1
|
Karmarkar EN, Fitzpatrick T, Himmelfarb ST, Chow EJ, Smith HZ, Lan KF, Matsumoto J, Graff NR, DeBolt C, Truong T, Bourassa L, Farquhar C, Fang FC, Kim HN, Pottinger PS. Cluster of Nontoxigenic Corynebacterium diphtheriae Infective Endocarditis and Rising Background C. diphtheriae Cases-Seattle, Washington, 2020-2023. Clin Infect Dis 2024; 78:1214-1221. [PMID: 38381586 DOI: 10.1093/cid/ciae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Nontoxigenic Corynebacterium diphtheriae, often associated with wounds, can rarely cause infective endocarditis (IE). Five patients with C. diphtheriae IE were identified within 12 months at a Seattle-based hospital system. We reviewed prior C. diphtheriae-positive cultures to determine if detections had increased over time and evaluated epidemiologic trends. METHODS We conducted a formal electronic health record search to identify all patients aged ≥18 years with C. diphtheriae detected in a clinical specimen (ie, wound, blood, sputum) between 1 September 2020 and 1 April 2023. We collected patient demographics, housing status, comorbidities, substance-use history, and level of medical care required at detection. We extracted laboratory data on susceptibilities of C. diphtheriae isolates and on other pathogens detected at the time of C. diphtheriae identification. RESULTS Between 1 September 2020 and 1 April 2023, 44 patients (median age, 44 years) had a C. diphtheriae-positive clinical culture, with most detections occurring after March 2022. Patients were predominantly male (75%), White (66%), unstably housed (77%), and had a lifetime history of injecting drugs (75%). Most C. diphtheriae-positive cultures were polymicrobial, including wound cultures from 36 (82%) patients and blood cultures from 6 (14%) patients, not mutually exclusive. Thirty-four patients (77%), including all 5 patients with C. diphtheriae IE, required hospital admission for C. diphtheriae or a related condition. Of the 5 patients with IE, 3 died of IE and 1 from COVID-19. CONCLUSIONS Findings suggest a high-morbidity outbreak disproportionately affecting patients who use substances and are unstably housed.
Collapse
Affiliation(s)
- Ellora N Karmarkar
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Thomas Fitzpatrick
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah T Himmelfarb
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric J Chow
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Communicable Disease Epidemiology and Immunization Section, Public Health-Seattle & King County, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Hayden Z Smith
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kristine F Lan
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jason Matsumoto
- Department of Laboratory Medicine and Pathology, University of Washington and Harborview Medical Center, Seattle, Washington, USA
| | - Nicholas R Graff
- Office of Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington, USA
| | - Chas DeBolt
- Center for Public Health Medical and Veterinary Science, Washington State Department of Health, Shoreline, Washington, USA
| | - Thao Truong
- Department of Laboratory Medicine and Pathology, University of Washington and Harborview Medical Center, Seattle, Washington, USA
| | - Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington and Harborview Medical Center, Seattle, Washington, USA
| | - Carey Farquhar
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Ferric C Fang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington and Harborview Medical Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - H Nina Kim
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul S Pottinger
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Weerasekera D, Fastner T, Lang R, Burkovski A, Ott L. Of mice and men: Interaction of Corynebacterium diphtheriae strains with murine and human phagocytes. Virulence 2020; 10:414-428. [PMID: 31057086 PMCID: PMC6527023 DOI: 10.1080/21505594.2019.1614384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Seven non-toxigenic C. diphtheriae strains and one toxigenic strain were analyzed with regard to their interaction with murine macrophages (BMM) and human THP-1 macrophage-like cells. Proliferation assays with BMM and THP-1 revealed similar intracellular CFUs for C. diphtheriae strains independent of the host cell. Strain ISS4060 showed highest intracellular CFUs, while the toxigenic DSM43989 was almost not detectable. This result was confirmed by TLR 9 reporter assays, showing a low signal for DSM43989, indicating that the bacteria are not endocytosed. In contrast, the non-pathogenic C. glutamicum showed almost no intracellular CFUs independent of the host cell, but was recognized by TLR9, indicating that the bacteria were degraded immediately after endocytosis. In terms of G-CSF and IL-6 production, no significant differences between BMM and THP-1 were observed. G-CSF production was considerably higher than IL-6 for all C. diphtheriae strains and the C. glutamicum did not induce high cytokine secretion in general. Furthermore, all corynebacteria investigated in this study were able to induce NFκB signaling but only viable C. diphtheriae strains were able to cause host cell damage, whereas C. glutamicum did not. The absence of Mincle resulted in reduced G-CSF production, while no influence on the uptake of the bacteria was observed. In contrast, when MyD88 was absent, both the uptake of the bacteria and cytokine production were blocked. Consequently, phagocytosis only occurs when the TLR/MyD88 pathway is functional, which was also supported by showing that all corynebacteria used in this study interact with human TLR2.
Collapse
Affiliation(s)
- Dulanthi Weerasekera
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Tamara Fastner
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Roland Lang
- b Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universtitätsklinikum Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Andreas Burkovski
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Lisa Ott
- a Department Biologie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
4
|
Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers 2019; 5:81. [PMID: 31804499 DOI: 10.1038/s41572-019-0131-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Diphtheria is a potentially fatal infection mostly caused by toxigenic Corynebacterium diphtheriae strains and occasionally by toxigenic C. ulcerans and C. pseudotuberculosis strains. Diphtheria is generally an acute respiratory infection, characterized by the formation of a pseudomembrane in the throat, but cutaneous infections are possible. Systemic effects, such as myocarditis and neuropathy, which are associated with increased fatality risk, are due to diphtheria toxin, an exotoxin produced by the pathogen that inhibits protein synthesis and causes cell death. Clinical diagnosis is confirmed by the isolation and identification of the causative Corynebacterium spp., usually by bacterial culture followed by enzymatic and toxin detection tests. Diphtheria can be treated with the timely administration of diphtheria antitoxin and antimicrobial therapy. Although effective vaccines are available, this disease has the potential to re-emerge in countries where the recommended vaccination programmes are not sustained, and increasing proportions of adults are becoming susceptible to diphtheria. Thousands of diphtheria cases are still reported annually from several countries in Asia and Africa, along with many outbreaks. Changes in the epidemiology of diphtheria have been reported worldwide. The prevalence of toxigenic Corynebacterium spp. highlights the need for proper clinical and epidemiological investigations to quickly identify and treat affected individuals, along with public health measures to prevent and contain the spread of this disease.
Collapse
Affiliation(s)
- Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, Reference Microbiology Division, Public Health England, London, UK
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
5
|
Seth-Smith HMB, Egli A. Whole Genome Sequencing for Surveillance of Diphtheria in Low Incidence Settings. Front Public Health 2019; 7:235. [PMID: 31497588 PMCID: PMC6713046 DOI: 10.3389/fpubh.2019.00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Corynebacterium diphtheriae (C. diphtheriae) is a relatively rare pathogen in most Western countries. While toxin producing strains can cause pharyngeal diphtheria with potentially fatal outcomes, the more common presentation is wound infections. The diphtheria toxin is encoded on a prophage and can also be carried by Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Currently, across Europe, infections are mainly diagnosed in travelers and refugees from regions where diphtheria is more endemic, patients from urban areas with poor hygiene, and intravenous drug users. About half of the cases are non-toxin producing isolates. Rapid identification of the bacterial pathogen and toxin production is a critical element of patient and outbreak management. Beside the immediate clinical management of the patient, public health agencies should be informed of toxigenic C. diphtheriae diagnoses as soon as possible. The collection of case-related epidemiological data from the patient is often challenging due to language barriers and social circumstances. However, information on patient contacts, vaccine status and travel/refugee route, where appropriate, is critical, and should be documented. In addition, isolates should be characterized using high resolution typing, in order to identify transmissions and outbreaks. In recent years, whole genome sequencing (WGS) has become the gold standard of high-resolution typing methods, allowing detailed investigations of pathogen transmissions. De-centralized sequencing strategies with redundancy in sequencing capacities, followed by data exchange may be a valuable future option, especially since WGS becomes more available and portable. In this context, the sharing of sequence data, using public available platforms, is essential. A close interaction between microbiology laboratories, treating physicians, refugee centers, social workers, and public health officials is a key element in successful management of suspected outbreaks. Analyzing bacterial isolates at reference centers may further help to provide more specialized microbiological techniques and to standardize information, but this is also more time consuming during an outbreak. Centralized communication strategies between public health agencies and laboratories helps considerably in establishing and coordinating effective surveillance and infection control. We review the current literature on high-resolution typing of C. diphtheriae and share our own experience with the coordination of a Swiss-German outbreak.
Collapse
Affiliation(s)
- Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Fu S, Zhao W, Xiong C, Guo L, Guo J, Qiu Y, Hu CAA, Ye C, Liu Y, Wu Z, Hou Y. Baicalin modulates apoptosis via RAGE, MAPK, and AP-1 in vascular endothelial cells during Haemophilus parasuis invasion. Innate Immun 2019; 25:420-432. [PMID: 31271085 PMCID: PMC6900640 DOI: 10.1177/1753425919856078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glässer’s disease, caused by Haemophilus parasuis, is a chronic
disease related to an inflammatory immune response. Baicalin exerts important
biological functions. In this study, we explored the protective efficacy of
treatment with baicalin and the potential mechanism of activation of the MAPK
signaling pathway in porcine aortic vascular endothelial cells (PAVECs) induced
by H. parasuis. H. parasuis stimulated
expression of receptor for advanced glycation end products, induced a
significant increase in the level of protein kinase-α and protein kinase-δ
phosphorylation, and significantly up-regulated ERK, c-Jun N-terminal kinase,
and p38 phosphorylation in PAVECs. H. parasuis also
up-regulated the levels of apoptotic genes (Bax,
C-myc, and Fasl) and the expression levels
of c-Jun and c-Fos, and induced S-phase arrest in PAVECs. However, treatment
with baicalin inhibited expression of RAGE, suppressed H.
parasuis-induced protein kinase-α and protein kinase-δ
phosphorylation, reduced ERK, c-Jun N-terminal kinase, and p38 phosphorylation,
down-regulated apoptotic genes (Bax, C-myc,
and Fasl), attenuated phospho-c-Jun production from the
extracellular to the nuclei, and reversed S-phase arrest in PAVECs. In
conclusion, baicalin treatment inhibited the MAPK signaling pathway, thereby
achieving its anti-inflammatory responses, which provides a new strategy to
control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Wenhua Zhao
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Chunhong Xiong
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Ling Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Jing Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yinsheng Qiu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Chien-An Andy Hu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,3 Biochemistry and Molecular Biology, University of New Mexico School of Medicine, USA
| | - Chun Ye
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yu Liu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Zhongyuan Wu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yongqing Hou
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| |
Collapse
|
7
|
The role of corynomycolic acids in Corynebacterium-host interaction. Antonie Van Leeuwenhoek 2018; 111:717-725. [PMID: 29435693 DOI: 10.1007/s10482-018-1036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Within the Actinobacteria, the genera Corynebacterium, Mycobacterium, Nocardia and Rhodococcus form the so-called CMNR group, also designated as mycolic acid-containing actinomycetes. Almost all members of this group are characterized by a mycolic acid layer, the mycomembrane, which covers the cell wall and is responsible for a high resistance of these bacteria against chemical and antibiotic stress. Furthermore, components of the mycomembrane are crucial for the interaction of bacteria with host cells. This review summarizes the current knowledge of mycolic acid synthesis and interaction with components of the immune system for the genus Corynebacterium with an emphasis on the pathogenic species Corynebacterium diphtheriae, Corynebacterium pseudotuberculosis and Corynebacterium ulcerans as well as the biotechnology workhorse Corynebacterium glutamicum.
Collapse
|
8
|
Peixoto RS, Antunes CA, Lourêdo LS, Viana VG, Santos CSD, Fuentes Ribeiro da Silva J, Hirata R, Hacker E, Mattos-Guaraldi AL, Burkovski A. Functional characterization of the collagen-binding protein DIP2093 and its influence on host-pathogen interaction and arthritogenic potential of Corynebacterium diphtheriae. MICROBIOLOGY-SGM 2017; 163:692-701. [PMID: 28535857 DOI: 10.1099/mic.0.000467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Corynebacterium diphtheriae is typically recognized as the a etiological agent of diphtheria, a toxaemic infection of the respiratory tract; however, both non-toxigenic and toxigenic strains are increasingly isolated from cases of invasive infections. The molecular mechanisms responsible for bacterial colonization and dissemination to host tissues remain only partially understood. In this report, we investigated the role of DIP2093, described as a putative adhesin of the serine-aspartate repeat (Sdr) protein family in host-pathogen interactions of C. diphtheriae wild-type strain NCTC13129. Compared to the parental strain, a DIP2093 mutant RN generated in this study was attenuated in its ability to bind to type I collagen, to adhere to and invade epithelial cells, as well as to survive within macrophages. Furthermore, DIP2093 mutant strain RN had a less detrimental impact on the viability of Caenorhabditis elegans as well as in the clinical severity of arthritis in mice. In conclusion, DIP2093 functions as a microbial surface component recognizing adhesive matrix molecules, and may be included among the factors that contribute to the pathogenicity of C. diphtheriae strains, independently of toxin production.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Camila Azevedo Antunes
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Liliane Simpson Lourêdo
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil.,National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz- FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Vanilda Gonçalves Viana
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Cintia Silva Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Jemima Fuentes Ribeiro da Silva
- Ultrastructure and Tissue Biology, Department of Histology and Embryology, Roberto Alcântara Gomes Biology Institute - iBRAG - UERJ, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Elena Hacker
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Luíza Mattos-Guaraldi
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University, (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Peixoto RS, Hacker E, Antunes CA, Weerasekera D, Dias AA, Martins CA, Hirata R, Santos KRND, Burkovski A, Mattos-Guaraldi AL. Pathogenic properties of a Corynebacterium diphtheriae strain isolated from a case of osteomyelitis. J Med Microbiol 2017; 65:1311-1321. [PMID: 27902402 DOI: 10.1099/jmm.0.000362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is typically recognized as a colonizer of the upper respiratory tract (respiratory diphtheria) and the skin (cutaneous diphtheria). However, different strains of Corynebacteriumdiphtheriae can also cause invasive infections. In this study, the characterization of a non-toxigenic Corynebacteriumdiphtheriae strain (designated BR-INCA5015) isolated from osteomyelitis in the frontal bone of a patient with adenoid cystic carcinoma was performed. Pathogenic properties of the strain BR-INCA5015 were tested in a Caenorhabditis elegans survival assay showing strong colonization and killing by this strain. Survival rates of 3.8±2.7 %, 33.6±7.3 % and 0 % were observed for strains ATCC 27010T, ATCC 27012 and BR-INCA5015, respectively, at day 7. BR-INCA5015 was able to colonize epithelial cells, showing elevated capacity to adhere to and survive within HeLa cells compared to other Corynebacteriumdiphtheriae isolates. Intracellular survival in macrophages (THP-1 and RAW 264.7) was significantly higher compared to control strains ATCC 27010T (non-toxigenic) and ATCC 27012 (toxigenic). Furthermore, the ability of BR-INCA5015 to induce osteomyelitis was confirmed by in vivo assay using Swiss Webster mice.
Collapse
Affiliation(s)
- Renata Stavracakis Peixoto
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Elena Hacker
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Camila Azevedo Antunes
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Dulanthi Weerasekera
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A A Dias
- National Institute for Quality Control in Health (INCQS), Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Martins
- Brazilian National Cancer Institute - Ministry of Health, INCA, Rio de Janeiro, RJ, Brazil
| | - Raphael Hirata
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil
| | - Kátia Regina Netto Dos Santos
- Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance-LDCIC, Faculty of Medical Sciences, Rio de Janeiro State University - UERJ, Rio de Janeiro, RJ, Brazil.,Department of Medical Microbiology, Institute of Microbiology, Rio de Janeiro Federal University (IMPPG/UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Sangal V, Hoskisson PA. Evolution, epidemiology and diversity of Corynebacterium diphtheriae: New perspectives on an old foe. INFECTION GENETICS AND EVOLUTION 2016; 43:364-70. [PMID: 27291708 DOI: 10.1016/j.meegid.2016.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Diphtheria is a debilitating disease caused by toxigenic Corynebacterium diphtheriae strains and has been effectively controlled by the toxoid vaccine, yet several recent outbreaks have been reported across the globe. Moreover, non-toxigenic C. diphtheriae strains are emerging as a major global health concern by causing severe pharyngitis and tonsillitis, endocarditis, septic arthritis and osteomyelitis. Molecular epidemiological investigations suggest the existence of outbreak-associated clones with multiple genotypes circulating around the world. Evolution and pathogenesis appears to be driven by recombination as major virulence factors, including the tox gene and pilus gene clusters, are found within genomic islands that appear to be mobile between strains. The number of pilus gene clusters and variation introduced by gain or loss of gene function correlate with the variable adhesive and invasive properties of C. diphtheriae strains. Genomic variation does not support the separation of C. diphtheriae strains into biovars which correlates well with findings of studies based on multilocus sequence typing. Genomic analyses of a relatively small number of strains also revealed a recombination driven diversification of strains within a sequence type and indicate a wider diversity among C. diphtheriae strains than previously appreciated. This suggests that there is a need for increased effort from the scientific community to study C. diphtheriae to help understand the genomic diversity and pathogenicity within the population of this important human pathogen.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
11
|
Tibo LHS, Bertol JW, Bernedo-Navarro RA, Yano T. Cytotoxic factor secreted by Escherichia coli associated with sepsis facilitates transcytosis through human umbilical vein endothelial cell monolayers. Braz J Infect Dis 2016; 20:298-302. [PMID: 26963151 PMCID: PMC9425382 DOI: 10.1016/j.bjid.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Culture supernatant of sepsis-associated Escherichia coli (SEPEC) isolated from patients with sepsis caused loss of intercellular junctions and elongation of human umbilical vein endothelial cells (HUVEC). The cytotoxic factor was purified from culture supernatant of SEPEC 15 (serogroup O153) by liquid chromatography process. PAGE (polyacrylamide gel electrophoresis) showed that the purified SEPEC cytotoxic factor had a molecular mass of ∼150kDa and consisted of at least two subunits. At the concentration of 1 CD50 (40μg/mL) did facilitate transcytosis through the HUVEC cells monolayer of SEPEC 15 as much as E. coli K12 within 30min without affecting cell viability. These results suggest that this cytotoxic factor, named as SPF (SEPEC's permeabilizing factor), may be an important SEPEC virulence factor that facilitates bacterial access to the bloodstream.
Collapse
Affiliation(s)
- Luiz Henrique Soares Tibo
- Department of Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Jéssica Wildgrube Bertol
- Department of Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Tomomasa Yano
- Department of Genetics, Evolution and Bioagents, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Encinas F, Marin MA, Ramos JN, Vieira VV, Mattos-Guaraldi AL, Vicente ACP. Genomic analysis of a nontoxigenic, invasive Corynebacterium diphtheriae strain from Brazil. Mem Inst Oswaldo Cruz 2016; 110:817-9. [PMID: 26517665 PMCID: PMC4667589 DOI: 10.1590/0074-02760150250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/23/2015] [Indexed: 11/22/2022] Open
Abstract
We report the complete genome sequence and analysis of an invasive
Corynebacterium diphtheriae strain that caused endocarditis in
Rio de Janeiro, Brazil. It was selected for sequencing on the basis of the current
relevance of nontoxigenic strains for public health. The genomic information was
explored in the context of diversity, plasticity and genetic relatedness with other
contemporary strains.
Collapse
Affiliation(s)
- Fernando Encinas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Michel A Marin
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Juliana N Ramos
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Verônica V Vieira
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Luiza Mattos-Guaraldi
- Laboratório de Difteria e Corinebactérias de Importância Clínica, Faculdade de Medicina, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina P Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Sangal V, Blom J, Sutcliffe IC, von Hunolstein C, Burkovski A, Hoskisson PA. Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genomics 2015; 16:765. [PMID: 26452736 PMCID: PMC4600297 DOI: 10.1186/s12864-015-1980-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Non-toxigenic Corynebacterium diphtheriae strains are emerging as a major cause of severe pharyngitis and tonsillitis as well as invasive diseases such as endocarditis, septic arthritis, splenic abscesses and osteomyelitis. C. diphtheriae strains have been reported to vary in their ability to adhere and invade different cell lines. To identify the genetic basis of variation in the degrees of pathogenicity, we sequenced the genomes of four strains of C. diphtheriae (ISS 3319, ISS 4060, ISS 4746 and ISS 4749) that are well characterised in terms of their ability to adhere and invade mammalian cells. RESULTS Comparative analyses of 20 C. diphtheriae genome sequences, including 16 publicly available genomes, revealed a pan-genome comprising 3,989 protein coding sequences that include 1,625 core genes and 2,364 accessory genes. Most of the genomic variation between these strains relates to uncharacterised genes encoding hypothetical proteins or transposases. Further analyses of protein sequences using an array of bioinformatic tools predicted most of the accessory proteome to be located in the cytoplasm. The membrane-associated and secreted proteins are generally involved in adhesion and virulence characteristics. The genes encoding membrane-associated proteins, especially the number and organisation of the pilus gene clusters (spa) including the number of genes encoding surface proteins with LPXTG motifs differed between different strains. Other variations were among the genes encoding extracellular proteins, especially substrate binding proteins of different functional classes of ABC transport systems and 'non-classical' secreted proteins. CONCLUSIONS The structure and organisation of the spa gene clusters correlates with differences in the ability of C. diphtheriae strains to adhere and invade the host cells. Furthermore, differences in the number of genes encoding membrane-associated proteins, e.g., additional proteins with LPXTG motifs could also result in variation in the adhesive properties between different strains. The variation in the secreted proteome may be associated with the degree of pathogenesis. While the role of the 'non-classical' secretome in virulence remains unclear, differences in the substrate binding proteins of various ABC transport systems and cytoplasmic proteins potentially suggest strain variation in nutritional requirements or a differential ability to utilize various carbon sources.
Collapse
Affiliation(s)
- Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jochen Blom
- Heinrich-Buff-Ring 58, Justus-Liebig-Universität, 35392, Gießen, Germany.
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | | | - Andreas Burkovski
- Professur für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
14
|
Santos LSD, Antunes CA, Santos CSD, Pereira JAA, Sabbadini PS, Luna MDGD, Azevedo V, Hirata Júnior R, Burkovski A, Asad LMBDO, Mattos-Guaraldi AL. Corynebacterium diphtheriae putative tellurite-resistance protein (CDCE8392_0813) contributes to the intracellular survival in human epithelial cells and lethality of Caenorhabditis elegans. Mem Inst Oswaldo Cruz 2015; 110:662-8. [PMID: 26107188 PMCID: PMC4569831 DOI: 10.1590/0074-02760140479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/15/2015] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium diphtheriae, the aetiologic agent of diphtheria,
also represents a global medical challenge because of the existence of invasive
strains as causative agents of systemic infections. Although tellurite
(TeO32-) is toxic to most microorganisms, TeO32--resistant
bacteria, including C. diphtheriae, exist in
nature. The presence of TeO32--resistance (TeR)
determinants in pathogenic bacteria might provide selective advantages in the natural
environment. In the present study, we investigated the role of the putative
TeR determinant (CDCE8392_813gene) in the virulence
attributes of diphtheria bacilli. The disruption of CDCE8392_0813 gene expression in
the LDCIC-L1 mutant increased susceptibility to TeO32- and reactive oxygen
species (hydrogen peroxide), but not to other antimicrobial agents. The LDCIC-L1
mutant also showed a decrease in both the lethality of Caenorhabditis elegans
and the survival inside of human epithelial cells compared to wild-type
strain. Conversely, the haemagglutinating activity and adherence to and formation of
biofilms on different abiotic surfaces were not regulated through the CDCE8392_0813
gene. In conclusion, the CDCE8392_813 gene contributes to the TeR and
pathogenic potential of C. diphtheriae.
Collapse
Affiliation(s)
- Louisy Sanches Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Camila Azevedo Antunes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Cintia Silva Dos Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - José Augusto Adler Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Priscila Soares Sabbadini
- Laboratório de Doenças Bacterianas, Centro de Ciências da Saúde, Centro Universitário do Maranhão, São Luís, MA, BR
| | - Maria das Graças de Luna
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, BR
| | - Raphael Hirata Júnior
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Andreas Burkovski
- Lehrstuhl fuer Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, DE
| | - Lídia Maria Buarque de Oliveira Asad
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Ana Luíza Mattos-Guaraldi
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|