1
|
Manesh MJH, Willard DJ, Lewis AM, Kelly RM. Extremely thermoacidophilic archaea for metal bioleaching: What do their genomes tell Us? BIORESOURCE TECHNOLOGY 2024; 391:129988. [PMID: 37949149 DOI: 10.1016/j.biortech.2023.129988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Elevated temperatures favor bioleaching processes through faster kinetics, more favorable mineral chemistry, lower cooling requirements, and less surface passivation. Extremely thermoacidophilic archaea from the order Sulfolobales exhibit novel mechanisms for bioleaching metals from ores and have great potential. Genome sequences of many extreme thermoacidophiles are now available and provide new insights into their biochemistry, metabolism, physiology and ecology as these relate to metal mobilization from ores. Although there are some molecular genetic tools available for extreme thermoacidophiles, further development of these is sorely needed to advance the study and application of these archaea for bioleaching applications. The evolving landscape for bioleaching technologies at high temperatures merits a closer look through a genomic lens at what is currently possible and what lies ahead in terms of new developments and emerging opportunities. The need for critical metals and the diminishing primary deposits for copper should provide incentives for high temperature bioleaching.
Collapse
Affiliation(s)
- Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
2
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
3
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
4
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
5
|
Naguib MM, Khairalla AS, El-Gendy AO, Elkhatib WF. Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can J Microbiol 2019; 65:308-321. [PMID: 30633555 DOI: 10.1139/cjm-2018-0379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important mechanism for microbial resistance to mercury is its reduction into elemental mercury (facilitated by the merA gene). Thirty-eight microbial isolates from a variety of wastewater sources in Egypt were collected. Approximately 14 of the 38 isolates exhibited not only a high degree of tolerance to mercury (up to 160 ppm) but also a high degree of resistance to other tested heavy metals (Cu, Co, Ni, and Zn). From these 14, the 10 most resistant isolates were selected for further study and were found to include 9 Gram-negative and 1 Gram-positive bacterial strains. Multi-antibiotic-resistance profiles were detected for 6 out of the 10 selected isolates. All the tested Gram-negative isolates (n = 9) harbored a plasmid-encoded merA gene. The mercury removal effectiveness for the 10 selected isolates ranged between 50% and 99.9%, among which Stenotrophomonas maltophilia ADW10 recorded the highest rate (99.9%; at an initial mercury concentration of 20 ppm). To the best of our knowledge, this is the first study to (i) demonstrate the presence of a multimetal-resistant S. maltophilia bacterium with a high mercury tolerance capacity that would make it a suitable candidate for future bioremediation efforts in heavy-metal-polluted areas in Egypt and (ii) report Pseudomonas otitidis as one of the mercury-resistant bacteria.
Collapse
Affiliation(s)
- Martha M Naguib
- a Department of Biotechnology and Life Sciences, Faculty of Post Graduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed S Khairalla
- b Department of Microbiology & Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O El-Gendy
- b Department of Microbiology & Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Walid F Elkhatib
- c Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia 11566, Cairo, Egypt.,d Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo, Entertainment Area, Badr City, Cairo, Egypt
| |
Collapse
|
6
|
Johnson TB, Mach C, Grove R, Kelly R, Van Cott K, Blum P. Secretion and fusion of biogeochemically active archaeal membrane vesicles. GEOBIOLOGY 2018; 16:659-673. [PMID: 30019522 DOI: 10.1111/gbi.12306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Microbes belonging to the genus Metallosphaera oxidize sulfidic minerals. These organisms thrive at temperature extremes and are members of the archaeal phylum Crenarchaeota. Because they can employ a lithoautotrophic metabolism, energy availability likely limits their activity raising questions about how they conduct biogeochemical activity. Vesicles are membrane encapsulated structures produced by all biological lineages but using very different mechanisms. Across the Crenarchaeota, it has been proposed that a eukaryotic-like Endosomal Sorting Complex Required for Transport system promotes formation of these structures but in response to unknown signals and for undefined purposes. To address such questions, Metallosphaera sedula vesicle formation and function were studied under lithoautotrophic conditions. Energy deprivation was evaluated and found to stimulate vesicle synthesis while energy excess repressed vesicle formation. Purified vesicles adhered rapidly to the primary copper ore, chalcopyrite, and formed compact monolayers. These vesicle monolayers catalyzed iron oxidation and solubilization of mineralized copper in a time-dependent process. As these activities were membrane associated, their potential transfer by vesicle fusion to M. sedula cells was examined. Fluorophore-loaded vesicles rapidly transferred fluorescence under environmentally relevant conditions. Vesicles from a related archaeal species were also capable of fusion; however, this process was species-specific as vesicles from different species were incapable of fusion. In addition, vesicles produced by a copper-resistant M. sedula cell line transferred copper extrusion capacity along with improved viability over mutant M. sedula cells lacking copper transport proteins. Membrane vesicles may therefore play a role in modulating energy-related traits in geochemical environments by fusion-mediated protein delivery.
Collapse
Affiliation(s)
- Tyler B Johnson
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Collin Mach
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Ryan Grove
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Robert Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Kevin Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Paul Blum
- Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California
| |
Collapse
|
7
|
Naguib MM, El-Gendy AO, Khairalla AS. Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1874070701812010056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Mercury is a toxic metal that is present in small amounts in the environment, but its level is rising steadily, due to different human activities, such as industrialization. It can reach humans through the food chain, amalgam fillings, and other sources, causing different neurological disorders, memory loss, vision impairment, and may even lead to death; making its detoxification an urgent task.Methods:Various physical and chemical mercury remediation techniques are available, which generally aim at: (i) reducing its mobility or solubility; (ii) causing its vaporization or condensation; (iii) its separation from contaminated soils. Biological remediation techniques, commonly known as bioremediation, are also another possible alternative, which is considered as cheaper than the conventional means and can be accomplished using either (i) organisms harboring themeroperon genes (merB,merA,merR,merP,merT,merD,merF,merC,merE,merHandmerG), or (ii) plants expressing metal-binding proteins. Recently, differentmerdeterminants have been genetically engineered into several organisms, including bacteria and plants, to aid in detoxification of both ionic and organic forms of mercury.Results:Bacteria that are resistant to mercury compounds have at least a mercuric reductase enzyme (MerA) that reduces Hg+2to volatile Hg0, a membrane-bound protein (MerT) for Hg+2uptake and an additional enzyme, MerB, that degrades organomercurials by protonolysis. Presence of bothmerA andmerB genes confer broad-spectrum mercury resistance. However,merA alone confers narrow spectrum inorganic mercury resistance.Conclusion:To conclude, this review discusses the importance of mercury-resistance genes in mercury bioremediation. Functional analysis ofmeroperon genes and the recent advances in genetic engineering techniques could provide the most environmental friendly, safe, effective and fantastic solution to overcome mercuric toxicity.
Collapse
|
8
|
Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. SCIENCE CHINA-LIFE SCIENCES 2017; 60:370-385. [DOI: 10.1007/s11427-016-0355-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022]
|
9
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
10
|
Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 2016; 100:2967-84. [PMID: 26860944 DOI: 10.1007/s00253-016-7364-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.
Collapse
|
11
|
McCarthy S, Johnson T, Pavlik BJ, Payne S, Schackwitz W, Martin J, Lipzen A, Keffeler E, Blum P. Expanding the Limits of Thermoacidophily in the Archaeon Sulfolobus solfataricus by Adaptive Evolution. Appl Environ Microbiol 2016; 82:857-67. [PMID: 26590281 PMCID: PMC4725277 DOI: 10.1128/aem.03225-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/15/2015] [Indexed: 11/20/2022] Open
Abstract
Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80°C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome resequencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were detected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge accompanying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer operon, and an increased capacity for the generation of energy and reductant.
Collapse
Affiliation(s)
- Samuel McCarthy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Tyler Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin J Pavlik
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sophie Payne
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Wendy Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Joel Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Erica Keffeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Rudrappa D, Yao AI, White D, Pavlik BJ, Singh R, Facciotti MT, Blum P. Identification of an archaeal mercury regulon by chromatin immunoprecipitation. MICROBIOLOGY-SGM 2015; 161:2423-33. [PMID: 26408318 DOI: 10.1099/mic.0.000189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking merR indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.
Collapse
Affiliation(s)
- Deepak Rudrappa
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Andrew I Yao
- 3 Department of Biomedical Engineering and Genome Center, University of California-Davis, Davis, California, USA
| | - Derrick White
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin J Pavlik
- 2 Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Raghuveer Singh
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Marc T Facciotti
- 3 Department of Biomedical Engineering and Genome Center, University of California-Davis, Davis, California, USA
| | - Paul Blum
- 1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
13
|
Artz JH, White SN, Zadvornyy OA, Fugate CJ, Hicks D, Gauss GH, Posewitz MC, Boyd ES, Peters JW. Biochemical and Structural Properties of a Thermostable Mercuric Ion Reductase from Metallosphaera sedula. Front Bioeng Biotechnol 2015. [PMID: 26217660 PMCID: PMC4500099 DOI: 10.3389/fbioe.2015.00097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mercuric ion reductase (MerA), a mercury detoxification enzyme, has been tuned by evolution to have high specificity for mercuric ions (Hg2+) and to catalyze their reduction to a more volatile, less toxic elemental form. Here, we present a biochemical and structural characterization of MerA from the thermophilic crenarchaeon Metallosphaera sedula. MerA from M. sedula is a thermostable enzyme, and remains active after extended incubation at 97°C. At 37°C, the NADPH oxidation-linked Hg2+ reduction specific activity was found to be 1.9 μmol/min⋅mg, increasing to 3.1 μmol/min⋅mg at 70°C. M. sedula MerA crystals were obtained and the structure was solved to 1.6 Å, representing the first solved crystal structure of a thermophilic MerA. Comparison of both the crystal structure and amino acid sequence of MerA from M. sedula to mesophillic counterparts provides new insights into the structural determinants that underpin the thermal stability of the enzyme.
Collapse
Affiliation(s)
- Jacob H Artz
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - Spencer N White
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - Oleg A Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - Corey J Fugate
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - Danny Hicks
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - George H Gauss
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| | - Matthew C Posewitz
- Department of Chemistry and Geochemistry, Colorado School of Mines , Golden, CO , USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA ; Thermal Biology Institute, Montana State University , Bozeman, MT , USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, MT , USA
| |
Collapse
|
14
|
Kaur G, Subramanian S. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. J Struct Biol 2014; 188:16-21. [PMID: 25220669 DOI: 10.1016/j.jsb.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
The mercury resistance pathway enzyme organomercurial lyase (MerB) catalyzes the conversion of organomercurials to ionic mercury (Hg(2+)). Here, we provide evidence for the emergence of this enzyme from a TRASH-like, non-enzymatic, treble-clef zinc finger ancestor by domain duplication and fusion. Surprisingly, the structure-stabilizing metal-binding core of the treble-clef appears to have been repurposed in evolution to serve a catalytic role. Novel enzymatic functions are believed to have evolved from ancestral generalist catalytic scaffolds or from already specialized enzymes with catalytic promiscuity. The emergence of MerB from a zinc finger ancestor serves as a rare example of how a novel enzyme may emerge from a non-catalytic scaffold with a related binding function.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | |
Collapse
|
15
|
Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl Microbiol Biotechnol 2014; 98:8133-44. [PMID: 25104030 DOI: 10.1007/s00253-014-5982-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.
Collapse
|