1
|
Matte LM, Genal AV, Landolt EF, Danka ES. T6SS in plant pathogens: unique mechanisms in complex hosts. Infect Immun 2024; 92:e0050023. [PMID: 39166846 PMCID: PMC11385963 DOI: 10.1128/iai.00500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.
Collapse
Affiliation(s)
- Lexie M Matte
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Abigail V Genal
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Emily F Landolt
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Elizabeth S Danka
- Biology Discipline, Division of Natural and Social Sciences, St. Norbert College, De Pere, Wisconsin, USA
| |
Collapse
|
2
|
McMillan IA, Norris MH, Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Hartney BA, Filipowska LK, Islam MN, Crick DC, Borlee BR, Hoang TT. TetR-like regulator BP1026B_II1561 controls aromatic amino acid biosynthesis and intracellular pathogenesis in Burkholderia pseudomallei. Front Microbiol 2024; 15:1441330. [PMID: 39211319 PMCID: PMC11358695 DOI: 10.3389/fmicb.2024.1441330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Burkholderia pseudomallei (Bp) causes the tropical disease melioidosis that afflicts an estimated 165,000 people each year. Bp is a facultative intracellular pathogen that transits through distinct intracellular stages including attachment to host cells, invasion through the endocytic pathway, escape from the endosome, replication in the cytoplasm, generation of protrusions towards neighboring cells, and host cell fusion allowing Bp infection to spread without exiting the intracellular environment. We have identified a TetR-like transcriptional regulator, BP1026B_II1561, that is up-regulated during the late stages of infection as Bp protrudes toward neighboring cells. We have characterized BP1026B_II1561 and determined that it has a role in pathogenesis. A deletional mutant of BP1026B_II1561 is attenuated in RAW264.7 macrophage and BALB/c mouse models of infection. Using RNA-seq, we found that BP1026B_II1561 controls secondary metabolite biosynthesis, fatty acid degradation, and propanoate metabolism. In addition, we identified that BP1026B_II1561 directly controls expression of an outer membrane porin and genes in the shikimate biosynthetic pathway using ChIP-seq. Transposon mutants of genes within the BP1026B_II1561 regulon show defects during intracellular replication in RAW264.7 cells confirming the role of this transcriptional regulator and the pathways it controls in pathogenesis. BP1026B_II1561 also up-regulates the majority of the enzymes in shikimate and tryptophan biosynthetic pathways, suggesting their importance for Bp physiology. To investigate this, we tested fluorinated analogs of anthranilate and tryptophan, intermediates and products of the shikimate and tryptophan biosynthetic pathways, respectively, and showed inhibition of Bp growth at nanomolar concentrations. The expression of these pathways by BP1026b_II1561 and during intracellular infection combined with the inhibition of Bp growth by fluorotryptophan/anthranilate highlights these pathways as potential targets for therapeutic intervention against melioidosis. In the present study, we have identified BP1026B_II1561 as a critical transcriptional regulator for Bp pathogenesis and partially characterized its role during host cell infection.
Collapse
Affiliation(s)
- Ian A. McMillan
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Michael H. Norris
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Zhenxin Sun
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Brooke A. Hartney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Liliana K. Filipowska
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - M. Nurul Islam
- Department of Chemistry, Biochemistry, and Physics, South Dakota State University, Brookings, SD, United States
| | - Dean C. Crick
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tung T. Hoang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
3
|
Oscarsson J, Bao K, Shiratsuchi A, Grossmann J, Wolski W, Aung KM, Lindholm M, Johansson A, Mowsumi FR, Wai SN, Belibasakis GN, Bostanci N. Bacterial symbionts in oral niche use type VI secretion nanomachinery for fitness increase against pathobionts. iScience 2024; 27:109650. [PMID: 38650989 PMCID: PMC11033201 DOI: 10.1016/j.isci.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Akiko Shiratsuchi
- Department of Liberal Arts and Sciences, Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Kyaw Min Aung
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Anders Johansson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| |
Collapse
|
4
|
Plum MTW, Cheung HC, Iscar PR, Chen Y, Gan YH, Basler M. Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses. Cell Host Microbe 2024; 32:676-692.e5. [PMID: 38640929 DOI: 10.1016/j.chom.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/01/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.
Collapse
Affiliation(s)
| | - Hoi Ching Cheung
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | - Yahua Chen
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117596, Singapore
| | - Marek Basler
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
5
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Zhao X, Gao L, Ali Q, Yu C, Yuan B, Huang H, Long J, Gu Q, Wu H, Gao X. A type VI secretion system effector TseG of Pantoea ananatis is involved in virulence and antibacterial activity. MOLECULAR PLANT PATHOLOGY 2024; 25:e13442. [PMID: 38476100 PMCID: PMC10933656 DOI: 10.1111/mpp.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Lu Gao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Chenjie Yu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Bingqin Yuan
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Hai Huang
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Juying Long
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Disease and Pest InsectsCollege of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjingChina
| |
Collapse
|
7
|
Yin R, Cheng J, Lin J. The role of the type VI secretion system in the stress resistance of plant-associated bacteria. STRESS BIOLOGY 2024; 4:16. [PMID: 38376647 PMCID: PMC10879055 DOI: 10.1007/s44154-024-00151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
Collapse
Affiliation(s)
- Rui Yin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
8
|
Crisan CV, Van Tyne D, Goldberg JB. The type VI secretion system of the emerging pathogen Stenotrophomonas maltophilia complex has antibacterial properties. mSphere 2023; 8:e0058423. [PMID: 37975665 PMCID: PMC10732056 DOI: 10.1128/msphere.00584-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infections with the opportunistic pathogen Stenotrophomonas maltophilia complex can be fatal for immunocompromised patients. The mechanisms used by the bacterium to compete against other prokaryotes are not well understood. We found that the type VI secretion system (T6SS) allows S. maltophilia complex to eliminate other bacteria and contributes to the competitive fitness against a co-infecting isolate. The presence of T6SS genes in isolates across the globe highlights the importance of this apparatus as a weapon in the antibacterial arsenal of S. maltophilia complex. The T6SS may confer survival advantages to S. maltophilia complex isolates in polymicrobial communities in both environmental settings and during infections.
Collapse
Affiliation(s)
- Cristian V. Crisan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
10
|
Lohitthai S, Rungruengkitkun A, Jitprasutwit N, Kong-Ngoen T, Duangurai T, Tandhavanant S, Sukphopetch P, Chantratita N, Indrawattana N, Pumirat P. Type VI Secretion System Accessory Protein TagAB-5 Promotes Burkholderia pseudomallei Pathogenicity in Human Microglia. Biomedicines 2023; 11:2927. [PMID: 38001928 PMCID: PMC10669256 DOI: 10.3390/biomedicines11112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.
Collapse
Affiliation(s)
- Sanisa Lohitthai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Niramol Jitprasutwit
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (S.L.); (A.R.); (T.K.-N.); (S.T.); (P.S.); (N.C.); (N.I.)
| |
Collapse
|
11
|
Durán D, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing. Genes (Basel) 2023; 14:1979. [PMID: 38002922 PMCID: PMC10671463 DOI: 10.3390/genes14111979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector-immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049 Madrid, Spain; (D.D.); (D.V.-A.); (E.B.-R.); (D.G.-S.); (M.R.-N.); (R.R.)
| |
Collapse
|
12
|
Xiang K, Zhang Z, Li N, Zhang P, Liu F, Li H, Duan H, Zhang C, Ge J. Whole-Genome Sequence and Pathogenicity Analysis of Providencia Heimbachae Causing Diarrhea in Weaned Piglets. Curr Microbiol 2023; 80:364. [PMID: 37812274 DOI: 10.1007/s00284-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Providencia heimbachae was previously identified in piglets with post-weaned diarrhea and associated with hindlimb paralysis. However, the pathogenic mechanisms and virulence factors of P. heimbachae are not fully known. Whole-genome sequence analysis will be helpful to extend our understanding of the characterization of P. heimbachae at a genomic level. In this study, we sequenced the whole genome of P. heimbachae for the first time using PacBio RS II sequencers and assembled de novo through hierarchical genome assembly process (HGAP). Furthermore, we performed further genome annotation. The genome of P. heimbachae 99101 consists of a circular chromosome (4,262,828 bp) and a circular plasmid (231,957 bp) with G + C contents of 40.43 and 47.16%, respectively. Genome-wide sequence analysis yielded a total of 286 predicted virulence factors, 178 resistance genes, 17 chaperone protein manipulators of fimbriae, 47 genes involved in the encoding of flagellin, 12 cell membrane-associated virulence genes, 18 Enterobacteriaceae common antigens, etc. Based on genome analysis, we preliminarily confirmed through animal experiments that the capsule was the virulence factor of P. heimbachae causing hindlimb paralysis in animals. Our study provides a genetic basis for further elucidation of the characteristics and functional mechanisms of P. heimbachae as a conditionally pathogenic bacterium, as well as a direction for research into the mechanism of action of P. heimbachae infecting humans, extending knowledge of P. heimbachae as an important zoonotic pathogen.
Collapse
Affiliation(s)
- Kongrui Xiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuo Zhang
- Shenyang Animal Disease Prevention and Control Center, Shenyang, 110031, China
| | - Nuowa Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ping Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
13
|
Kandolo O, Cherrak Y, Filella-Merce I, Le Guenno H, Kosta A, Espinosa L, Santucci P, Verthuy C, Lebrun R, Nilges M, Pellarin R, Durand E. Acinetobacter type VI secretion system comprises a non-canonical membrane complex. PLoS Pathog 2023; 19:e1011687. [PMID: 37769028 PMCID: PMC10564176 DOI: 10.1371/journal.ppat.1011687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
A. baumannii can rapidly acquire new resistance mechanisms and persist on abiotic surface, enabling the colonization of asymptomatic human host. In Acinetobacter the type VI secretion system (T6SS) is involved in twitching, surface motility and is used for interbacterial competition allowing the bacteria to uptake DNA. A. baumannii possesses a T6SS that has been well studied for its regulation and specific activity, but little is known concerning its assembly and architecture. The T6SS nanomachine is built from three architectural sub-complexes. Unlike the baseplate (BP) and the tail-tube complex (TTC), which are inherited from bacteriophages, the membrane complex (MC) originates from bacteria. The MC is the most external part of the T6SS and, as such, is subjected to evolution and adaptation. One unanswered question on the MC is how such a gigantesque molecular edifice is inserted and crosses the bacterial cell envelope. The A. baumannii MC lacks an essential component, the TssJ lipoprotein, which anchors the MC to the outer membrane. In this work, we studied how A. baumannii compensates the absence of a TssJ. We have characterized for the first time the A. baumannii's specific T6SS MC, its unique characteristic, its membrane localization, and assembly dynamics. We also defined its composition, demonstrating that its biogenesis employs three Acinetobacter-specific envelope-associated proteins that define an intricate network leading to the assembly of a five-proteins membrane super-complex. Our data suggest that A. baumannii has divided the function of TssJ by (1) co-opting a new protein TsmK that stabilizes the MC and by (2) evolving a new domain in TssM for homo-oligomerization, a prerequisite to build the T6SS channel. We believe that the atypical species-specific features we report in this study will have profound implication in our understanding of the assembly and evolutionary diversity of different T6SSs, that warrants future investigation.
Collapse
Affiliation(s)
- Ona Kandolo
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Yassine Cherrak
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Isaac Filella-Merce
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Aix Marseille Univ, CNRS, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | - Artemis Kosta
- Microscopy Core Facility, Aix Marseille Univ, CNRS, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Pierre Santucci
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Christophe Verthuy
- Proteomic Core Facility IMM, Marseille Protéomique (MaP), Aix Marseille Univ, Marseille Cedex 20, France
| | - Régine Lebrun
- Proteomic Core Facility IMM, Marseille Protéomique (MaP), Aix Marseille Univ, Marseille Cedex 20, France
| | - Michael Nilges
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| |
Collapse
|
14
|
Hug S, Heiniger B, Bolli K, Paszti S, Eberl L, Ahrens CH, Pessi G. Paraburkholderia sabiae Uses One Type VI Secretion System (T6SS-1) as a Powerful Weapon against Notorious Plant Pathogens. Microbiol Spectr 2023; 11:e0162223. [PMID: 37439699 PMCID: PMC10434147 DOI: 10.1128/spectrum.01622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Paraburkholderia sabiae LMG24235 is a nitrogen-fixing betaproteobacterium originally isolated from a root nodule of Mimosa caesalpiniifolia in Brazil. We show here that this strain effectively kills strains from several bacterial families (Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae) which include important plant pathogens in a contact-dependent manner. De novo assembly of the first complete genome of P. sabiae using long sequencing reads and subsequent annotation revealed two gene clusters predicted to encode type VI secretion systems (T6SS), which we named T6SS-1 and T6SS-3 according to previous classification methods (G. Shalom, J. G. Shaw, and M. S. Thomas, Microbiology, 153:2689-2699, 2007, https://doi.org/10.1099/mic.0.2007/006585-0). We created P. sabiae with mutations in each of the two T6SS gene clusters that abrogated their function, and the T6SS-1 mutant was no longer able to outcompete other strains in a contact-dependent manner. Notably, our analysis revealed that T6SS-1 is essential for competition against several important plant pathogens in vitro, including Burkholderia plantarii, Ralstonia solanacearum, Pseudomonas syringae, and Pectobacterium carotovorum. The 9-log reduction in P. syringae cells in the presence of P. sabiae was particularly remarkable. Importantly, in an in vivo assay, P. sabiae was able to protect potato tubers from bacterial soft rot disease caused by P. carotovorum, and this protection was partly dependent on T6SS-1. IMPORTANCE Rhizobia often display additional beneficial traits such as the production of plant hormones and the acquisition of limited essential nutrients that improve plant growth and enhance plant yields. Here, we show that the rhizobial strain P. sabiae antagonizes important phytopathogens such as P. carotovorum, P. syringae, and R. solanacearum and that this effect is due to contact-dependent killing mediated by one of two T6SS systems identified in the complete, de novo assembled genome sequence of P. sabiae. Importantly, co-inoculation of Solanum tuberosum tubers with P. sabiae also resulted in a drastic reduction of soft rot caused by P. carotovorum in an in vivo model system. This result highlights the protective potential of P. sabiae against important bacterial plant diseases, which makes it a valuable candidate for application as a biocontrol agent. It also emphasizes the particular potential of rhizobial inoculants that combine several beneficial effects such as plant growth promotion and biocontrol for sustainable agriculture.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Kim Bolli
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope – Molecular Ecology, Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Crisan CV, Van Tyne D, Goldberg JB. The Type VI Secretion System of the Emerging Pathogen Stenotrophomonas maltophilia has Antibacterial Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542968. [PMID: 37398041 PMCID: PMC10312562 DOI: 10.1101/2023.05.30.542968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Antagonistic behaviors between bacterial cells can have profound effects on microbial populations and disease outcomes. Polymicrobial interactions may be mediated by contact-dependent proteins with antibacterial properties. The Type VI Secretion System (T6SS) is a macromolecular weapon used by Gram-negative bacteria to translocate proteins into adjacent cells. The T6SS is used by pathogens to escape immune cells, eliminate commensal bacteria, and facilitate infection. Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that causes a wide range of infections in immunocompromised patients and infects the lungs of patients with cystic fibrosis. Infections with the bacterium can be deadly and are challenging to treat because many isolates are multidrug-resistant. We found that globally dispersed S. maltophilia clinical and environmental strains possess T6SS genes. We demonstrate that the T6SS of an S. maltophilia patient isolate is active and can eliminate other bacteria. Furthermore, we provide evidence that the T6SS contributes to the competitive fitness of S. maltophilia against a co-infecting Pseudomonas aeruginosa isolate, and that the T6SS alters the cellular organization of S. maltophilia and P. aeruginosa co-cultures. This study expands our knowledge of the mechanisms employed by S. maltophilia to secrete antibacterial proteins and compete against other bacteria. IMPORTANCE Infections with the opportunistic pathogen Stenotrophomonas maltophilia can be fatal for immunocompromised patients. The mechanisms used by the bacterium to compete against other prokaryotes are not well understood. We found that the T6SS allows S. maltophilia to eliminate other bacteria and contributes to the competitive fitness against a co-infecting isolate. The presence of T6SS genes in isolates across the globe highlights the importance of this apparatus as a weapon in the antibacterial arsenal of S. maltophilia . The T6SS may confer survival advantages to S. maltophilia isolates in polymicrobial communities in both environmental settings and during infections.
Collapse
|
16
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
17
|
Reglinski M, Monlezun L, Coulthurst SJ. The accessory protein TagV is required for full Type VI secretion system activity in Serratia marcescens. Mol Microbiol 2023; 119:326-339. [PMID: 36627840 PMCID: PMC7614798 DOI: 10.1111/mmi.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bacterial Type VI secretion system (T6SS) is a dynamic macromolecular structure that promotes inter- and intra-species competition through the delivery of toxic effector proteins into neighbouring cells. The T6SS contains 14 well-characterised core proteins necessary for effector delivery (TssA-M, PAAR). In this study, we have identified a novel accessory component required for optimal T6SS activity in the opportunistic pathogen Serratia marcescens, which we name TagV. Deletion of tagV, which encodes an outer membrane lipoprotein, caused a reduction in the T6SS-dependent antibacterial activity of S. marcescens Db10. Mutants of S. marcescens lacking the core component TssJ, a distinct outer membrane lipoprotein previously considered essential for T6SS firing, retained a modest T6SS activity that could be abolished through deletion of tagV. TagV did not interact with the T6SS membrane complex proteins TssL or TssM, but is proposed to bind to peptidoglycan, indicating that the mechanism by which TagV promotes T6SS firing differs from that of TssJ. Homologues of tagV were identified in several other bacterial genera, suggesting that the accessory function of TagV is not restricted to S. marcescens. Together, our findings support the existence of a second, TssJ-independent mechanism for T6SS firing that is dependent upon the activity of TagV proteins.
Collapse
Affiliation(s)
- Mark Reglinski
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laura Monlezun
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
18
|
Sun Z, Heacock-Kang Y, McMillan IA, Cabanas D, Zarzycki-Siek J, Hoang TT. A virulence activator of a surface attachment protein in Burkholderia pseudomallei acts as a global regulator of other membrane-associated virulence factors. Front Microbiol 2023; 13:1063287. [PMID: 36726566 PMCID: PMC9884982 DOI: 10.3389/fmicb.2022.1063287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Burkholderia pseudomallei (Bp), causing a highly fatal disease called melioidosis, is a facultative intracellular pathogen that attaches and invades a variety of cell types. We previously identified BP1026B_I0091 as a surface attachment protein (Sap1) and an essential virulence factor, contributing to Bp pathogenesis in vitro and in vivo. The expression of sap1 is regulated at different stages of Bp intracellular lifecycle by unidentified regulator(s). Here, we identified SapR (BP1026B_II1046) as a transcriptional regulator that activates sap1, using a high-throughput transposon mutagenesis screen in combination with Tn-Seq. Consistent with phenotypes of the Δsap1 mutant, the ΔsapR activator mutant exhibited a significant reduction in Bp attachment to the host cell, leading to subsequent decreased intracellular replication. RNA-Seq analysis further revealed that SapR regulates sap1. The regulation of sap1 by SapR was confirmed quantitatively by qRT-PCR, which also validated the RNA-Seq data. SapR globally regulates genes associated with the bacterial membrane in response to diverse environments, and some of the genes regulated by SapR are virulence factors that are required for Bp intracellular infection (e.g., type III and type VI secretion systems). This study has identified the complex SapR regulatory network and its importance as an activator of an essential Sap1 attachment factor.
Collapse
Affiliation(s)
- Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Darlene Cabanas
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
19
|
Bing XL, Wan YY, Liu HH, Ji R, Zhao DS, Niu YD, Li TP, Hong XY. Characterization of Pantoea ananatis from rice planthoppers reveals a clade of rice-associated P. ananatis undergoing genome reduction. Microb Genom 2022; 8:mgen000907. [PMID: 36748509 PMCID: PMC9837560 DOI: 10.1099/mgen.0.000907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Pantoea ananatis is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a P. ananatis strain (Lstr) from the rice planthopper Laodelphax striatellus, a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. P. ananatis Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other Pantoea species. Our analysis of these genomes shows that P. ananatis can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with P. ananatis strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two P. ananatis are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, P. ananatis has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of P. ananatis' phylogenetic diversity and provide clues to the interactions between P. ananatis, host insect, and plant that may lead to advances in rice protection and pest control.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yu-Ying Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Huan-Huan Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, PR China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yue-Di Niu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China,*Correspondence: Xiao-Yue Hong,
| |
Collapse
|
20
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
21
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
22
|
Tighilt L, Boulila F, De Sousa BFS, Giraud E, Ruiz-Argüeso T, Palacios JM, Imperial J, Rey L. The Bradyrhizobium Sp. LmicA16 Type VI Secretion System Is Required for Efficient Nodulation of Lupinus Spp. MICROBIAL ECOLOGY 2022; 84:844-855. [PMID: 34697646 DOI: 10.1007/s00248-021-01892-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
Many bacteria of the genus Bradyrhizobium are capable of inducing nodules in legumes. In this work, the importance of a type VI secretion system (T6SS) in a symbiotic strain of the genus Bradyrhizobium is described. T6SS of Bradyrhizobium sp. LmicA16 (A16) is necessary for efficient nodulation with Lupinus micranthus and Lupinus angustifolius. A mutant in the gene vgrG, coding for a component of the T6SS nanostructure, induced less nodules and smaller plants than the wild-type (wt) strain and was less competitive when co-inoculated with the wt strain. A16 T6SS genes are organized in a 26-kb DNA region in two divergent gene clusters of nine genes each. One of these genes codes for a protein (Tsb1) of unknown function but containing a methyltransferase domain. A tsb1 mutant showed an intermediate symbiotic phenotype regarding vgrG mutant and higher mucoidity than the wt strain in free-living conditions. T6SS promoter fusions to the lacZ reporter indicate expression in nodules but not in free-living cells grown in different media and conditions. The analysis of nodule structure revealed that the level of nodule colonization was significantly reduced in the mutants with respect to the wt strain.
Collapse
Affiliation(s)
- L Tighilt
- Laboratoire d'Ecologie Microbienne, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
| | - F Boulila
- Laboratoire d'Ecologie Microbienne, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - B F S De Sousa
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - E Giraud
- IRD, Laboratoire Des Symbioses Tropicales Et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/Université de Montpellier/CIRAD, TA-A82/J-Campus International de Baillarguet, 34398Cedex 5, Montpellier, France
| | - T Ruiz-Argüeso
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - J M Palacios
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - J Imperial
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain
- Instituto de Ciencias Agrarias, CSIC, 28006, Madrid, Spain
| | - L Rey
- Centro de Biotecnología Y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación Y Tecnología Agraria Y Alimentaria (INIA), Campus de Montegancedo, 28223, Madrid, Spain.
- Departamento de Biotecnología Y Biología Vegetal, ETSI Agronómica, Alimentaria Y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
24
|
Liyanapathiranage P, Wagner N, Avram O, Pupko T, Potnis N. Phylogenetic Distribution and Evolution of Type VI Secretion System in the Genus Xanthomonas. Front Microbiol 2022; 13:840308. [PMID: 35495725 PMCID: PMC9048695 DOI: 10.3389/fmicb.2022.840308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) present in many Gram-negative bacteria is a contact-dependent apparatus that can directly deliver secreted effectors or toxins into diverse neighboring cellular targets including both prokaryotic and eukaryotic organisms. Recent reverse genetics studies with T6 core gene loci have indicated the importance of functional T6SS toward overall competitive fitness in various pathogenic Xanthomonas spp. To understand the contribution of T6SS toward ecology and evolution of Xanthomonas spp., we explored the distribution of the three distinguishable T6SS clusters, i3*, i3***, and i4, in approximately 1,740 Xanthomonas genomes, along with their conservation, genetic organization, and their evolutionary patterns in this genus. Screening genomes for core genes of each T6 cluster indicated that 40% of the sequenced strains possess two T6 clusters, with combinations of i3*** and i3* or i3*** and i4. A few strains of Xanthomonas citri, Xanthomonas phaseoli, and Xanthomonas cissicola were the exception, possessing a unique combination of i3* and i4. The findings also indicated clade-specific distribution of T6SS clusters. Phylogenetic analysis demonstrated that T6SS clusters i3* and i3*** were probably acquired by the ancestor of the genus Xanthomonas, followed by gain or loss of individual clusters upon diversification into subsequent clades. T6 i4 cluster has been acquired in recent independent events by group 2 xanthomonads followed by its spread via horizontal dissemination across distinct clades across groups 1 and 2 xanthomonads. We also noted reshuffling of the entire core T6 loci, as well as T6SS spike complex components, hcp and vgrG, among different species. Our findings indicate that gain or loss events of specific T6SS clusters across Xanthomonas phylogeny have not been random.
Collapse
Affiliation(s)
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
25
|
Liyanapathiranage P, Jones JB, Potnis N. Mutation of a Single Core Gene, tssM, of Type VI Secretion System of Xanthomonas perforans Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. PHYTOPATHOLOGY 2022; 112:752-764. [PMID: 34543058 DOI: 10.1094/phyto-02-21-0069-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas perforans is a seedborne hemibiotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While most studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth, and shorter latent infection period compared with the wild-type upon dip inoculation of 4- to 5-week-old tomato plants. Contribution of tssM toward aggressiveness was evident during vertical transmission from seed to seedling, with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared with the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemibiotrophic pathogen with the host, minimizing overall disease severity yet facilitating successful dissemination.
Collapse
Affiliation(s)
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
26
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
27
|
Sanchez-Villamil JI, Tapia D, Khakhum N, Widen SG, Torres AG. Dual RNA-seq reveals a type 6 secretion system-dependent blockage of TNF-α signaling and BicA as a Burkholderia pseudomallei virulence factor important during gastrointestinal infection. Gut Microbes 2022; 14:2111950. [PMID: 35984745 PMCID: PMC9397134 DOI: 10.1080/19490976.2022.2111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Melioidosis is a disease caused by the Gram-negative bacillus Burkholderia pseudomallei (Bpm), commonly found in soil and water of endemic areas. Naturally acquired human melioidosis infections can result from either exposure through percutaneous inoculation, inhalation, or ingestion of soil-contaminated food or water. Our prior studies recognized Bpm as an effective enteric pathogen, capable of establishing acute or chronic gastrointestinal infections following oral inoculation. However, the specific mechanisms and virulence factors involved in the pathogenesis of Bpm during intestinal infection are unknown. In our current study, we standardized an in vitro intestinal infection model using primary intestinal epithelial cells (IECs) and demonstrated that Bpm requires a functional T6SS for full virulence. Further, we performed dual RNA-seq analysis on Bpm-infected IECs to evaluate differentially expressed host and bacterial genes in the presence or absence of a T6SS. Our results showed a dysregulation in the TNF-α signaling via NF-κB pathway in the absence of the T6SS, with some of the genes involved in inflammatory processes and cell death also affected. Analysis of the bacterial transcriptome identified virulence factors and regulatory proteins playing a role during infection, with association to the T6SS. By using a Bpm transposon mutant library and isogenic mutants, we showed that deletion of the bicA gene, encoding a putative T3SS/T6SS regulator, ablated intracellular survival and plaque formation by Bpm and impacted survival and virulence when using murine models of acute and chronic gastrointestinal infection. Overall, these results highlight the importance of the type 6 secretion system in the gastrointestinal pathogenesis of Bpm.
Collapse
Affiliation(s)
| | - Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nittaya Khakhum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G. Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
28
|
Kim N, Han G, Jung H, Lee HH, Park J, Seo YS. T6SS Accessory Proteins, Including DUF2169 Domain-Containing Protein and Pentapeptide Repeats Protein, Contribute to Bacterial Virulence in T6SS Group_5 of Burkholderia glumae BGR1. PLANTS 2021; 11:plants11010034. [PMID: 35009038 PMCID: PMC8747328 DOI: 10.3390/plants11010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Burkholderia glumae are bacteria pathogenic to rice plants that cause a disease called bacterial panicle blight (BPB) in rice panicles. BPB, induced by B. glumae, causes enormous economic losses to the rice agricultural industry. B. glumae also causes bacterial disease in other crops because it has various virulence factors, such as toxins, proteases, lipases, extracellular polysaccharides, bacterial motility, and bacterial secretion systems. In particular, B. glumae BGR1 harbors type VI secretion system (T6SS) with functionally distinct roles: the prokaryotic targeting system and the eukaryotic targeting system. The functional activity of T6SS requires 13 core components and T6SS accessory proteins, such as adapters containing DUF2169, DUF4123, and DUF1795 domains. There are two genes, bglu_1g23320 and bglu_2g07420, encoding the DUF2169 domain-containing protein in the genome of B. glumae BGR1. bglu_2g07420 belongs to the gene cluster of T6SS group_5 in B. glumae BGR1, whereas bglu_1g23320 does not belong to any T6SS gene cluster in B. glumae BGR1. T6SS group_5 of B. glumae BGR1 is involved in bacterial virulence in rice plants. The DUF2169 domain-containing protein with a single domain can function by itself; however, Δu1g23320 showed no attenuated virulence in rice plants. In contrast, Δu2g07420DUF2169 and Δu2g07420PPR did exhibit attenuated virulence in rice plants. These results suggest that the pentapeptide repeats region of the C-terminal additional domain, as well as the DUF2169 domain, is required for complete functioning of the DUF2169 domain-containing protein encoded by bglu_2g07420. bglu_2g07410, which encodes the pentapeptide repeats protein, composed of only the pentapeptide repeats region, is located downstream of bglu_2g07420. Δu2g07410 also shows attenuated virulence in rice plants. This finding suggests that the pentapeptide repeats protein, encoded by bglu_2g07410, is involved in bacterial virulence. This study is the first report that the DUF2169 domain-containing protein and pentapeptide repeats protein are involved in bacterial virulence to the rice plants as T6SS accessory proteins, encoded in the gene cluster of the T6SS group_5.
Collapse
Affiliation(s)
- Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (N.K.); (G.H.); (H.J.); (H.-H.L.)
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (N.K.); (G.H.); (H.J.); (H.-H.L.)
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (N.K.); (G.H.); (H.J.); (H.-H.L.)
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (N.K.); (G.H.); (H.J.); (H.-H.L.)
| | - Jungwook Park
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological, Resources (NNIBR), Sangju 37242, Korea;
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (N.K.); (G.H.); (H.J.); (H.-H.L.)
- Correspondence:
| |
Collapse
|
29
|
Wu CF, Weisberg AJ, Davis EW, Chou L, Khan S, Lai EM, Kuo CH, Chang JH. Diversification of the Type VI Secretion System in Agrobacteria. mBio 2021; 12:e0192721. [PMID: 34517758 PMCID: PMC8546570 DOI: 10.1128/mbio.01927-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Surtaz Khan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
30
|
Nolan LM, Cain AK, Clamens T, Furniss RCD, Manoli E, Sainz-Polo MA, Dougan G, Albesa-Jové D, Parkhill J, Mavridou DA, Filloux A. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat Microbiol 2021; 6:1199-1210. [PMID: 34413503 PMCID: PMC7611593 DOI: 10.1038/s41564-021-00950-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The Type VI secretion system (T6SS) is a bacterial nanomachine that delivers toxic effectors to kill competitors or subvert some of their key functions. Here, we use transposon directed insertion-site sequencing to identify T6SS toxins associated with the H1-T6SS, one of the three T6SS machines found in Pseudomonas aeruginosa. This approach identified several putative toxin-immunity pairs, including Tse8-Tsi8. Full characterization of this protein pair demonstrated that Tse8 is delivered by the VgrG1a spike complex into prey cells where it targets the transamidosome, a multiprotein complex involved in protein synthesis in bacteria that lack either one, or both, of the asparagine and glutamine transfer RNA synthases. Biochemical characterization of the interactions between Tse8 and the transamidosome components GatA, GatB and GatC suggests that the presence of Tse8 alters the fine-tuned stoichiometry of the transamidosome complex, and in vivo assays demonstrate that Tse8 limits the ability of prey cells to synthesize proteins. These data expand the range of cellular components targeted by the T6SS by identifying a T6SS toxin affecting protein synthesis and validate the use of a transposon directed insertion site sequencing-based global genomics approach to expand the repertoire of T6SS toxins in T6SS-encoding bacteria.
Collapse
Affiliation(s)
- Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Amy K. Cain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Thomas Clamens
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - R. Christopher D. Furniss
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Maria A. Sainz-Polo
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - David Albesa-Jové
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Despoina A.I. Mavridou
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Department of Molecular Biosciences, University of Texas at Austin, Austin, 78712, Texas, USA,Correspondence to Alain Filloux: ; Despoina Mavridou:
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom,Correspondence to Alain Filloux: ; Despoina Mavridou:
| |
Collapse
|
31
|
Nguyen VS, Spinelli S, Cascales É, Roussel A, Cambillau C, Leone P. Anchoring the T6SS to the cell wall: Crystal structure of the peptidoglycan binding domain of the TagL accessory protein. PLoS One 2021; 16:e0254232. [PMID: 34214145 PMCID: PMC8253398 DOI: 10.1371/journal.pone.0254232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread mechanism of protein delivery into target cells, present in more than a quarter of all sequenced Gram-negative bacteria. The T6SS constitutes an important virulence factor, as it is responsible for targeting effectors in both prokaryotic and eukaryotic cells. The T6SS comprises a tail structure tethered to the cell envelope via a trans-envelope complex. In most T6SS, the membrane complex is anchored to the cell wall by the TagL accessory protein. In this study, we report the first crystal structure of a peptidoglycan-binding domain of TagL. The fold is conserved with members of the OmpA/Pal/MotB family, and more importantly, the peptidoglycan binding site is conserved. This structure further exemplifies how proteins involved in anchoring to the cell wall for different cellular functions rely on an interaction network with peptidoglycan strictly conserved.
Collapse
Affiliation(s)
- Van Son Nguyen
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Éric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique (UMR7255), Aix-Marseille Université, Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (UMR7257), Marseille, France
- * E-mail:
| |
Collapse
|
32
|
McMillan IA, Norris MH, Zarzycki-Siek J, Heacock-Kang Y, Sun Z, Borlee BR, Hoang TT. Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei. Sci Rep 2021; 11:10405. [PMID: 34001967 PMCID: PMC8128862 DOI: 10.1038/s41598-021-89852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/28/2021] [Indexed: 11/14/2022] Open
Abstract
Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease endemic to the tropics. Melioidosis manifests in various ways ranging from acute skin lesions to pneumonia and, in rare cases, infection of the central nervous system. Bp is a facultative intracellular pathogen and it can infect various cell types. The Bp intracellular lifecycle has been partially elucidated and is highly complex. Herein, we have identified a transcriptional regulator, BP1026B_II1198, that is differentially expressed as Bp transits through host cells. A deletion mutant of BP1026B_II1198 was attenuated in RAW264.7 cell and BALB/c mouse infection. To further characterize the function of this transcriptional regulator, we endeavored to determine the regulon of BP1026B_II1198. RNA-seq analysis showed the global picture of genes regulated while ChIP-seq analysis identified two specific BP1026B_II1198 binding regions on chromosome II. We investigated the transposon mutants of these genes controlled by BP1026B_II1198 and confirmed that these genes contribute to pathogenesis in RAW264.7 murine macrophage cells. Taken together, the data presented here shed light on the regulon of BP1026B_II1198 and its role during intracellular infection and highlights an integral portion of the highly complex regulation network of Bp during host infection.
Collapse
Affiliation(s)
- Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
| |
Collapse
|
33
|
Heacock-Kang Y, McMillan IA, Norris MH, Sun Z, Zarzycki-Siek J, Bluhm AP, Cabanas D, Norton RE, Ketheesan N, Miller JF, Schweizer HP, Hoang TT. The Burkholderia pseudomallei intracellular 'TRANSITome'. Nat Commun 2021; 12:1907. [PMID: 33772012 PMCID: PMC7998038 DOI: 10.1038/s41467-021-22169-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew P Bluhm
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Darlene Cabanas
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert E Norton
- Townsville Hospital, Townsville, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Natkunam Ketheesan
- Science and Technology, University of New England, New South Wales, Australia
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
34
|
Durán D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome. Sci Rep 2021; 11:5772. [PMID: 33707614 PMCID: PMC7970981 DOI: 10.1038/s41598-021-85218-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of Pseudomonas fluorescens F113, a model rhizobacterium and a plant growth-promoting agent, encodes three putative type VI secretion systems (T6SSs); F1-, F2- and F3-T6SS. Bioinformatic analysis of the F113 T6SSs has revealed that they belong to group 3, group 1.1, and group 4a, respectively, similar to those previously described in Pseudomonas aeruginosa. In addition, in silico analyses allowed us to identify genes encoding a total of five orphan VgrG proteins and eight putative effectors (Tfe), some with their cognate immunity protein (Tfi) pairs. Genes encoding Tfe and Tfi are found in the proximity of P. fluorescens F113 vgrG, hcp, eagR and tap genes. RNA-Seq analyses in liquid culture and rhizosphere have revealed that F1- and F3-T6SS are expressed under all conditions, indicating that they are active systems, while F2-T6SS did not show any relevant expression under the tested conditions. The analysis of structural mutants in the three T6SSs has shown that the active F1- and F3-T6SSs are involved in interbacterial killing while F2 is not active in these conditions and its role is still unknown.. A rhizosphere colonization analysis of the double mutant affected in the F1- and F3-T6SS clusters showed that the double mutant was severely impaired in persistence in the rhizosphere microbiome, revealing the importance of these two systems for rhizosphere adaption.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Patricia Bernal
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes, 6, 41012, Sevilla, Spain
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.
| |
Collapse
|
35
|
Moriel B, de Campos Prediger K, de Souza EM, Pedrosa FO, Fadel-Picheth CMT, Cruz LM. In silico comparative analysis of Aeromonas Type VI Secretion System. Braz J Microbiol 2021; 52:229-243. [PMID: 33410103 DOI: 10.1007/s42770-020-00405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aeromonas are bacteria broadly spread in the environment, particularly in aquatic habitats and can induce human infections. Several virulence factors have been described associated with bacterial pathogenicity, such as the Type VI Secretion System (T6SS). This system translocates effector proteins into target cells through a bacteriophage-like contractile structure encoded by tss genes. Here, a total of 446 Aeromonas genome sequences were screened for T6SS and the proteins subjected to in silico analysis. The T6SS-encoding locus was detected in 243 genomes and its genes are encoded in a cluster containing 13 core and 5 accessory genes, in highly conserved synteny. The amino acid residues identity of T6SS proteins ranges from 78 to 98.8%. In most strains, a pair of tssD and tssI is located upstream the cluster (tssD-2, tssI-2) and another pair was detected distant from the cluster (tssD-1, tssI-1). Significant variability was seen in TssI (VgrG) C-terminal region, which was sorted in four groups based on its sequence length and protein domains. TssI containing ADP-ribosyltransferase domain are associated exclusively with TssI-1, while genes coding proteins carrying DUF4123 (a conserved domain of unknown function) were observed downstream tssI-1 or tssI-2 and escort of possible effector proteins. Genes coding proteins containing DUF1910 and DUF1911 domains were located only downstream tssI-2 and might represent a pair of toxin/immunity proteins. Nearly all strains display downstream tssI-3, that codes for a lysozyme family domain protein. These data reveal that Aeromonas T6SS cluster synteny is conserved and the low identity observed for some genes might be due to species heterogeneity or its niche/functionality.
Collapse
Affiliation(s)
- Barbara Moriel
- Department of Clinical Analysis, Setor de Ciências da Saúde, Curitiba, Brazil
| | | | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | | | - Leonardo M Cruz
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil.
| |
Collapse
|
36
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
37
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
38
|
Multinucleated Giant Cell Formation as a Portal to Chronic Bacterial Infections. Microorganisms 2020; 8:microorganisms8111637. [PMID: 33113944 PMCID: PMC7690659 DOI: 10.3390/microorganisms8111637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
This review provides a snapshot of chronic bacterial infections through the lens of Burkholderia pseudomallei and detailing its ability to establish multi-nucleated giant cells (MNGC) within the host, potentially leading to the formation of pyogranulomatous lesions. We explore the role of MNGC in melioidosis disease progression and pathology by comparing the similarities and differences of melioidosis to tuberculosis, outline the concerted events in pathogenesis that lead to MNGC formation, discuss the factors that influence MNGC formation, and consider how they fit into clinical findings reported in chronic cases. Finally, we speculate about future models and techniques that can be used to delineate the mechanisms of MNGC formation and function.
Collapse
|
39
|
Saiprom N, Sangsri T, Tandhavanant S, Sengyee S, Phunpang R, Preechanukul A, Surin U, Tuanyok A, Lertmemongkolchai G, Chantratita W, West TE, Chantratita N. Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Negl Trop Dis 2020; 14:e0008590. [PMID: 32991584 PMCID: PMC7546507 DOI: 10.1371/journal.pntd.0008590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental bacterium that causes melioidosis. A facultative intracellular pathogen, B. pseudomallei can induce multinucleated giant cells (MNGCs) leading to plaque formation in vitro. B. pseudomallei can switch colony morphotypes under stress conditions. In addition, different isolates have been reported to have varying virulence in vivo, but genomic evolution and the relationship with plaque formation is poorly understood. METHODOLOGY/PRINCIPLE FINDINGS To gain insights into genetic underpinnings of virulence of B. pseudomallei, we screened plaque formation of 52 clinical isolates and 11 environmental isolates as well as 4 isogenic morphotype isolates of B. pseudomallei strains K96243 (types II and III) and 153 (types II and III) from Thailand in A549 and HeLa cells. All isolates except one environmental strain (A4) and K96243 morphotype II were able to induce plaque formation in both cell lines. Intracellular growth assay and confocal microscopy analyses demonstrated that the two plaque-forming-defective isolates were also impaired in intracellular replication, actin polymerization and MNGC formation in infected cells. Whole genome sequencing analysis and PCR revealed that both isolates had a large genomic loss on the same region in chromosome 2, which included Bim cluster, T3SS-3 and T6SS-5 genes. CONCLUSIONS/SIGNIFICANCE Our plaque screening and genomic studies revealed evidence of impairment in plaque formation in environmental isolates of B. pseudomallei that is associated with large genomic loss of genes important for intracellular multiplication and MNGC formation. These findings suggest that the genomic and phenotypic differences of environmental isolates may be associated with clinical infection.
Collapse
Affiliation(s)
- Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Uriwan Surin
- Department of Medical Laboratory, Nakhon Phanom Hospital, Nakhon Phanom, Thailand
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Department of Clinical Immunology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Kim N, Kim JJ, Kim I, Mannaa M, Park J, Kim J, Lee H, Lee S, Park D, Sul WJ, Seo Y. Type VI secretion systems of plant-pathogenic Burkholderia glumae BGR1 play a functionally distinct role in interspecies interactions and virulence. MOLECULAR PLANT PATHOLOGY 2020; 21:1055-1069. [PMID: 32643866 PMCID: PMC7368126 DOI: 10.1111/mpp.12966] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 05/02/2023]
Abstract
In the environment, bacteria show close association, such as interspecies interaction, with other bacteria as well as host organisms. The type VI secretion system (T6SS) in gram-negative bacteria is involved in bacterial competition or virulence. The plant pathogen Burkholderia glumae BGR1, causing bacterial panicle blight in rice, has four T6SS gene clusters. The presence of at least one T6SS gene cluster in an organism indicates its distinct role, like in the bacterial and eukaryotic cell targeting system. In this study, deletion mutants targeting four tssD genes, which encode the main component of T6SS needle formation, were constructed to functionally dissect the four T6SSs in B. glumae BGR1. We found that both T6SS group_4 and group_5, belonging to the eukaryotic targeting system, act independently as bacterial virulence factors toward host plants. In contrast, T6SS group_1 is involved in bacterial competition by exerting antibacterial effects. The ΔtssD1 mutant lost the antibacterial effect of T6SS group_1. The ΔtssD1 mutant showed similar virulence as the wild-type BGR1 in rice because the ΔtssD1 mutant, like the wild-type BGR1, still has key virulence factors such as toxin production towards rice. However, metagenomic analysis showed different bacterial communities in rice infected with the ΔtssD1 mutant compared to wild-type BGR1. In particular, the T6SS group_1 controls endophytic plant-associated bacteria such as Luteibacter and Dyella in rice plants and may have an advantage in competing with endophytic plant-associated bacteria for settlement inside rice plants in the environment. Thus, B. glumae BGR1 causes disease using T6SSs with functionally distinct roles.
Collapse
Affiliation(s)
- Namgyu Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Jin Ju Kim
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongKorea
| | - Inyoung Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Mohamed Mannaa
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Jungwook Park
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Juyun Kim
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | - Hyun‐Hee Lee
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| | | | | | - Woo Jun Sul
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongKorea
| | - Young‐Su Seo
- Department of Integrated Biological SciencePusan National UniversityBusanKorea
| |
Collapse
|
41
|
Chien CF, Liu CY, Lu YY, Sung YH, Chen KY, Lin NC. HSI-II Gene Cluster of Pseudomonas syringae pv. tomato DC3000 Encodes a Functional Type VI Secretion System Required for Interbacterial Competition. Front Microbiol 2020; 11:1118. [PMID: 32582082 PMCID: PMC7283901 DOI: 10.3389/fmicb.2020.01118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread bacterial nanoweapon used for delivery of toxic proteins into cell targets and contributes to virulence, anti-inflammatory processes, and interbacterial competition. In the model phytopathogenic bacterium Pseudomonas syringae pv. tomato (Pst) DC3000, two T6SS gene clusters, HSI-I and HSI-II, were identified, but their functions remain unclear. We previously reported that hcp2, located in HSI-II, is involved in competition with enterobacteria and yeast. Here, we demonstrated that interbacterial competition of Pst DC3000 against several Gram-negative plant-associated bacteria requires mainly HSI-II activity. By means of a systematic approach using in-frame deletion mutants for each gene in the HSI-II cluster, we identified genes indispensable for Hcp2 expression, Hcp2 secretion and interbacterial competition ability. Deletion of PSPTO_5413 only affected growth in interbacterial competition assays but not Hcp2 secretion, which suggests that PSPTO_5413 might be a putative effector. Moreover, PSPTO_5424, encoding a putative σ54-dependent transcriptional regulator, positively regulated the expression of all three operons in HSI-II. Our discovery that the HSI-II gene cluster gives Pst DC3000 the ability to compete with other plant-associated bacteria could help in understanding a possible mechanism of how phytopathogenic bacteria maintain their ecological niches.
Collapse
Affiliation(s)
- Ching-Fang Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ying Liu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yew-Yee Lu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - You-Hsing Sung
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Kuo-Yau Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Nai-Chun Lin
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L, Durán D, Ormeño-Orrillo E, Martínez-Romero E, Albareda M, Palacios JM, Rey L. The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis. FEMS Microbiol Ecol 2020; 95:5449006. [PMID: 30977796 DOI: 10.1093/femsec/fiz054] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/11/2019] [Indexed: 12/18/2022] Open
Abstract
The Type VI secretion systems (T6SSs) allow bacteria to translocate effector proteins to other bacteria or to eukaryotic cells. However, little is known about the role of T6SS in endosymbiotic bacteria. In this work we describe the T6SS of Rhizobium etli Mim1, a bacteria able to effectively nodulate common beans. Structural genes and those encoding possible effectors have been identified in a 28-gene DNA region of R. etli Mim1 pRetMIM1f plasmid. Immunodetection of Hcp protein, a conserved key structural component of T6SS systems, indicates that this secretion system is active at high cell densities, in the presence of root exudates, and in bean nodules. Rhizobium etli mutants affected in T6SS structural genes produced plants with lower dry weight and smaller nodules than the wild-type strain, indicating for the first time that the T6SS plays a positive role in Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Alvaro Salinero-Lanzarote
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alba Pacheco-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - David Durán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | - Marta Albareda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223 Madrid, Spain.,Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
43
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Jitprasutwit S, Jitprasutwit N, Hemsley CM, Onlamoon N, Withatanung P, Muangsombut V, Vattanaviboon P, Stevens JM, Ong C, Stevens MP, Titball RW, Korbsrisate S. Identification of Burkholderia pseudomallei Genes Induced During Infection of Macrophages by Differential Fluorescence Induction. Front Microbiol 2020; 11:72. [PMID: 32153515 PMCID: PMC7047822 DOI: 10.3389/fmicb.2020.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 12/05/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.
Collapse
Affiliation(s)
- Siroj Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nattawat Onlamoon
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Joanne M. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Ong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Mark P. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Repizo GD, Espariz M, Seravalle JL, Salcedo SP. Bioinformatic Analysis of the Type VI Secretion System and Its Potential Toxins in the Acinetobacter Genus. Front Microbiol 2019; 10:2519. [PMID: 31736933 PMCID: PMC6838775 DOI: 10.3389/fmicb.2019.02519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii as the species of greatest concern worldwide due to its multi-drug resistance and recent appearance of hyper-virulent strains in the clinical setting. Acinetobacter colonization of the environment and the host is associated with a multitude of factors which remain poorly characterized. Among them, the secretion systems (SS) encoded by Acinetobacter species confer adaptive advantages depending on the niche occupied. Different SS have been characterized in this group of microorganisms, including T6SS used by several Acinetobacter species to outcompete other bacteria and in some A. baumannii strains for Galleria mellonella colonization. Therefore, to better understand the distribution of the T6SS in this genus we carried out an in-depth comparative genomic analysis of the T6SS in 191 sequenced strains. To this end, we analyzed the gene content, sequence similarity, synteny and operon structure of each T6SS loci. The presence of a single conserved T6SS-main cluster (T6SS-1), with two different genetic organizations, was detected in the genomes of several ecologically diverse species. Furthermore, a second main cluster (T6SS-2) was detected in a subgroup of 3 species of environmental origin. Detailed analysis also showed an impressive genetic versatility in T6SS-associated islands, carrying VgrG, PAAR and putative toxin-encoding genes. This in silico study represents the first detailed intra-species comparative analysis of T6SS-associated genes in the Acinetobacter genus, that should contribute to the future experimental characterization of T6SS proteins and effectors.
Collapse
Affiliation(s)
- Guillermo D Repizo
- Departamento de Microbiologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR, CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Martín Espariz
- Departamento de Microbiologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR, CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Joana L Seravalle
- Departamento de Microbiologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Instituto de Biologia Molecular y Celular de Rosario (IBR, CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, University of Lyon, Lyon, France
| |
Collapse
|
46
|
Peptidyl-Prolyl Isomerase ppiB Is Essential for Proteome Homeostasis and Virulence in Burkholderia pseudomallei. Infect Immun 2019; 87:IAI.00528-19. [PMID: 31331957 DOI: 10.1128/iai.00528-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomallei ΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.
Collapse
|
47
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
48
|
Liebl D, Robert-Genthon M, Job V, Cogoni V, Attrée I. Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa. Front Microbiol 2019; 10:1615. [PMID: 31379775 PMCID: PMC6657622 DOI: 10.3389/fmicb.2019.01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/28/2019] [Indexed: 11/22/2022] Open
Abstract
The Gram-negative bacteria use the contractile multi-molecular structure, called the Type VI Secretion System (T6SS) to inject toxic products into eukaryotic and prokaryotic cells. In this study, we use fluorescent protein fusions and time-lapse microscopy imaging to study the assembly dynamics of the baseplate protein TssK in Pseudomonas aeruginosa T6SS. TssK formed transient higher-order structures that correlated with dynamics of sheath component TssB. Assembly of peri-membrane TssK structures occurred de novo upon contact with competing bacteria. We show that this assembly required presence of TagQ-TagR envelope sensors, activity of PpkA kinase and anchoring to the inner membrane via TssM. Disassembly and repositioning of TssK component was dependent on PppA phosphatase and indispensable for repositioning and deployment of the entire contractile apparatus toward a new target cell. We also show that TssE is necessary for correct elongation and stability of TssB-sheath, but not for TssK assembly. Therefore, in P. aeruginosa, assembly of the TssK-containing structure relays on the post-translational regulatory envelope module and acts as spatio-temporal marker for further recruitment and subsequent assembly of the contractile apparatus.
Collapse
Affiliation(s)
- David Liebl
- Univ. Grenoble Alpes, CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, INSERM, UMR-S 1036, CEA, Grenoble, France
| | - Mylène Robert-Genthon
- Univ. Grenoble Alpes, CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, INSERM, UMR-S 1036, CEA, Grenoble, France
| | - Viviana Job
- Univ. Grenoble Alpes, CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, INSERM, UMR-S 1036, CEA, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Valentina Cogoni
- Univ. Grenoble Alpes, CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, INSERM, UMR-S 1036, CEA, Grenoble, France
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, Bacterial Pathogenesis and Cellular Responses, ERL 5261, INSERM, UMR-S 1036, CEA, Grenoble, France
| |
Collapse
|
49
|
DeShazer D. A novel contact-independent T6SS that maintains redox homeostasis via Zn 2+ and Mn 2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiol Res 2019; 226:48-54. [PMID: 31284944 DOI: 10.1016/j.micres.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
The Burkholderia pseudomallei complex consists of six phylogenetically related Gram-negative bacterial species that include environmental saprophytes and mammalian pathogens. These microbes possess multiple type VI secretion systems (T6SS) that provide a fitness advantage in diverse niches by translocating effector molecules into prokaryotic and eukaryotic cells in a contact-dependent manner. Several recent studies have elucidated the regulation and function of T6SS-2, a novel contact-independent member of the T6SS family. Expression of the T6SS-2 gene cluster is repressed by OxyR, Zur and TctR and is activated by GvmR and reactive oxygen species (ROS). The last two genes of the T6SS-2 gene cluster encode a zincophore (TseZ) and a manganeseophore (TseM) that are exported into the extracellular milieu in a contact-independent fashion when microbes encounter oxidative stress. TseZ and TseM bind Zn2+ and Mn2+, respectively, and deliver them to bacteria where they provide protection against the lethal effects of ROS. The TonB-dependent transporters that interact with TseZ and TseM, and actively transport Zn2+ and Mn2+ across the outer membrane, have also been identified. Finally, T6SS-2 provides a contact-independent growth advantage in nutrient limited environments and is critical for virulence in Galleria mellonella larvae, but is dispensable for virulence in rodent models of infection.
Collapse
Affiliation(s)
- David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| |
Collapse
|
50
|
Kovacs-Simon A, Hemsley CM, Scott AE, Prior JL, Titball RW. Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC Microbiol 2019; 19:97. [PMID: 31092204 PMCID: PMC6521459 DOI: 10.1186/s12866-019-1469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
Background Burkholderia pseudomallei is a human pathogen causing severe infections in tropical and subtropical regions and is classified as a bio-threat agent. B. thailandensis strain E264 has been proposed as less pathogenic surrogate for understanding the interactions of B. pseudomallei with host cells. Results We show that, unlike B. thailandensis strain E264, the pattern of growth of B. thailandensis strain E555 in macrophages is similar to that of B. pseudomallei. We have genome sequenced B. thailandensis strain E555 and using the annotated sequence identified genes and proteins up-regulated during infection. Changes in gene expression identified more of the known B. pseudomallei virulence factors than changes in protein levels and used together we identified 16% of the currently known B. pseudomallei virulence factors. These findings demonstrate the utility of B. thailandensis strain E555 to study virulence of B. pseudomallei. Conclusions A weakness of studies using B. thailandensis as a surrogate for B. pseudomallei is that the strains used replicate at a slower rate in infected cells. We show that the pattern of growth of B. thailandensis strain E555 in macrophages closely mirrors that of B. pseudomallei. Using this infection model we have shown that virulence factors of B. pseudomallei can be identified as genes or proteins whose expression is elevated on the infection of macrophages. This finding confirms the utility of B. thailandensis strain E555 as a surrogate for B. pseudomallei and this strain should be used for future studies on virulence mechanisms. Electronic supplementary material The online version of this article (10.1186/s12866-019-1469-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Kovacs-Simon
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - C M Hemsley
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - A E Scott
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - J L Prior
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.,CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - R W Titball
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|