1
|
Banerjee A, Jacobs KR, Wang Y, Doud EH, Toh E, Stein BD, Mosley AL, Zhong G, Morrison RP, Morrison SG, Hu S, Brothwell JA, Nelson DE. Tail-specific protease is an essential Chlamydia virulence factor that mediates the differentiation of elementary bodies into reticulate bodies. Infect Immun 2024; 92:e0043624. [PMID: 39535210 PMCID: PMC11629628 DOI: 10.1128/iai.00436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Tail-specific proteases (Tsp) are members of a widely distributed family of serine proteases that commonly target and process periplasmic proteins in Gram-negative bacteria. The obligately intracellular, Gram-negative Chlamydia encode a highly conserved Tsp homolog whose target and function are unclear. We identified a Chlamydia muridarum mutant with a nonsense mutation in tsp. Differentiation of the tsp mutant elementary bodies into vegetative reticulate bodies was delayed at 37°C and completely blocked at 40°C. Tsp localized to C. muridarum cells but was not detected outside the inclusion, suggesting that it targets chlamydial rather than host proteins. The abundance of key chlamydia outer membrane complex and virulence-related proteins differed in wild-type and tsp mutant elementary bodies, consistent with the possibility that Tsp regulates developmental cycle progression. The altered abundances of chlamydial structural and virulence factors could explain why the mutant, but not an isogenic recombinant with wild-type tsp, was highly attenuated in a mouse intravaginal infection model. Thus, chlamydial Tsp is required for timely differentiation of elementary bodies into reticulate bodies in vitro and is an essential virulence factor in vivo.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kaylee R. Jacobs
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Barry D. Stein
- Department of Biology, Electron Microscopy Center, Indiana University, Bloomington, Indiana, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Richard P. Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sandra G. Morrison
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shuai Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David E. Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Chen W, Zhou C, Su X, Yin X, Yuan W, Hu C, Zhao W. Revealing the Genetic Diversity of Chinese Chlamydia trachomatis Strains Directly From Clinical Samples Through Selective Whole Genome Amplification. J Infect Dis 2024; 230:857-867. [PMID: 38547503 DOI: 10.1093/infdis/jiae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Chlamydia trachomatis is the causative agent of the most prevalent bacterial sexually transmitted infections globally. Whole genome sequencing is essential for molecular Chlamydia surveillance; however, its application is hampered by the pathogen's low abundance in clinical specimens and the expensive labor-intensive nature of existing enrichment methodologies for Chlamydia. METHODS We developed a targeted whole genome amplification tool termed SWITCH by integrating phi29 DNA polymerase-mediated amplification with meticulously designed primer sets to enrich the C trachomatis genome, followed by whole genome sequencing. This method underwent evaluation through testing synthetic and clinical specimens. RESULTS SWITCH demonstrated robust ability to achieve up to 98.3% genomic coverage of C trachomatis from as few as 26.4 genomic copies present in synthetic specimens, and it exhibited excellent performance across diverse C trachomatis serovars. Utilizing SWITCH, we directly generated 21 Chlamydia genomes from 26 clinical samples, enabling us to gain insights into the genetic relationships and phylogeny of current Chlamydia strains circulating in the country. Remarkably, this study marked the first instance of generating Chinese Chlamydia genomes directly from clinical samples. CONCLUSIONS SWITCH represents a practical cost-efficient approach to enrich the Chlamydia genome directly from clinical specimens, offering an efficient avenue for molecular surveillance of Chlamydia.
Collapse
Affiliation(s)
- Wentao Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chuchan Zhou
- Maoming People's Hospital, Southern Medical University, Maoming, China
| | - Xin Su
- Department of Clinical Laboratory, Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, China
| | - Xiaona Yin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weixi Yuan
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Chuncai Hu
- Department of Clinical Laboratory, Lecong Hospital of Shunde, Foshan, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
4
|
Garvin L, Vande Voorde R, Dickinson M, Carrell S, Hybiske K, Rockey D. A broad-spectrum cloning vector that exists as both an integrated element and a free plasmid in Chlamydia trachomatis. PLoS One 2021; 16:e0261088. [PMID: 34914750 PMCID: PMC8675754 DOI: 10.1371/journal.pone.0261088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plasmid transformation of chlamydiae has created new opportunities to investigate host-microbe interactions during chlamydial infections; however, there are still limitations. Plasmid transformation requires a replicon derived from the native Chlamydia plasmid, and these transformations are species-specific. We explored the utility of a broad host-range plasmid, pBBR1MCS-4, to transform chlamydiae, with a goal of simplifying the transformation process. The plasmid was modified to contain chromosomal DNA from C. trachomatis to facilitate homologous recombination. Sequences flanking incA were cloned into the pBBR1MCS-4 vector along with the GFP:CAT cassette from the pSW2-GFP chlamydial shuttle vector. The final plasmid construct, pBVR2, was successfully transformed into C. trachomatis strain L2-434. Chlamydial transformants were analyzed by immunofluorescence microscopy and positive clones were sequentially purified using limiting dilution. PCR and PacBio-based whole genome sequencing were used to determine if the plasmid was maintained within the chromosome or as an episome. PacBio sequencing of the cloned transformants revealed allelic exchange events between the chromosome and plasmid pBVR2 that replaced chromosomal incA with the plasmid GFP:CAT cassette. The data also showed evidence of full integration of the plasmid into the bacterial chromosome. While some plasmids were fully integrated, some were maintained as episomes and could be purified and retransformed into E. coli. Thus, the plasmid can be successfully transformed into chlamydia without a chlamydial origin of replication and can exist in multiple states within a transformed population.
Collapse
Affiliation(s)
- Lotisha Garvin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Rebecca Vande Voorde
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Mary Dickinson
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| | - Steven Carrell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA, United States of America
| | - Daniel Rockey
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
- * E-mail:
| |
Collapse
|
5
|
Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs. mSphere 2021; 6:6/2/e01302-20. [PMID: 33658279 PMCID: PMC8546720 DOI: 10.1128/msphere.01302-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis, an obligately intracellular bacterium, is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of U.S. infections of the urogenital tract and rectum have increased annually. Because C. trachomatis is not easily cultured, comparative genomic studies are limited, restricting our understanding of strain diversity and emergence among populations globally. While Agilent SureSelectXT target enrichment RNA bait libraries have been developed for whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal samples, public access to these libraries is not available. We therefore designed an RNA bait library (34,795 120-mer probes based on 85 genomes, versus 33,619 probes using 74 genomes in a previous one) to augment organism sequencing from clinical samples that can be shared with the scientific community, enabling comparison studies. We describe the library and limit of detection for genome copy input, and we present results of 100% efficiency and high-resolution determination of recombination and identical genomes within vaginal-rectal specimen pairs in women. This workflow provides a robust approach for discerning genomic diversity and advancing our understanding of the molecular epidemiology of contemporary C. trachomatis STIs across sample types, geographic populations, sexual networks, and outbreaks associated with proctitis/proctocolitis among women and men who have sex with men.IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterium that is not easily cultured, which limits our understanding of urogenital and rectal C. trachomatis transmission and impact on morbidity. To provide a publicly available workflow for whole-genome target enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal specimens, we developed and report on an RNA bait library to enrich the organism from clinical samples for sequencing. We demonstrate an increased efficiency in the percentage of reads mapping to C. trachomatis and identified recombinant and identical C. trachomatis genomes in paired vaginal-rectal samples from women. Our workflow provides a robust genomic epidemiologic approach to advance our understanding of C. trachomatis strains causing ocular, urogenital, and rectal infections and to explore geo-sexual networks, outbreaks of colorectal infections among women and men who have sex with men, and the role of these strains in morbidity.
Collapse
|
6
|
Pilo S, Zizelski Valenci G, Rubinstein M, Pichadze L, Scharf Y, Dveyrin Z, Rorman E, Nissan I. High-resolution multilocus sequence typing for Chlamydia trachomatis: improved results for clinical samples with low amounts of C. trachomatis DNA. BMC Microbiol 2021; 21:28. [PMID: 33461496 PMCID: PMC7814548 DOI: 10.1186/s12866-020-02077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several Multilocus Sequence Typing (MLST) schemes have been developed for Chlamydia trachomatis. Bom's MLST scheme for MLST is based on nested PCR amplification and sequencing of five hypervariable genes and ompA. In contrast to other Chlamydia MLST schemes, Bom's MLST scheme gives higher resolution and phylogenetic trees that are comparable to those from whole genome sequencing. However, poor results have been obtained with Bom's MLST scheme in clinical samples with low concentrations of Chlamydia DNA. RESULTS In this work, we present an improved version of the scheme that is based on the same genes and MLST database as Bom's MLST scheme, but with newly designed primers for nested-1 and nested-2 steps under stringent conditions. Furthermore, we introduce a third primer set for the sequencing step, which considerably improves the performance of the assay. The improved primers were tested in-silico using a dataset of 141 Whole Genome Sequences (WGS) and in a comparative analysis of 32 clinical samples. Based on cycle threshold and melting curve analysis values obtained during Real-Time PCR of nested-1 & 2 steps, we developed a simple scoring scheme and flow chart that allow identification of reaction inhibitors as well as to predict with high accuracy amplification success. The improved MLST version was used to obtain a genovars distribution in patients attending an STI clinic in Tel Aviv. CONCLUSIONS The newly developed MLST version showed great improvement of assay results for samples with very low concentrations of Chlamydia DNA. A similar concept could be applicable to other MLST schemes.
Collapse
Affiliation(s)
- Shlomo Pilo
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | | | - Mor Rubinstein
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Lea Pichadze
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Yael Scharf
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Zeev Dveyrin
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Efrat Rorman
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel
| | - Israel Nissan
- Ministry of Health, National Public Health Laboratory, Tel Aviv, Israel.
| |
Collapse
|
7
|
Abstract
This paper provides an overview of the current knowledge of chlamydiae. These intracellular microorganisms belonging to the Chlamydiaceae family are widely distributed throughout the world. Constant development of culture-independent approaches for characterisation of microbial genomes enables new discoveries in the field of Chlamydia. The number of new taxa is continuously increasing as well as the range of hosts. New species and genotypes are constantly being discovered, particularly new avian and reptilian agents, which are discussed in this article. Interestingly, wild animals are the main hosts for new Chlamydia species including different species of bird, turtle and snake. The availability of next-generation sequencing opens up a new prospect for research and leads to deeper knowledge of these interesting microorganisms about which much is still to discover.
Collapse
|
8
|
Borges V, Cordeiro D, Salas AI, Lodhia Z, Correia C, Isidro J, Fernandes C, Rodrigues AM, Azevedo J, Alves J, Roxo J, Rocha M, Côrte-Real R, Vieira L, Borrego MJ, Gomes JP. Chlamydia trachomatis: when the virulence-associated genome backbone imports a prevalence-associated major antigen signature. Microb Genom 2020; 5. [PMID: 31697227 PMCID: PMC6927300 DOI: 10.1099/mgen.0.000313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterium worldwide and the causative agent of trachoma. Its strains are classified according to their ompA genotypes, which are strongly linked to differential tissue tropism and disease outcomes [ocular disease, urogenital disease and lymphogranuloma venereum (LGV)]. While the genome-based species phylogenetic tree presents four main clades correlating with tropism/prevalence, namely ocular, LGV, urogenital T1 (more prevalent genotypes) and urogenital T2 (less prevalent genotypes), inter-clade exchange of ompA is considered a rare phenomenon probably mediating marked tropism alterations. An LGV epidemic, associated with the clonal expansion of the L2b genotype, has emerged in the last few decades, raising concerns particularly due to its atypical clinical presentation (ulcerative proctitis) and circulation among men who have sex with men (MSM). Here, we report an LGV outbreak, mostly affecting human immunodeficiency virus-positive MSM engaging in high-risk sexual practices, caused by an L2b strain with a rather unique non-LGV ompA signature that precluded the laboratory notification of this outbreak as LGV. C. trachomatis whole-genome capture and sequencing directly from clinical samples was applied to deeply characterize the genomic backbone of this novel LGV outbreak-causing clone. It revealed a chimeric genome structure due to the genetic transfer of ompA and four neighbouring genes from a serovar D/Da strain, likely possessing the genomic backbone associated with the more prevalent urogenital genotypes (T1 clade), to an LGV (L2b) strain. The hybrid L2b/D-Da strain presents the adhesin and immunodominant antigen MOMP (major outer membrane protein) (encoded by ompA) with an epitope repertoire typical of non-invasive genital strains, while keeping the genome-dispersed virulence fingerprint of a classical LGV strain. As previously reported for inter-clade ompA exchange among non-LGV clades, this novel C. trachomatis genomic mosaic involving a contemporary epidemiologically and clinically relevant LGV strain may have implications on its transmission, tissue tropism and pathogenic capabilities. The emergence of variants with epidemic and pathogenic potential highlights the need for more focused surveillance strategies to capture C. trachomatis evolution in action.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Dora Cordeiro
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Ana Isabel Salas
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Zohra Lodhia
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Cristina Correia
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Cândida Fernandes
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Ana Maria Rodrigues
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Jacinta Azevedo
- Sexually Transmitted Diseases Clinic, Lapa Health Centre, Lisbon, Portugal
| | - João Alves
- Sexually Transmitted Diseases Clinic, Lapa Health Centre, Lisbon, Portugal
| | - João Roxo
- CheckpointLX, Grupo de Ativistas em Tratamentos, Lisboa, Portugal
| | - Miguel Rocha
- CheckpointLX, Grupo de Ativistas em Tratamentos, Lisboa, Portugal
| | - Rita Côrte-Real
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Maria José Borrego
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
9
|
Hadfield J, Bénard A, Domman D, Thomson N. The Hidden Genomics of Chlamydia trachomatis. Curr Top Microbiol Immunol 2019; 412:107-131. [PMID: 29071471 DOI: 10.1007/82_2017_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of whole-genome sequencing has moved us on from sequencing single genomes to defining unravelling population structures in different niches, and at the -species, -serotype or even -genus level, and in local, national and global settings. This has been instrumental in cataloguing and revealing a huge a range of diversity in this bacterium, when at first we thought there was little. Genomics has challenged assumptions, added insight, as well as confusion and glimpses of truths. What is clear is that at a time when we start to realise the extent and nature of the diversity contained within a genus or a species like this, the huge depth of knowledge communities have developed, through cell biology, as well as the new found molecular approaches will be more precious than ever to link genotype to phenotype. Here we detail the technological developments and insights we have seen during the relatively short time since we began to see the hidden genome of Chlamydia trachomatis.
Collapse
Affiliation(s)
- James Hadfield
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Nicholas Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
10
|
Bachmann NL, Rockett RJ, Timms VJ, Sintchenko V. Advances in Clinical Sample Preparation for Identification and Characterization of Bacterial Pathogens Using Metagenomics. Front Public Health 2018; 6:363. [PMID: 30619804 PMCID: PMC6299010 DOI: 10.3389/fpubh.2018.00363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Whole genome sequencing (WGS) plays an increasing role in communicable disease control through high-resolution outbreak tracing, laboratory surveillance and diagnostics. However, WGS has traditionally relied on microbial culture in order to obtain pathogen specific DNA for sequencing. This has severely limited the application of whole genome sequencing on pathogens with fastidious culturing requirements. In addition, the widespread adoption of culture-independent diagnostic tests has reduced availability of cultured isolates for confirmatory testing and surveillance. These recent developments have created demand for the implementation of techniques enabling direct sequencing of microbial genomes in clinical samples without having to culture an isolate. However, sequencing of specific organisms from clinical samples can be affected by high levels of contaminating DNA from the host and other commensal microorganisms. Several methods have been introduced for selective lysis of host cells and/or separate specific organisms from a clinical sample. This review examines the different approaches for sample preparation that have been used in diagnostic and public health laboratories for metagenomic sequencing.
Collapse
Affiliation(s)
- Nathan L. Bachmann
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Rebecca J. Rockett
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| | - Verlaine Joy Timms
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
11
|
Taylor-Brown A, Pillonel T, Greub G, Vaughan L, Nowak B, Polkinghorne A. Metagenomic Analysis of Fish-Associated Ca. Parilichlamydiaceae Reveals Striking Metabolic Similarities to the Terrestrial Chlamydiaceae. Genome Biol Evol 2018; 10:2587-2595. [PMID: 30202970 PMCID: PMC6171736 DOI: 10.1093/gbe/evy195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are an example of obligate intracellular bacteria that possess highly reduced, compact genomes (1.0-3.5 Mbp), reflective of their abilities to sequester many essential nutrients from the host that they no longer need to synthesize themselves. The Chlamydiae is a phylum with a very wide host range spanning mammals, birds, fish, invertebrates, and unicellular protists. This ecological and phylogenetic diversity offers ongoing opportunities to study intracellular survival and metabolic pathways and adaptations. Of particular evolutionary significance are Chlamydiae from the recently proposed Ca. Parilichlamydiaceae, the earliest diverging clade in this phylum, species of which are found only in aquatic vertebrates. Gill extracts from three Chlamydiales-positive Australian aquaculture species (Yellowtail kingfish, Striped trumpeter, and Barramundi) were subject to DNA preparation to deplete host DNA and enrich microbial DNA, prior to metagenome sequencing. We assembled chlamydial genomes corresponding to three Ca. Parilichlamydiaceae species from gill metagenomes, and conducted functional genomics comparisons with diverse members of the phylum. This revealed highly reduced genomes more similar in size to the terrestrial Chlamydiaceae, standing in contrast to members of the Chlamydiae with a demonstrated cosmopolitan host range. We describe a reduction in genes encoding synthesis of nucleotides and amino acids, among other nutrients, and an enrichment of predicted transport proteins. Ca. Parilichlamydiaceae share 342 orthologs with other chlamydial families. We hypothesize that the genome reduction exhibited by Ca. Parilichlamydiaceae and Chlamydiaceae is an example of within-phylum convergent evolution. The factors driving these events remain to be elucidated.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Switzerland
| | - Lloyd Vaughan
- Institute of Veterinary Pathology, University of Zurich, Switzerland.,Pathovet AG, Tagelswangen, Switzerland
| | - Barbara Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Newnham, Tasmania, Australia
| | - Adam Polkinghorne
- USC Animal Research Centre, Faculty of Science, Engineering and Education, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
12
|
De Puysseleyr K, Kieckens E, De Puysseleyr L, Van den Wyngaert H, Ahmed B, Van Lent S, Creasy HH, Myers GSA, Vanrompay D. Development of a Chlamydia suis-specific antibody enzyme-linked immunosorbent assay based on the use of a B-cell epitope of the polymorphic membrane protein C. Transbound Emerg Dis 2018; 65:e457-e469. [PMID: 29314736 DOI: 10.1111/tbed.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Chlamydia suis infections lead to economic loss in the pork industry. Chlamydia suis infections could be successfully treated with tetracyclines until the appearance of a tetracycline resistant phenotype, which was acquired via horizontal gene transfer of the tet(C) gene. Given the importance of C. suis as a swine pathogen and as a recently emerged tetracycline resistant pathogen with zoonotic potential, our aim was to develop a sensitive C. suis-specific antibody ELISA based on the polymorphic membrane proteins (Pmps). Chlamydia Pmps are important virulence factors and candidate antigens for serodiagnosis. We identified nine Pmps (PmpA to I) in C. suis strain MD56 using a recently developed Hidden-Markov model. PmpC was the most promising candidate for the development of a C. suis-specific antibody ELISA as the protein was absent in C. abortus, C. pecorum and C. psittaci which also infect pigs and as the protein contained C. suis-specific amino acid regions, absent in C. trachomatis PmpC. We identified an immunodominant B-cell epitope in C. suis PmpC using experimental porcine sera. The sensitivity and specificity of the PmpC ELISA was compared to the complement fixation test (CFT) and to a recombinant MOMP ELISA using experimental sera. The PmpC ELISA detected all positive control sera and was in contrast to CFT and the rMOMP ELISA 100% C. suis specific as positive control sera against other Chlamydia species did not react in the PmpC ELISA. The test was successfully validated using slaughterhouse sera and sera from clinically affected pigs. The PmpC ELISA could assist in diminishing the spread of C. suis infections in the pork industry.
Collapse
Affiliation(s)
- K De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - E Kieckens
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - L De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H Van den Wyngaert
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - B Ahmed
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - S Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H H Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - G S A Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia
| | - D Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
13
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
14
|
Suchland RJ, Dimond ZE, Putman TE, Rockey DD. Demonstration of Persistent Infections and Genome Stability by Whole-Genome Sequencing of Repeat-Positive, Same-Serovar Chlamydia trachomatis Collected From the Female Genital Tract. J Infect Dis 2017; 215:1657-1665. [PMID: 28368459 DOI: 10.1093/infdis/jix155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 11/12/2022] Open
Abstract
Background The biology of recurrent or long-term infections of humans by Chlamydia trachomatis is poorly understood. Because repeated or persistent infections are correlated with serious complications in humans, understanding these processes may improve clinical management and public health disease control. Methods We conducted whole-genome sequence analysis on C. trachomatis isolates collected from a previously described patient set in which individuals were shown to be infected with a single serovar over a lengthy period. Results Data from 5 of 7 patients showed compelling evidence for the ability of these patients to harbor the same strain for 3-5 years. Mutations in these strains were cumulative, very uncommon, and not linked to any single protein or pathway. Serovar J strains isolated from 1 patient 3 years apart did not accumulate a single base change across the genome. In contrast, the sequence results of 2 patients, each infected only with serovar Ia strains, revealed multiple same-serovar infections over 1-5 years. Conclusions These data demonstrate examples of long-term persistence in patients in the face of repeated antibiotic therapy and show that pathogen mutational strategies are not important in persistence of this pathogen in patients.
Collapse
Affiliation(s)
- Robert J Suchland
- Department of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle
| | - Zoe E Dimond
- College of Veterinary Medicine and Molecular and Cellular Biology Program, Oregon State University, Corvallis
| | - Timothy E Putman
- College of Veterinary Medicine and Molecular and Cellular Biology Program, Oregon State University, Corvallis
| | - Daniel D Rockey
- College of Veterinary Medicine and Molecular and Cellular Biology Program, Oregon State University, Corvallis
| |
Collapse
|
15
|
Cram ED, Rockey DD, Dolan BP. Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011. BMC Microbiol 2017; 17:98. [PMID: 28438125 PMCID: PMC5402638 DOI: 10.1186/s12866-017-0992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia species are obligate intracellular bacteria that infect a broad range of mammalian hosts. Members of related genera are pathogens of a variety of vertebrate and invertebrate species. Despite the diversity of Chlamydia, all species contain an outer membrane lipooligosaccharide (LOS) that is comprised of a genus-conserved, and genus-defining, trisaccharide 3-deoxy-D-manno-oct-2-ulosonic acid Kdo region. Recent studies with lipopolysaccharide inhibitors demonstrate that LOS is important for the C. trachomatis developmental cycle during RB- > EB differentiation. Here, we explore the effects of one of these inhibitors, LPC-011, on the developmental cycle of five chlamydial species. RESULTS Sensitivity to the drug varied in some of the species and was conserved between others. We observed that inhibition of LOS biosynthesis in some chlamydial species induced formation of aberrant reticulate bodies, while in other species, no change was observed to the reticulate body. However, loss of LOS production prevented completion of the chlamydial reproductive cycle in all species tested. In previous studies we found that C. trachomatis and C. caviae infection enhances MHC class I antigen presentation of a model self-peptide. We find that treatment with LPC-011 prevents enhanced host-peptide presentation induced by infection with all chlamydial-species tested. CONCLUSIONS The data demonstrate that LOS synthesis is necessary for production of infectious progeny and inhibition of LOS synthesis induces aberrancy in certain chlamydial species, which has important implications for the use of LOS synthesis inhibitors as potential antibiotics.
Collapse
Affiliation(s)
- Erik D Cram
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA.
| | - Daniel D Rockey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA
| | - Brian P Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
16
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
17
|
Feng L, Lu X, Yu Y, Wang T, Luo S, Sun Z, Duan Q, Wang N, Song L. Survey, Culture, and Genome Analysis of Ocular Chlamydia trachomatis in Tibetan Boarding Primary Schools in Qinghai Province, China. Front Cell Infect Microbiol 2017; 6:207. [PMID: 28119858 PMCID: PMC5220689 DOI: 10.3389/fcimb.2016.00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
Trachoma, the leading infectious cause of blindness worldwide, is an ancient human disease. Its existence in China can be traced back to as early as the twenty-seventh century BC. In modern China, the overall prevalence of trachoma has dramatically reduced, but trachoma is still endemic in many areas of the country. Here, we report that 26 (8%) of 322 students from two rural boarding schools of Qinghai province, west China, were identified as having ocular C. trachomatis infection; and 15 ocular C. trachomatis strains were isolated from these trachoma patients. Chlamydiae in 37 clinical samples were genotyped as type B based on ompA gene analyses. Three ompA variants with one or two in-between SNP differences in the second or fourth variable domain were found. C. trachomatis strains QH111L and QH111R were from the same patient's left and right conjunctival swabs, respectively, but their ompA genes have a non-synonymous base difference in the second variable domain. Moreover, this SNP only exists in this single sample, suggesting QH111L is a newly emerged ompA variant. Interestingly, chromosomal phylogeny analysis found QH111L clusters between a branch of two type B strains and a branch of both A and C strains, but is significantly divergent from both branches. Comparative chromosome analysis found that compared to sequences of reference B/TZ1A828/OT strain, 12 of 22 QH111L's chromosomal genes exhibiting more than nine SNPs have the best homology with reciprocal genes of UGT strains while 9 of 22 genes are closest to those of type C strains. Consistent with findings of UGT-type genetic features in the chromosome, the QH111L plasmid appears to be intermediate between UGT and classical ocular plasmids due to the existence of UGT-type SNPs in the QH111L plasmid. Moreover, the QH111L strain has a unique evolutionarily older cytotoxin region compared to cytotoxin regions of other C. trachomatis strains. The genome analyses suggest that the QH111L strain is derived from recombinations between UGT and classical ocular ancestors. This is the first study of culture and characterization of ocular C. trachomatis in Qinghai Tibetan areas.
Collapse
Affiliation(s)
- Le Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Xinxin Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Shengdong Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Zhihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Qing Duan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University Beijing, China
| | - Lihua Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
18
|
Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation. Infect Immun 2016; 84:2791-801. [PMID: 27430273 DOI: 10.1128/iai.00356-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells.
Collapse
|
19
|
Culture-independent genomic characterisation of Candidatus Chlamydia sanzinia, a novel uncultivated bacterium infecting snakes. BMC Genomics 2016; 17:710. [PMID: 27595750 PMCID: PMC5011893 DOI: 10.1186/s12864-016-3055-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent molecular studies have revealed considerably more diversity in the phylum Chlamydiae than was previously thought. Evidence is growing that many of these novel chlamydiae may be important pathogens in humans and animals. A significant barrier to characterising these novel chlamydiae is the requirement for culturing. We recently identified a range of novel uncultured chlamydiae in captive snakes in Switzerland, however, nothing is known about their biology. Using a metagenomics approach, the aim of this study was to characterise the genome of a novel chlamydial taxon from the choana of a captive snake. In doing so, we propose a new candidate species in the genus Chlamydia (Candidatus Chlamydia sanzinia) and reveal new information about the biological diversity of this important group of pathogens. RESULTS We identified two chlamydial genomic contigs: a 1,113,073 bp contig, and a 7,504 bp contig, representing the chromosome and plasmid of Ca. Chlamydia sanzinia strain 2742-308, respectively. The 998 predicted coding regions include an expanded repertoire of outer membrane proteins (Pmps and Omps), some of which exhibited frameshift mutations, as well as several chlamydial virulence factors such as the translocating actin-recruitment phosphoprotein (Tarp) and macrophage inhibition potentiator (Mip). A suite of putative inclusion membrane proteins were also predicted. Notably, no evidence of a traditional chlamydial plasticity zone was identified. Phylogenetically, Ca. Chlamydia sanzinia forms a clade with C. pneumoniae and C. pecorum, distinct from former "Chlamydophila" species. CONCLUSIONS Genomic characterisation of a novel uncultured chlamydiae from the first reptilian host has expanded our understanding of the diversity and biology of a genus that was thought to be the most well-characterised in this unique phylum. It is anticipated that this method will be suitable for characterisation of other novel chlamydiae.
Collapse
|
20
|
Gharsallah H, Bom RJM, Bruisten SM, Himschoot M, Frikha-Gargouri O, Hammami A. Identification of a dominant Chlamydia trachomatis strain in patients attending sexual transmitted infection clinic and female sex workers in Tunisia using a high resolution typing method. INFECTION GENETICS AND EVOLUTION 2016; 44:444-449. [PMID: 27497657 DOI: 10.1016/j.meegid.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/11/2016] [Accepted: 08/03/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The distribution of Chlamydia trachomatis genotypes in Tunisia was previously studied using the reverse hybridization method. In this study, we used multilocus sequence typing (MLST) to describe Chlamydia trachomatis genetic diversity among heterosexual populations in Tunisia. The obtained sequence types (STs) were compared with those from a heterosexual population from Amsterdam, the Netherlands. METHODS Clinical Tunisian patients and female sex workers provided 107 Chlamydia trachomatis positive samples that were used for MLST. Samples from 256 heterosexuals visiting the Amsterdam STI clinic were included as a reference group. Six highly variable genetic regions including the ompA gene were amplified and sequenced. The ST numbers were derived from a Chlamydia typing database (http://mlstdb.uu.se) and used to draw minimum spanning trees. RESULTS ompA sequencing detected 7 genotypes among the Tunisian populations of which genotype E was the most prevalent (66.3%). This genotype E resolved into 23 different STs and among these the ST3 was predominant (53.5%). MLST displayed 43 STs, of which 28 (65%) were new in the database. Minimum spanning tree analysis of all Tunisian samples identified 4 clusters of which one formed a clonal cluster with samples presenting the most prevalent ST3. When comparing samples from the Tunisian and Dutch populations in one minimum spanning tree, there was little overlap between the Chlamydia trachomatis samples. CONCLUSION The CT-hrMLST scheme allowed us to identify that the Tunisian distribution was dominated by one genotype E (ST3) strain which is also highly prevalent in many other countries worldwide.
Collapse
Affiliation(s)
- Houda Gharsallah
- Department of Microbiology and research laboratory "Microorganismes et Pathologies Humaines", Habib Bourguiba University Hospital, Medical School of Sfax, Avenue Majida Boulila 3000, University of Sfax, Tunisia.
| | - Reinier J M Bom
- Public Health Laboratory, Public Health Service of Amsterdam (GGD Amsterdam), Nieuwe Achtergracht 100, 1018 WT Amsterdam, The Netherlands.
| | - Sylvia M Bruisten
- Public Health Laboratory, Public Health Service of Amsterdam (GGD Amsterdam), Nieuwe Achtergracht 100, 1018 WT Amsterdam, The Netherlands.
| | - Michelle Himschoot
- Public Health Laboratory, Public Health Service of Amsterdam (GGD Amsterdam), Nieuwe Achtergracht 100, 1018 WT Amsterdam, The Netherlands.
| | - Olfa Frikha-Gargouri
- Department of Microbiology and research laboratory "Microorganismes et Pathologies Humaines", Habib Bourguiba University Hospital, Medical School of Sfax, Avenue Majida Boulila 3000, University of Sfax, Tunisia; Biopesticides Team, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, 3018 Sfax, Tunisia.
| | - Adnene Hammami
- Department of Microbiology and research laboratory "Microorganismes et Pathologies Humaines", Habib Bourguiba University Hospital, Medical School of Sfax, Avenue Majida Boulila 3000, University of Sfax, Tunisia.
| |
Collapse
|
21
|
Van Lent S, Creasy HH, Myers GS, Vanrompay D. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species. J Mol Microbiol Biotechnol 2016; 26:333-44. [DOI: 10.1159/000447092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of <i>pmp</i> coding sequences differs between <i>Chlamydia</i> species, but it is unknown whether the number of <i>pmp</i> coding sequences is constant within a <i>Chlamydia</i> species. The level of conservation of the Pmp proteins has previously only been determined for <i>Chlamydia trachomatis.</i> As different Pmp proteins might be indispensible for the pathogenesis of different <i>Chlamydia </i>species, this study investigated the conservation of Pmp proteins both within and across <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci.</i> The <i>pmp</i> coding sequences were annotated in 16 <i>C. trachomatis,</i> 6 <i>C. pneumoniae,</i> 2 <i>C. abortus,</i> and 16 <i>C. psittaci</i> genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed <i>Chlamydia </i>species. The length of coding sequences of <i>pmpA,</i><i>pmpB,</i> and <i>pmpH</i> was conserved among all analyzed genomes, while the length of <i>pmpE/F</i> and <i>pmpG,</i> and remarkably also of the subtype <i>pmpD,</i> differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci</i>, respectively. PmpB was the most conserved Pmp across the 4 analyzed <i>Chlamydia</i> species.
Collapse
|
22
|
Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination. J Bacteriol 2016; 198:2131-9. [PMID: 27246568 DOI: 10.1128/jb.00161-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms.
Collapse
|
23
|
Jelocnik M, Bachmann NL, Kaltenboeck B, Waugh C, Woolford L, Speight KN, Gillett A, Higgins DP, Flanagan C, Myers GSA, Timms P, Polkinghorne A. Genetic diversity in the plasticity zone and the presence of the chlamydial plasmid differentiates Chlamydia pecorum strains from pigs, sheep, cattle, and koalas. BMC Genomics 2015; 16:893. [PMID: 26531162 PMCID: PMC4632680 DOI: 10.1186/s12864-015-2053-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Chlamydia pecorum is a globally recognised pathogen of livestock and koalas. To date, comparative genomics of C. pecorum strains from sheep, cattle and koalas has revealed that only single nucleotide polymorphisms (SNPs) and a limited number of pseudogenes appear to contribute to the genetic diversity of this pathogen. No chlamydial plasmid has been detected in these strains despite its ubiquitous presence in almost all other chlamydial species. Genomic analyses have not previously included C. pecorum from porcine hosts. We sequenced the genome of three C. pecorum isolates from pigs with differing pathologies in order to re-evaluate the genetic differences and to update the phylogenetic relationships between C. pecorum from each of the hosts. Methods Whole genome sequences for the three porcine C. pecorum isolates (L1, L17 and L71) were acquired using C. pecorum-specific sequence capture probes with culture-independent methods, and assembled in CLC Genomics Workbench. The pairwise comparative genomic analyses of 16 pig, sheep, cattle and koala C. pecorum genomes were performed using several bioinformatics platforms, while the phylogenetic analyses of the core C. pecorum genomes were performed with predicted recombination regions removed. Following the detection of a C. pecorum plasmid, a newly developed C. pecorum-specific plasmid PCR screening assay was used to evaluate the plasmid distribution in 227 C. pecorum samples from pig, sheep, cattle and koala hosts. Results Three porcine C. pecorum genomes were sequenced using C. pecorum-specific sequence capture probes with culture-independent methods. Comparative genomics of the newly sequenced porcine C. pecorum genomes revealed an increased average number of SNP differences (~11 500) between porcine and sheep, cattle, and koala C. pecorum strains, compared to previous C. pecorum genome analyses. We also identified a third copy of the chlamydial cytotoxin gene, found only in porcine C. pecorum isolates. Phylogenetic analyses clustered porcine isolates into a distinct clade, highlighting the polyphyletic origin of C. pecorum in livestock. Most surprising, we also discovered a plasmid in the porcine C. pecorum genome. Using this novel C. pecorum plasmid (pCpec) sequence, a) we developed a pCpec screening assay to evaluate the plasmid distribution in C. pecorum from different hosts; and b) to characterise the pCpec sequences from available previously sequenced C. pecorum genome data. pCpec screening showed that the pCpec is common in all hosts of C. pecorum, however not all C. pecorum strains carry pCpec. Conclusions This study provides further insight into the complexity of C. pecorum epidemiology and novel genomic regions that may be linked to host specificity. C. pecorum plasmid characterisation may aid in improving our understanding of C. pecorum pathogenesis across the variety of host species this animal pathogen infects. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2053-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Jelocnik
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | | | - Courtney Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - K Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, QLD, 4519, Australia
| | - Damien P Higgins
- Faculty of Veterinary Science, The University of Sydney, New South Wales, 2006, Australia
| | - Cheyne Flanagan
- Port Macquarie Koala Hospital, Port Macquarie, NSW, 2444, Australia
| | - Garry S A Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4558, Australia.
| |
Collapse
|
24
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
25
|
Culture-independent genome sequencing of clinical samples reveals an unexpected heterogeneity of infections by Chlamydia pecorum. J Clin Microbiol 2015; 53:1573-81. [PMID: 25740768 DOI: 10.1128/jcm.03534-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
Chlamydia pecorum is an important global pathogen of livestock, and it is also a significant threat to the long-term survival of Australia's koala populations. This study employed a culture-independent DNA capture approach to sequence C. pecorum genomes directly from clinical swab samples collected from koalas with chlamydial disease as well as from sheep with arthritis and conjunctivitis. Investigations into single-nucleotide polymorphisms within each of the swab samples revealed that a portion of the reads in each sample belonged to separate C. pecorum strains, suggesting that all of the clinical samples analyzed contained mixed populations of genetically distinct C. pecorum isolates. This observation was independent of the anatomical site sampled and the host species. Using the genomes of strains identified in each of these samples, whole-genome phylogenetic analysis revealed that a clade containing a bovine and a koala isolate is distinct from other clades comprised of livestock or koala C. pecorum strains. Providing additional evidence to support exposure of koalas to Australian livestock strains, two minor strains assembled from the koala swab samples clustered with livestock strains rather than koala strains. Culture-independent probe-based genome capture and sequencing of clinical samples provides the strongest evidence yet to suggest that naturally occurring chlamydial infections are comprised of multiple genetically distinct strains.
Collapse
|
26
|
Evaluation of the relationship between Chlamydia pecorum sequence types and disease using a species-specific multi-locus sequence typing scheme (MLST). Vet Microbiol 2014; 174:214-22. [PMID: 25223647 DOI: 10.1016/j.vetmic.2014.08.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Chlamydia pecorum is globally associated with several ovine diseases including keratoconjunctivitis and polyarthritis. The exact relationship between the variety of C. pecorum strains reported and the diseases described in sheep remains unclear, challenging efforts to accurately diagnose and manage infected flocks. In the present study, we applied C. pecorum multi-locus sequence typing (MLST) to C. pecorum positive samples collected from sympatric flocks of Australian sheep presenting with conjunctivitis, conjunctivitis with polyarthritis, or polyarthritis only and with no clinical disease (NCD) in order to elucidate the exact relationships between the infecting strains and the range of diseases. Using Bayesian phylogenetic and cluster analyses on 62 C. pecorum positive ocular, vaginal and rectal swab samples from sheep presenting with a range of diseases and in a comparison to C. pecorum sequence types (STs) from other hosts, one ST (ST 23) was recognised as a globally distributed strain associated with ovine and bovine diseases such as polyarthritis and encephalomyelitis. A second ST (ST 69) presently only described in Australian animals, was detected in association with ovine as well as koala chlamydial infections. The majority of vaginal and rectal C. pecorum STs from animals with NCD and/or anatomical sites with no clinical signs of disease in diseased animals, clustered together in a separate group, by both analyses. Furthermore, 8/13 detected STs were novel. This study provides a platform for strain selection for further research into the pathogenic potential of C. pecorum in animals and highlights targets for potential strain-specific diagnostic test development.
Collapse
|
27
|
Joseph SJ, Li B, Ghonasgi T, Haase CP, Qin ZS, Dean D, Read TD. Direct amplification, sequencing and profiling of Chlamydia trachomatis strains in single and mixed infection clinical samples. PLoS One 2014; 9:e99290. [PMID: 24971628 PMCID: PMC4074039 DOI: 10.1371/journal.pone.0099290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/13/2014] [Indexed: 11/18/2022] Open
Abstract
Sequencing bacterial genomes from DNA isolated directly from clinical samples offers the promise of rapid and precise acquisition of informative genetic information. In the case of Chlamydia trachomatis, direct sequencing is particularly desirable because it obviates the requirement for culture in mammalian cells, saving time, cost and the possibility of missing low abundance strains. In this proof of concept study, we developed methodology that would allow genome-scale direct sequencing, using a multiplexed microdroplet PCR enrichment technology to amplify a 100 kb region of the C. trachomatis genome with 500 1.1–1.3 kb overlapping amplicons (5-fold amplicon redundancy). We integrated comparative genomic data into a pipeline to preferentially select conserved sites for amplicon design. The 100 kb target region could be amplified from clinical samples, including remnants from diagnostics tests, originating from the cervix, urethra and urine, For rapid analysis of these data, we developed a framework for whole-genome based genotyping called binstrain. We used binstrain to estimate the proportion of SNPs originating from 14 C. trachomatis reference serotype genomes in each sample. Direct DNA sequencing methods such as the one described here may have an important role in understanding the biology of C. trachomatis mixed infections and the natural genetic variation of the species within clinically relevant ecological niches.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ben Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Tanvi Ghonasgi
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Chad P. Haase
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Joint Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, United States of America
- University of California Berkeley, Berkeley, California, United States of America
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Early microRNA expression profile as a prognostic biomarker for the development of pelvic inflammatory disease in a mouse model of chlamydial genital infection. mBio 2014; 5:e01241-14. [PMID: 24961692 PMCID: PMC4073489 DOI: 10.1128/mbio.01241-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED It is not currently possible to predict the probability of whether a woman with a chlamydial genital infection will develop pelvic inflammatory disease (PID). To determine if specific biomarkers may be associated with distinct chlamydial pathotypes, we utilized two Chlamydia muridarum variants (C. muridarum Var001 [CmVar001] and CmVar004) that differ in their abilities to elicit upper genital tract pathology in a mouse model. CmVar004 has a lower growth rate in vitro and induces pathology in only 20% of C57BL/6 mouse oviducts versus 83.3% of oviducts in CmVar001-infected mice. To determine if chemokine and cytokine production within 24 h of infection is associated with the outcome of pathology, levels of 15 chemokines and cytokines were measured. CmVar004 infection induced significantly lower levels of CXCL1, CXCL2, tumor necrosis factor alpha (TNF-α), and CCL2 in comparison to CmVar001 infection with similar rRNA (rs16) levels for Chlamydiae. A combination of microRNA (miRNA) sequencing and quantitative real-time PCR (qRT-PCR) analysis of 134 inflammation-related miRNAs was performed 24 h postinfection to determine if the chemokine/cytokine responses would also be reflected in miRNA expression profiles. Interestingly, 12 miRNAs (miR-135a-5p, miR298-5p, miR142-3p, miR223-3p, miR299a-3p, miR147-3p, miR105, miR325-3p, miR132-3p, miR142-5p, miR155-5p, and miR-410-3p) were overexpressed during CmVar004 infection compared to CmVar001 infection, inversely correlating with the respective chemokine/cytokine responses. To our knowledge, this is the first report demonstrating that early biomarkers elicited in the host can differentiate between two pathological variants of chlamydiae and be predictive of upper tract disease. IMPORTANCE It is apparent that an infecting chlamydial population consists of multiple genetic variants with differing capabilities of eliciting a pathological response; thus, it may be possible to identify biomarkers specific for a given virulence pathotype. miRNAs are known to regulate genes that in turn regulate signaling pathways involved in disease pathogenesis. Importantly, miRNAs are stable and can reflect a tissue response and therefore have the potential to be biomarkers of disease severity. Currently, with respect to chlamydial infections, there is no way to predict whether an infected patient is more or less likely to develop PID. However, data presented in this study indicate that the expression of a specific miRNA profile associated with a virulent variant early in the infection course may be predictive of an increased risk of pelvic inflammatory disease, allowing more aggressive treatment before significant pathology develops.
Collapse
|
29
|
Bachmann NL, Polkinghorne A, Timms P. Chlamydia genomics: providing novel insights into chlamydial biology. Trends Microbiol 2014; 22:464-72. [PMID: 24882432 DOI: 10.1016/j.tim.2014.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chlamydiaceae are obligate intracellular pathogens that have successfully evolved to colonize a diverse range of hosts. There are currently 11 described species of Chlamydia, most of which have a significant impact on the health of humans or animals. Expanding chlamydial genome sequence information has revolutionized our understanding of chlamydial biology, including aspects of their unique lifecycle, host-pathogen interactions, and genetic differences between Chlamydia strains associated with different host and tissue tropisms. This review summarizes the major highlights of chlamydial genomics and reflects on the considerable impact these have had on understanding the biology of chlamydial pathogens and the changing nature of genomics tools in the 'post-genomics' era.
Collapse
Affiliation(s)
- Nathan L Bachmann
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Adam Polkinghorne
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|
30
|
Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA. Nat Protoc 2013; 8:2404-12. [PMID: 24202554 DOI: 10.1038/nprot.2013.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of bacterial populations using whole-genome sequencing is of considerable scientific and clinical interest. However, obtaining bacterial genomic information is not always trivial: the target bacteria may be difficult to culture or uncultured, and they may be found within samples containing complex mixtures of other contaminating microbes and/or host cells, from which it is very difficult to derive robust sequencing data. Here we describe our procedure to generate sufficient DNA for whole-genome sequencing from clinical samples and without the need for culture, as successfully used on the difficult-to-culture, obligate intracellular pathogen Chlamydia trachomatis. Our protocol combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification (WGA), which is followed by high-throughput sequencing. Compared with other techniques that might be used to generate such data, IMS-MDA is an inexpensive, low-technology and highly transferable process that provides amplified genomic DNA for sequencing from target bacteria in under 5 h, with little hands-on time.
Collapse
|