid chromatography/mass spectrometry revealed Spr1875 as an l,d-endopeptidase, renamed VldE (for VicRK-regulated l,d-endopeptidase), which hydrolyzed the cross-linked stem peptide in the PG. Remarkably, we observed asymmetric turnover with specific recognition of the acceptor peptide strand. Localization experiments showed that the protein is directed to the septum, which suggests that muralytic activity could be required for pneumococcal growth under stress conditions. Our findings, based on six high-resolution X-ray crystallographic structures and molecular-dynamics simulations, reveal two states for VldEMT3. The protein transitions between a noncatalytic state that binds up to four zinc ions, thus behaving as a Zn2+ reservoir, and a catalytic state that performs the hydrolytic reaction with a single zinc ion. Furthermore, computational studies provide insight into the mechanism of catalytic-water activation and nucleophilic attack on the specific scissile peptide bond of the asymmetric cross-linked PG.
Collapse
Affiliation(s)
- Vega Miguel-Ruano
- Department
of Crystallography and Structural Biology, Consejo Superior de Investigaciones
Científicas, Instituto de Química-Física
“Blas Cabrera”, Madrid 28006, Spain
| | - Iván Acebrón
- Department
of Crystallography and Structural Biology, Consejo Superior de Investigaciones
Científicas, Instituto de Química-Física
“Blas Cabrera”, Madrid 28006, Spain
| | - Mijoon Lee
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | | | - Celine Freton
- Molecular
Microbiology and Structural Biochemistry, CNRS UMR, Université de Lyon, Lyon 69367, France
| | - Uxía P. de José
- Department
of Crystallography and Structural Biology, Consejo Superior de Investigaciones
Científicas, Instituto de Química-Física
“Blas Cabrera”, Madrid 28006, Spain
| | - Balajee Ramachandran
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Federico Gago
- Department
of Biomedical Sciences and IQM-CSIC Associate Unit, School of Medicine
and Health Sciences, University of Alcalá, Alcalá de Henares 28805, Spain
| | - Morten Kjos
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Dusan Hesek
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Christophe Grangeasse
- Molecular
Microbiology and Structural Biochemistry, CNRS UMR, Université de Lyon, Lyon 69367, France
| | - Leiv Sigve Håvarstein
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Daniel Straume
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Shahriar Mobashery
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Juan A. Hermoso
- Department
of Crystallography and Structural Biology, Consejo Superior de Investigaciones
Científicas, Instituto de Química-Física
“Blas Cabrera”, Madrid 28006, Spain
| |
Collapse
|
2
|
Alcorlo M, Martínez‐Caballero S, Li J, Sham L, Luo M, Hermoso JA. Modulation of the lytic apparatus by the FtsEX complex within the bacterial division machinery. FEBS Lett 2024; 598:2836-2851. [PMID: 38849310 PMCID: PMC11627006 DOI: 10.1002/1873-3468.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
The FtsEX membrane complex constitutes an essential component of the ABC transporter superfamily, widely distributed among bacterial species. It governs peptidoglycan degradation for cell division, acting as a signal transmitter rather than a substrate transporter. Through the ATPase activity of FtsE, it facilitates signal transmission from the cytosol across the membrane to the periplasm, activating associated peptidoglycan hydrolases. This review concentrates on the latest structural advancements elucidating the architecture of the FtsEX complex and its interplay with lytic enzymes or regulatory counterparts. The revealed three-dimensional structures unveil a landscape wherein a precise array of intermolecular interactions, preserved across diverse bacterial species, afford meticulous spatial and temporal control over the cell division process.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Siseth Martínez‐Caballero
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Jianwei Li
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore
- Department of Biological Sciences, Center for Bioimaging SciencesNational University of SingaporeSingapore
| | - Lok‐To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Min Luo
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore
- Department of Biological Sciences, Center for Bioimaging SciencesNational University of SingaporeSingapore
| | - Juan A. Hermoso
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| |
Collapse
|
3
|
Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Regulation of Lytic Machineries by the FtsEX Complex in the Bacterial Divisome. Subcell Biochem 2022; 99:285-315. [PMID: 36151380 DOI: 10.1007/978-3-031-00793-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The essential membrane complex FtsE/FtsX (FtsEX), belonging to the ABC transporter superfamily and widespread among bacteria, plays a relevant function in some crucial cell wall remodeling processes such as cell division, elongation, or sporulation. FtsEX plays a double role by recruiting proteins to the divisome apparatus and by regulating lytic activity of the cell wall hydrolases required for daughter cell separation. Interestingly, FtsEX does not act as a transporter but uses the ATPase activity of FtsE to mechanically transmit a signal from the cytosol, through the membrane, to the periplasm that activates the attached hydrolases. While the complete molecular details of such mechanism are not yet known, evidence has been recently reported that clarify essential aspects of this complex system. In this chapter we will present recent structural advances on this topic. The three-dimensional structure of FtsE, FtsX, and some of the lytic enzymes or their cognate regulators revealed an unexpected scenario in which a delicate set of intermolecular interactions, conserved among different bacterial genera, could be at the core of this regulatory mechanism providing exquisite control in both space and time of this central process to assist bacterial survival.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
| | - Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
- Department of Chemistry of Biomacromolecules, Universidade Nacional Autonoma de Mexico, Ciudad de México, Mexico
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, Madrid, Spain.
| |
Collapse
|
4
|
Streptococcus suis MsmK: Novel Cell Division Protein Interacting with FtsZ and Maintaining Cell Shape. mSphere 2021; 6:6/2/e00119-21. [PMID: 33731468 PMCID: PMC8546688 DOI: 10.1128/msphere.00119-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacteria of different shapes have adopted distinct mechanisms to faithfully coordinate morphogenesis and segregate their chromosomes prior to cell division. Despite recent focuses and advances, the mechanism of cell division in ovococci remains largely unknown. Streptococcus suis, a major zoonotic pathogen that causes problems in human health and in the global swine industry, is an elongated and ellipsoid bacterium that undergoes successive parallel splitting perpendicular to its long axis. Studies on cell cycle processes in this bacterium are limited. Here, we report that MsmK (multiple sugar metabolism protein K), an ATPase that contributes to the transport of multiple carbohydrates, has a novel role as a cell division protein in S. suis. MsmK can display ATPase and GTPase activities, interact with FtsZ via the N terminus of MsmK, and promote the bundling of FtsZ protofilaments in a GTP-dependent manner in vitro. Deletion of the C-terminal region or the Walker A or B motif affects the affinity between MsmK and FtsZ and decreases the ability of MsmK to promote FtsZ protofilament bundling. MsmK can form a complex with FtsZ in vivo, and its absence is not lethal but results in long chains and short, occasionally anuclear daughter cells. Superresolution microscopy revealed that the lack of MsmK in cells leads to normal septal peptidoglycan walls in mother cells but disturbed cell elongation and peripheral peptidoglycan synthesis. In summary, MsmK is a novel cell division protein that maintains cell shape and is involved in the synthesis of the peripheral cell wall. IMPORTANCE Bacterial cell division is a highly ordered process regulated in time and space and is a potential target for the development of antimicrobial drugs. Bacteria of distinct shapes depend on different cell division mechanisms, but the mechanisms used by ovococci remain largely unknown. Here, we focused on the zoonotic pathogen Streptococcus suis and identified a novel cell division protein named MsmK, which acts as an ATPase of the ATP-binding cassette-type carbohydrate transport system. MsmK has GTPase and ATPase activities. In vitro protein assays showed that MsmK interacts with FtsZ and promotes FtsZ protofilament bundling that relies on GTP. Superresolution microscopy revealed that MsmK maintains cell shape and is involved in peripheral peptidoglycan synthesis. Knowledge of the multiple functions of MsmK may broaden our understanding of known cell division processes. Further studies in this area will elucidate how bacteria can faithfully and continually multiply in a constantly changing environment.
Collapse
|
5
|
Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. mBio 2020; 11:mBio.01488-20. [PMID: 32873757 PMCID: PMC7468199 DOI: 10.1128/mbio.01488-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell division is a central process that requires exquisite orchestration of both the cell wall biosynthetic and lytic machineries. The essential membrane complex FtsEX, widely conserved across bacteria, plays a central role by recruiting proteins to the divisome apparatus and by regulating periplasmic muralytic activity from the cytosol. FtsEX is a member of the type VII family of the ABC-superfamily, but instead of being a transporter, it couples the ATP hydrolysis catalyzed by FtsE to mechanically transduce a conformational signal that provokes the activation of peptidoglycan (PG) hydrolases. So far, no structural information is available for FtsE. Here, we provide the structural characterization of FtsE, confirming its ATPase nature and revealing regions with high structural plasticity which are key for FtsE binding to FtsX. The complementary binding region in FtsX has also been identified and validated in vivo. Our results provide evidence on how the difference between the ATP/ADP-bound states in FtsE would dramatically alter the interaction of FtsEX with the PG hydrolase PcsB in pneumococcal division. FtsEX is a membrane complex widely conserved across diverse bacterial genera and involved in critical processes such as recruitment of division proteins and in spatial and temporal regulation of muralytic activity during cell division or sporulation. FtsEX is a member of the ABC transporter superfamily. The component FtsX is an integral membrane protein, whereas FtsE is an ATPase and is required for the transmission of a conformational signal from the cytosol through the membrane to regulate the activity of cell wall hydrolases in the periplasm. Both proteins are essential in the major human respiratory pathogenic bacterium Streptococcus pneumoniae, and FtsX interacts with the modular peptidoglycan hydrolase PcsB at the septum. Here, we report high-resolution structures of pneumococcal FtsE bound to different nucleotides. Structural analysis revealed that FtsE contains all the conserved structural motifs associated with ATPase activity and afforded interpretation of the in vivo dimeric arrangement in both the ADP and ATP states. Interestingly, three specific FtsE regions with high structural plasticity were identified that shape the cavity in which the cytosolic region of FtsX would be inserted. The residues corresponding to the FtsX coupling helix, responsible for contacting FtsE, were identified and validated by in vivo mutagenesis studies showing that this interaction is essential for cell growth and proper morphology.
Collapse
|
6
|
Deflandre B, Thiébaut N, Planckaert S, Jourdan S, Anderssen S, Hanikenne M, Devreese B, Francis I, Rigali S. Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194615. [PMID: 32758700 DOI: 10.1016/j.bbagrm.2020.194615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
In the plant pathogen Streptomyces scabies, the gene bglC encodes a GH1 family cellobiose beta-glucosidase that is both required for primary metabolism and for inducing virulence of the bacterium. Deletion of bglC (strain ΔbglC) surprisingly resulted in the augmentation of the global beta-glucosidase activity of S. scabies. This paradoxical phenotype is highly robust as it has been observed in all bglC deletion mutants independently generated, thereby highlighting a phenomenon of genetic compensation. Comparative proteomics allowed to identify two glycosyl hydrolases - named BcpE1 and BcpE2 - of which peptide levels were significantly increased in strain ΔbglC. Quantitative RT-PCR revealed that the higher abundance of BcpE1 and BcpE2 is triggered at the transcriptional level, the expression of their respective gene being 100 and 15 times upregulated. Enzymatic studies with pure BcpE proteins showed that they both possess beta-glucosidase activity thereby explaining the genotypic-phenotypic discrepancy of the bglC deletion mutant. The GH1 family BcpE1 could hydrolyze cellobiose and generate glucose similarly to BglC itself thereby mainly contributing to the survival of strain ΔbglC when cellobiose is provided as sole nutrient source. The low affinity of BcpE2 for cellobiose suggests that this GH3 family beta-glucosidase would instead primarily target another and yet unknown glucose-beta-1,4-linked substrate. These results make S. scabies a new model system to study genetic compensation. Discovering how, either the bglC DNA locus, its mRNA, the BglC protein, or either its enzymatic activity controls bcpE genes' expression, will unveil new mechanisms directing transcriptional repression.
Collapse
Affiliation(s)
- Benoit Deflandre
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Noémie Thiébaut
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Sören Planckaert
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent B-9000, Belgium
| | - Samuel Jourdan
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Sinaeda Anderssen
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Bart Devreese
- Laboratory of Microbiology, Protein Research Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent B-9000, Belgium
| | - Isolde Francis
- Department of Biology, California State University, Bakersfield 93311, CA, USA
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, Institut de Chimie, Liège B-4000, Belgium.
| |
Collapse
|
7
|
Durmort C, Ercoli G, Ramos-Sevillano E, Chimalapati S, Haigh RD, De Ste Croix M, Gould K, Hinds J, Guerardel Y, Vernet T, Oggioni M, Brown JS. Deletion of the Zinc Transporter Lipoprotein AdcAII Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System. mBio 2020; 11:e00445-20. [PMID: 32234814 PMCID: PMC7157770 DOI: 10.1128/mbio.00445-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated ΔadcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the ΔadcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated ΔadcAII strains. However, transformation of ΔadcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated ΔadcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of ΔadcAII Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the ΔadcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and ΔadcAII, further investigation of which could further characterize mechanisms of capsule regulation.
Collapse
Affiliation(s)
- Claire Durmort
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Suneeta Chimalapati
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Richard D Haigh
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan De Ste Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Katherine Gould
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Thierry Vernet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Marco Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
8
|
Harth-Chu EN, Alves LA, Theobaldo JD, Salomão MF, Höfling JF, King WF, Smith DJ, Mattos-Graner RO. PcsB Expression Diversity Influences on Streptococcus mitis Phenotypes Associated With Host Persistence and Virulence. Front Microbiol 2019; 10:2567. [PMID: 31798545 PMCID: PMC6861525 DOI: 10.3389/fmicb.2019.02567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
Collapse
Affiliation(s)
- Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Jéssica D Theobaldo
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Mariana F Salomão
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - William F King
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Daniel J Smith
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
9
|
Andrade DC, Borges IC, Ekström N, Jartti T, Puhakka T, Barral A, Kayhty H, Ruuskanen O, Nascimento-Carvalho CM. Determination of avidity of IgG against protein antigens from Streptococcus pneumoniae: assay development and preliminary application in clinical settings. Eur J Clin Microbiol Infect Dis 2017; 37:77-89. [PMID: 29027028 DOI: 10.1007/s10096-017-3103-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/04/2017] [Indexed: 11/27/2022]
Abstract
The measurement of antibody levels is a common test for the diagnosis of Streptococcus pneumoniae infection in research. However, the quality of antibody response, reflected by avidity, has not been adequately evaluated. We aimed to evaluate the role of avidity of IgG against eight pneumococcal proteins in etiologic diagnosis. Eight pneumococcal proteins (Ply, CbpA, PspA1 and 2, PcpA, PhtD, StkP-C, and PcsB-N) were used to develop a multiplex bead-based avidity immunoassay. The assay was tested for effects of the chaotropic agent, multiplexing, and repeatability. The developed assay was applied to paired samples from children with or without pneumococcal disease (n = 38 for each group), determined by either serology, polymerase chain reaction (PCR), or blood culture. We found a good correlation between singleplex and multiplex assays, with r ≥ 0.94.The assay was reproducible, with mean inter-assay variation ≤ 9% and intra-assay variation < 6%. Children with pneumococcal disease had lower median avidity indexes in the acute phase of disease for PspA1 and 2 (p = 0.042), PcpA (p = 0.002), PhtD (p = 0.014), and StkP-C (p < 0.001). When the use of IgG avidity as a diagnostic tool for pneumococcal infection was evaluated, the highest discriminative power was found for StkP-C, followed by PcpA (area under the curve [95% confidence interval, CI]: 0.868 [0.759-0.977] and 0.743 [0.607-879], respectively). The developed assay was robust and had no deleterious influence from multiplexing. Children with pneumococcal disease had lower median avidity against five pneumococcal proteins in the acute phase of disease compared to children without disease.
Collapse
Affiliation(s)
- D C Andrade
- Postgraduate Programme in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil.
| | - I C Borges
- Postgraduate Programme in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil
| | - N Ekström
- National Institute for Health and Welfare, Helsinki, Finland
| | - T Jartti
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - T Puhakka
- Department of Otorhinolaryngology, University of Turku and Turku University Hospital, Turku, Finland
- Department of Otorhinolaryngology, Satakunta Central Hospital, Pori, Finland
| | - A Barral
- Pathology Department and Postgraduate Programme in Health Sciences, Federal University of Bahia School of Medicine and Centro de Pesquisa Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - H Kayhty
- National Institute for Health and Welfare, Helsinki, Finland
| | - O Ruuskanen
- Department of Paediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - C M Nascimento-Carvalho
- Department of Pediatrics and Postgraduate Programme in Health Sciences, Federal University of Bahia School of Medicine, Salvador, Bahia, Brazil
| |
Collapse
|
10
|
Alves LA, Harth-Chu EN, Palma TH, Stipp RN, Mariano FS, Höfling JF, Abranches J, Mattos-Graner RO. The two-component system VicRK regulates functions associated with Streptococcus mutans resistance to complement immunity. Mol Oral Microbiol 2017; 32:419-431. [PMID: 28382721 DOI: 10.1111/omi.12183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Collapse
Affiliation(s)
- Livia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thais H Palma
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry - University of Florida, Gainesville, FL, USA
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Wang Z, Jin K, Xia Y. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 2016; 17:586. [PMID: 27506833 PMCID: PMC4979188 DOI: 10.1186/s12864-016-2971-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. Results In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. Conclusions The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2971-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglong Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
12
|
Bajaj R, Bruce KE, Davidson AL, Rued BE, Stauffacher CV, Winkler ME. Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae. Microbiologyopen 2016; 5:738-752. [PMID: 27167971 PMCID: PMC5061712 DOI: 10.1002/mbo3.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The FtsEX:PcsB complex forms a molecular machine that carries out peptidoglycan (PG) hydrolysis during normal cell division of the major respiratory pathogenic bacterium, Streptococcus pneumoniae (pneumococcus). FtsX is an integral membrane protein and FtsE is a cytoplasmic ATPase that together structurally resemble ABC transporters. Instead of transport, FtsEX transduces signals from the cell division apparatus to stimulate PG hydrolysis by PcsB, which interacts with extracellular domains of FtsX. Structural studies of PcsB and one extracellular domain of FtsX have recently appeared, but little is known about the biochemical properties of the FtsE ATPase or the intact FtsX transducer protein. We report here purifications and characterizations of tagged FtsX and FtsE proteins. Pneumococcal FtsX‐GFP‐His and FtsX‐His could be overexpressed in Escherichia coli without toxicity, and FtsE‐His remained soluble during purification. FtsX‐His dimerizes in detergent micelles and when reconstituted in phospholipid nanodiscs. FtsE‐His binds an ATP analog with an affinity comparable to that of ATPase subunits of ABC transporters, and FtsE‐His preparations have a low, detectable ATPase activity. However, attempts to detect complexes of purified FtsX‐His, FtsE‐His, and PcsB‐His or coexpressed tagged FtsX and FtsE were not successful with the constructs and conditions tested so far. In working with nanodiscs, we found that PcsB‐His has an affinity for charged phospholipids, mediated partly by interactions with its coiled‐coil domain. Together, these findings represent first steps toward reconstituting the FtsEX:PcsB complex biochemically and provide information that may be relevant to the assembly of the complex on the surface of pneumococcal cells.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Amy L Davidson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405.
| |
Collapse
|
13
|
Kantsø B, Green N, Goldblatt D, Benfield T. Antibody Response is More Likely to Pneumococcal Proteins Than to Polysaccharide After HIV-associated Invasive Pneumococcal Disease. J Infect Dis 2015; 212:1093-9. [PMID: 25762789 DOI: 10.1093/infdis/jiv158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/06/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected individuals are at increased risk of invasive pneumococcal disease (IPD). In order to assess the immunogenicity of pneumococcal proteins and polysaccharide, we investigated protein and serotype-specific antibody responses after HIV-associated IPD. METHODS Specific antipneumococcal immunoglobulin G to 27 pneumococcal protein antigens and 30 serotype polysaccharides was measured in plasma before and after IPD in HIV-infected individuals and compared to HIV-infected individuals without IPD. RESULTS Over time, 81% of IPD cases responded to at least 1 protein compared to 51% of non-IPD controls. HIV IPD cases responded to more proteins than non-IPD controls (8.6 ± 8.4 vs 4.2 ± 7.6 proteins; P = .01), and had a significantly higher probability of yielding an antibody response to the proteins PiaA, PsaA, and PcpA. Twenty-two percent of HIV-infected individuals with IPD had a serotype-specific antibody response. Younger age at the time of IPD was the only predictor of a serotype-specific pneumococcal antibody response, whereas we did not identify predictors of a protein-specific antibody response. CONCLUSIONS Antibody responses occurred more frequently to pneumococcal proteins than to polysaccharide, and protein antibodies persisted for longer than polysaccharide-specific antibodies. PcpA, PiaA, and PsaA were the most immunogenic proteins.
Collapse
Affiliation(s)
- Bjørn Kantsø
- Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Nicola Green
- Immunobiology Unit, Institute of Child Health, University College London, United Kingdom
| | - David Goldblatt
- Immunobiology Unit, Institute of Child Health, University College London, United Kingdom
| | - Thomas Benfield
- Department of Infectious Diseases Clinical Research Centre, Hvidovre Hospital Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Abdullah MR, Gutiérrez-Fernández J, Pribyl T, Gisch N, Saleh M, Rohde M, Petruschka L, Burchhardt G, Schwudke D, Hermoso JA, Hammerschmidt S. Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 2014; 93:1183-206. [PMID: 25060741 DOI: 10.1111/mmi.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The d,d-carboxypeptidase DacA and l,d-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. Here, we determined the structure of the surface-exposed lipoprotein DacB. The crystal structure of DacB, radically different to that of DacA, contains a mononuclear Zn(2+) catalytic centre located in the middle of a large and fully exposed groove. Two different conformations were found presenting a different arrangement of the active site topology. The critical residues for catalysis and substrate specificity were identified. Loss-of-function of DacA and DacB altered the cell shape and this was consistent with a modified peptidoglycan peptide composition in dac mutants. Contrary, an lgt mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained l,d-carboxypeptidase activity and showed an intact murein sacculus. In addition we demonstrated pathophysiological effects of disabled DacA or DacB activities. Real-time bioimaging of intranasal infected mice indicated a substantial attenuation of ΔdacB and ΔdacAΔdacB pneumococci, while ΔdacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while the adherence to lung epithelial cells was decreased. Thus, structural and functional studies suggest DacA and DacB as optimal drug targets.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C, Martínez-Ripoll M, Håvarstein LS, Hermoso JA. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat Commun 2014; 5:3842. [DOI: 10.1038/ncomms4842] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/08/2014] [Indexed: 01/01/2023] Open
|
16
|
Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 2014; 10:e1004275. [PMID: 24722178 PMCID: PMC3983041 DOI: 10.1371/journal.pgen.1004275] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/16/2014] [Indexed: 01/17/2023] Open
Abstract
Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.
Collapse
Affiliation(s)
- Aurore Fleurie
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sylvie Manuse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Chao Zhao
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
- Key laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, IBCP, Université Lyon 1, CNRS, UMR5305, Lyon, France
| | - Jean-Pierre Lavergne
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Céline Freton
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Christophe Combet
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sébastien Guiral
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Erkin Kuru
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Michael S. VanNieuwenhze
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yves V. Brun
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Anne-Marie Di Guilmi
- Institut de Biologie Structurale, UMR 5075, Université Joseph Fourier, CNRS, CEA, Grenoble, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| |
Collapse
|
17
|
How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 2013; 11:601-14. [PMID: 23949602 DOI: 10.1038/nrmicro3088] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria come in a range of shapes, including round, rod-shaped, curved and spiral cells. This morphological diversity implies that different mechanisms exist to guide proper cell growth, division and chromosome segregation. Although the majority of studies on cell division have focused on rod-shaped cells, the development of new genetic and cell biology tools has provided mechanistic insight into the cell cycles of bacteria with different shapes, allowing us to appreciate the underlying molecular basis for their morphological diversity. In this Review, we discuss recent progress that has advanced our knowledge of the complex mechanisms for chromosome segregation and cell division in bacteria which have, deceptively, the simplest possible shape: the cocci.
Collapse
|
18
|
Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. mBio 2013; 4:mBio.00431-13. [PMID: 23860769 PMCID: PMC3735124 DOI: 10.1128/mbio.00431-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsBCC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsBCC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.
Collapse
|
19
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
20
|
SalB inactivation modulates culture supernatant exoproteins and affects autolysis and viability in Enterococcus faecalis OG1RF. J Bacteriol 2012; 194:3569-78. [PMID: 22563054 DOI: 10.1128/jb.00376-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Collapse
|
21
|
Geng J, Chiu CH, Tang P, Chen Y, Shieh HR, Hu S, Chen YYM. Complete genome and transcriptomes of Streptococcus parasanguinis FW213: phylogenic relations and potential virulence mechanisms. PLoS One 2012; 7:e34769. [PMID: 22529932 PMCID: PMC3329508 DOI: 10.1371/journal.pone.0034769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/05/2012] [Indexed: 01/13/2023] Open
Abstract
Streptococcus parasanguinis, a primary colonizer of the tooth surface, is also an opportunistic pathogen for subacute endocarditis. The complete genome of strain FW213 was determined using the traditional shotgun sequencing approach and further refined by the transcriptomes of cells in early exponential and early stationary growth phases in this study. The transcriptomes also discovered 10 transcripts encoding known hypothetical proteins, one pseudogene, five transcripts matched to the Rfam and additional 87 putative small RNAs within the intergenic regions defined by the GLIMMER analysis. The genome contains five acquired genomic islands (GIs) encoding proteins which potentially contribute to the overall pathogenic capacity and fitness of this microbe. The differential expression of the GIs and various open reading frames outside the GIs at the two growth phases suggested that FW213 possess a range of mechanisms to avoid host immune clearance, to colonize host tissues, to survive within oral biofilms and to overcome various environmental insults. Furthermore, the comparative genome analysis of five S. parasanguinis strains indicates that albeit S. parasanguinis strains are highly conserved, variations in the genome content exist. These variations may reflect differences in pathogenic potential between the strains.
Collapse
Affiliation(s)
- Jianing Geng
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Bioinformatics Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Yaping Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui-Ru Shieh
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Ywan M. Chen
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Sham LT, Tsui HCT, Land AD, Barendt SM, Winkler ME. Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr Opin Microbiol 2012; 15:194-203. [PMID: 22280885 DOI: 10.1016/j.mib.2011.12.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/09/2023]
Abstract
Streptococcus pneumoniae is a serious human respiratory pathogen that has the capacity to evade capsule-based vaccines and to develop multidrug antibiotic resistance. This review summarizes recent advances in understanding the mechanisms and regulation of peptidoglycan (PG) biosynthesis that result in ellipsoid-shaped, ovococcus Streptococcus cells. New results support a two-state model for septal and peripheral PG synthesis at mid-cell, involvement of essential cell division proteins in PG remodeling, and mid-cell localization of proteins that organize PG biosynthesis and that form the protein translocation apparatus. PG biosynthesis proteins have already turned up as promising vaccine candidates and targets of antibiotics. Properties of several recently characterized proteins that mediate or regulate PG biosynthesis suggest a source of additional targets for therapies against pneumococcus.
Collapse
Affiliation(s)
- Lok-To Sham
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, United States
| | | | | | | | | |
Collapse
|
23
|
Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A 2011; 108:E1061-9. [PMID: 22006325 DOI: 10.1073/pnas.1108323108] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connection between peptidoglycan remodeling and cell division is poorly understood in ellipsoid-shaped ovococcus bacteria, such as the human respiratory pathogen Streptococcus pneumoniae. In S. pneumoniae, peptidoglycan homeostasis and stress are regulated by the WalRK (VicRK) two-component regulatory system, which positively regulates expression of the essential PcsB cysteine- and histidine-dependent aminohydrolases/peptidases (CHAP)-domain protein. CHAP-domain proteins usually act as peptidoglycan hydrolases, but purified PcsB lacks detectable enzymatic activity. To explore the functions of PcsB, its subcellular localization was determined. Fractionation experiments showed that cell-bound PcsB was located through hydrophobic interactions on the external membrane surface of pneumococcal cells. Immunofluorescent microscopy localized PcsB mainly to the septa and equators of dividing cells. Chemical cross-linking combined with immunoprecipitation showed that PcsB interacts with the cell division complex formed by membrane-bound FtsX(Spn) and cytoplasmic FtsE(Spn) ATPase, which structurally resemble an ABC transporter. Far Western blotting showed that this interaction was likely through the large extracellular loop of FtsX(Spn) and the amino terminal coiled-coil domain of PcsB. Unlike in Bacillus subtilis and Escherichia coli, we show that FtsX(Spn) and FtsE(Spn) are essential in S. pneumoniae. Consistent with an interaction between PcsB and FtsX(Spn), cells depleted of PcsB or FtsX(Spn) had strikingly similar defects in cell division, and depletion of FtsX(Spn) caused mislocalization of PcsB but not the FtsZ(Spn) early-division protein. A model is presented in which the interaction of the FtsEX(Spn) complex with PcsB activates its peptidoglycan hydrolysis activity and couples peptidoglycan remodeling to pneumococcal cell division.
Collapse
|
24
|
Serine/threonine protein kinase Stk is required for virulence, stress response, and penicillin tolerance in Streptococcus pyogenes. Infect Immun 2011; 79:4201-9. [PMID: 21788381 DOI: 10.1128/iai.05360-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genes encoding one or more Ser/Thr protein kinases have been identified recently in many bacteria, including one (stk) in the human pathogen Streptococcus pyogenes (group A streptococcus [GAS]). We report that in GAS, stk is required to produce disease in a murine myositis model of infection. Using microarray and quantitative reverse transcription-PCR (qRT-PCR) studies, we found that Stk activates genes for virulence factors, osmoregulation, metabolism of α-glucans, and fatty acid biosynthesis, as well as genes affecting cell wall synthesis. Confirming these transcription studies, we determined that the stk deletion mutant is more sensitive to osmotic stress and to penicillin than the wild type. We discuss several possible Stk phosphorylation targets that might explain Stk regulation of expression of specific operons and the possible role of Stk in resuscitation from quiescence.
Collapse
|
25
|
The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J Bacteriol 2011; 193:4166-79. [PMID: 21685290 DOI: 10.1128/jb.05245-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MreC and MreD, along with the actin homologue MreB, are required to maintain the shape of rod-shaped bacteria. The depletion of MreCD in rod-shaped bacteria leads to the formation of spherical cells and the accumulation of suppressor mutations. Ovococcus bacteria, such as Streptococcus pneumoniae, lack MreB homologues, and the functions of the S. pneumoniae MreCD (MreCD(Spn)) proteins are unknown. mreCD are located upstream from the pcsB cell division gene in most Streptococcus species, but we found that mreCD and pcsB are transcribed independently. Similarly to rod-shaped bacteria, we show that mreCD are essential in the virulent serotype 2 D39 strain of S. pneumoniae, and the depletion of MreCD results in cell rounding and lysis. In contrast, laboratory strain R6 contains suppressors that allow the growth of ΔmreCD mutants, and bypass suppressors accumulate in D39 ΔmreCD mutants. One class of suppressors eliminates the function of class A penicillin binding protein 1a (PBP1a). Unencapsulated Δpbp1a D39 mutants have smaller diameters than their pbp1a(+) parent or Δpbp2a and Δpbp1b mutants, which lack other class A PBPs and do not show the suppression of ΔmreCD mutations. Suppressed ΔmreCD Δpbp1a double mutants form aberrantly shaped cells, some with misplaced peptidoglycan (PG) biosynthesis compared to that of single Δpbp1a mutants. Quantitative Western blotting showed that MreC(Spn) is abundant (≈8,500 dimers per cell), and immunofluorescent microscopy (IFM) located MreCD(Spn) to the equators and septa of dividing cells, similarly to the PBPs and PG pentapeptides indicative of PG synthesis. These combined results are consistent with a model in which MreCD(Spn) direct peripheral PG synthesis and control PBP1a localization or activity.
Collapse
|