1
|
Dinh-Hung N, Mwamburi SM, Dong HT, Rodkhum C, Meemetta W, Linh NV, Mai HN, Dhar AK, Hirono I, Senapin S, Chatchaiphan S. Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish ( Betta splendens). Animals (Basel) 2024; 14:2833. [PMID: 39409782 PMCID: PMC11476334 DOI: 10.3390/ani14192833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
This study aims to genomically elucidate six isolates of rapidly growing non-tuberculous mycobacteria (RGM) derived from Siamese fighting fish (Betta splendens). These isolates had previously undergone phenotypic and biochemical characterization, antibiotic susceptibility testing, and in vivo virulence assessment. Initial DNA barcoding using the 16S rRNA sequence assigned these six isolates to five different species, namely Mycobacterium chelonae (BN1983), M. cosmeticum (BN1984 and N041), M. farcinogenes (SNSK5), M. mucogenicum (BN1956), and M. senegalense (BN1985). However, the identification relied solely on the highest percent identity of the 16S rRNA gene, raising concerns about the taxonomic ambiguity of these species. Comprehensive whole genome sequencing (WGS) and extended genomic comparisons using multilocus sequence typing (MLST), average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH) led to the reclassification of BN1985 and SNSK5 as M. conceptionense while confirming BN1983 as M. chelonae and BN1984 and N041 as M. cosmeticum. Notably, the analysis of the BN1956 isolate revealed a potential new species that is proposed here as M. mucogenicum subsp. phocaicum sp. nov. Common genes encoding "mycobacterial" virulence proteins, such as PE and PPE family proteins, MCE, and YrbE proteins, were detected in all six isolates. Two species, namely M. chelonae and M. cosmeticum, appear to have horizontally acquired T6SS-II (clpB), catalase (katA), GroEL (groel), and capsule (rmlb) from distantly related environmental bacteria such as Klebsiella sp., Neisseria sp., Clostridium sp., and Streptococcus sp. This study provides the first draft genome sequence of RGM isolates currently circulating in B. splendens and underscores the necessity of WGS for the identification and classification of mycobacterial species.
Collapse
Affiliation(s)
- Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Samuel Mwakisha Mwamburi
- Kenya Marine and Fisheries Research Institute, Mombasa 80100, Kenya;
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management (AARM), School of Environment, Resources and Development, Asian Institute of Technology (AIT), Pathum Thani 12120, Thailand;
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Watcharachai Meemetta
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Hung N. Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA; (N.D.-H.); (H.N.M.); (A.K.D.)
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan;
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
3
|
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Tayapiwatana C, Butr-Indr B. Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment. Antibiotics (Basel) 2023; 12:antibiotics12050852. [PMID: 37237755 DOI: 10.3390/antibiotics12050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Isoniazid (INH) is an antibiotic that is widely used to treat tuberculosis (TB). Adaptation to environmental stress is a survival strategy for Mycobacterium tuberculosis and is associated with antibiotic resistance development. Here, mycobacterial adaptation following INH treatment was studied using a multi-stress system (MS), which mimics host-derived stress. Mtb H37Rv (drug-susceptible), mono-isoniazid resistant (INH-R), mono-rifampicin resistant (RIF-R), and multidrug-resistant (MDR) strains were cultivated in the MS with or without INH. The expression of stress-response genes (hspX, tgs1, icl1, and sigE) and lipoarabinomannan (LAM)-related genes (pimB, mptA, mptC, dprE1, dprE2, and embC), which play important roles in the host-pathogen interaction, were measured using real-time PCR. The different adaptations of the drug-resistant (DR) and drug-susceptible (DS) strains were presented in this work. icl1 and dprE1 were up-regulated in the DR strains in the MS, implying their roles as markers of virulence and potential drug targets. In the presence of INH, hspX, tgs1, and sigE were up-regulated in the INH-R and RIF-R strains, while icl1 and LAM-related genes were up-regulated in the H37Rv strain. This study demonstrates the complexity of mycobacterial adaptation through stress response regulation and LAM expression in response to INH under the MS, which could potentially be applied for TB treatment and monitoring in the future.
Collapse
Affiliation(s)
- Manita Yimcharoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukanya Saikaew
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Usanee Wattananandkul
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sorasak Intorasoot
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Gilles-Gonzalez MA, Sousa EHS. Structures of biological heme-based sensors of oxygen. J Inorg Biochem 2023; 244:112229. [PMID: 37088047 DOI: 10.1016/j.jinorgbio.2023.112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Since their initial discovery some 30 years ago, heme-based O2 sensors have been extensively studied. Among many other lessons, we have learned that they have adapted a wide variety of folds to bind heme for O2 sensing, and they can couple those sensory domains to transducer domains with many different activities. There is no question that we have learned a great deal about those systems by solving X-ray structures of the truncated pieces of larger multi-domain proteins. All of the studies have, for example, hinted at the importance of protein residues, which were further investigated, usually by site-directed mutagenesis of the full-length proteins together with physico-chemical measurements and enzymatic studies. The biochemistry has suggested that the sensing functions of heme-based O2 sensors involve not only the entire proteins but also, and quite often, their associated regulatory partners and targets. Here we critically examine the state of knowledge for some well-studied sensors and discuss outstanding questions regarding their structures. For the near future, we may foresee many large complexes with sensor proteins being solved by cryo-EM, to enhance our understanding of their mechanisms.
Collapse
Affiliation(s)
- Marie-Alda Gilles-Gonzalez
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Eduardo H S Sousa
- Department of Organic and Inorganic Chemistry, Federal University of Ceara, Center for Sciences, Fortaleza, Ceará 60440-900, Brazil.
| |
Collapse
|
5
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Novel benzoic thiazolidin-4-one derivatives targeting DevR/DosR dormancy regulator of Mycobacterium tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection. mSphere 2022; 7:e0003322. [PMID: 35306876 PMCID: PMC9044949 DOI: 10.1128/msphere.00033-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its transcriptional response to environmental stresses through its transcriptional regulatory network (TRN). While many studies have sought to characterize specific portions of the M. tuberculosis TRN, and some studies have performed system-level analysis, few have been able to provide a network-based model of the TRN that also provides the relative shifts in transcriptional regulator activity triggered by changing environments. Here, we compiled a compendium of nearly 650 publicly available, high quality M. tuberculosis RNA-sequencing data sets and applied an unsupervised machine learning method to obtain a quantitative, top-down TRN. It consists of 80 independently modulated gene sets known as “iModulons,” 41 of which correspond to known regulons. These iModulons explain 61% of the variance in the organism’s transcriptional response. We show that iModulons (i) reveal the function of poorly characterized regulons, (ii) describe the transcriptional shifts that occur during environmental changes such as shifting carbon sources, oxidative stress, and infection events, and (iii) identify intrinsic clusters of regulons that link several important metabolic systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M. tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional regulation and presents a knowledge-enhanced database of all published high-quality RNA-seq data for this organism to date. IMPORTANCEMycobacterium tuberculosis H37Rv is one of the world's most impactful pathogens, and a large part of the success of the organism relies on the differential expression of its genes to adapt to its environment. The expression of the organism's genes is driven primarily by its transcriptional regulatory network, and most research on the TRN focuses on identifying and quantifying clusters of coregulated genes known as regulons. While previous studies have relied on molecular measurements, in the manuscript we utilized an alternative technique that performs machine learning to a large data set of transcriptomic data. This approach is less reliant on hypotheses about the role of specific regulatory systems and allows for the discovery of new biological findings for already collected data. A better understanding of the structure of the M. tuberculosis TRN will have important implications in the design of improved therapeutic approaches.
Collapse
|
8
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Pardoux R, Dolla A, Aubert C. Metal-containing PAS/GAF domains in bacterial sensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
10
|
Lopes LGF, Carvalho EM, Sousa EHS. A bioinorganic chemistry perspective on the roles of metals as drugs and targets against Mycobacterium tuberculosis - a journey of opportunities. Dalton Trans 2021; 49:15988-16003. [PMID: 32583835 DOI: 10.1039/d0dt01365j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.
Collapse
Affiliation(s)
- Luiz G F Lopes
- Group of Bioinorganic, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Brazil.
| | | | | |
Collapse
|
11
|
Nitric Oxide Signaling for Actinorhodin Production in Streptomyces coelicolor A3(2) via the DevS/R Two-Component System. Appl Environ Microbiol 2021; 87:e0048021. [PMID: 33990302 DOI: 10.1128/aem.00480-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule in eukaryotic and prokaryotic cells. A previous study revealed an NO synthase-independent NO production metabolic cycle in which the three nitrogen oxides, nitrate (NO3-), nitrite (NO2-), and NO, were generated in the actinobacterium Streptomyces coelicolor A3(2). NO was suggested to act as a signaling molecule, functioning as a hormone that regulates secondary metabolism. Here, we demonstrate the NO-mediated regulation of the production of the blue-pigmented antibiotic actinorhodin (ACT), via the heme-based DevS/R two-component system (TCS). Intracellular NO controls the stabilization or inactivation of DevS, depending on the NO concentration. An electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR analysis revealed the direct binding between DevR and the promoter region of actII-ORF4, resulting in gene expression. Our results indicate that NO regulates the DevS/R TCS, thereby strictly controlling the secondary metabolism of S. coelicolor A3(2). IMPORTANCE Diverse organisms, such as mammals, plants, and bacteria, utilize NO via well-known signal transduction mechanisms. Many useful secondary metabolite-producing bacteria of the Streptomyces genus had been also suggested for the metabolism regulated by endogenously produced NO; however, the regulatory mechanisms remain to be elucidated. In this study, we demonstrated the molecular mechanism by which endogenously produced NO regulates antibiotic production via the DevS/R TCS in S. coelicolor A3(2). NO serves as both a stabilizer and a repressor in the regulation of antibiotic production. This report shows the mechanism by which Streptomyces utilizes endogenously produced NO to modulate its normal life cycle. Moreover, this study implies that studying NO signaling in actinobacteria can help in the development of both clinical strategies against pathogenic actinomycetes and the actinobacterial industries.
Collapse
|
12
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
13
|
Hamidieh F, Farnia P, Nowroozi J, Farnia P, Velayati AA. An Overview of Genetic Information of Latent Mycobacterium tuberculosis. Tuberc Respir Dis (Seoul) 2020; 84:1-12. [PMID: 33121230 PMCID: PMC7801807 DOI: 10.4046/trd.2020.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis has infected more than two billion individuals worldwide, of whom 5%–10% have clinically active disease and 90%–95% remain in the latent stage with a reservoir of viable bacteria in the macrophages for extended periods of time. The tubercle bacilli at this stage are usually called dormant, non-viable, and/or non-culturable microorganisms. The patients with latent bacilli will not have clinical pictures and are not infectious. The infections in about 2%–23% of the patients with latent status become reactivated for various reasons such as cancer, human immunodeficiency virus infection, diabetes, and/or aging. Many studies have examined the mechanisms involved in the latent state of Mycobacterium and showed that latency modified the expression of many genes. Therefore, several mechanisms will change in this bacterium. Hence, this study aimed to briefly examine the genes involved in the latent state as well as the changes that are caused by Mycobacterium tuberculosis. The study also evaluated the relationship between the functions of these genes.
Collapse
Affiliation(s)
- Faezeh Hamidieh
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Nowroozi
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Garg R, Borbora SM, Bansia H, Rao S, Singh P, Verma R, Balaji KN, Nagaraja V. Mycobacterium tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front Cell Infect Microbiol 2020; 10:461. [PMID: 33042857 PMCID: PMC7525011 DOI: 10.3389/fcimb.2020.00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of Mycobacterium tuberculosis (Mtb) in the pathogen's interaction with the host. Among its uncanny ways of dealing with the host with umpteen strategies for survival and persistence in humans, CtpF is identified as a new player. The levels of ctpF are upregulated in macrophage stresses like hypoxia, high nitric oxide levels and acidic pH. Using confocal microscopy and fluorimetry, we show that CtpF effluxes calcium in macrophages in early stages of Mtb infection. Downregulation of ctpF expression by conditional knockdown resulted in perturbation of host calcium levels and consequent decreased activation of mTOR. We present a mechanism how calcium efflux by the pathogen inhibits mTOR-dependent autophagy and enhances bacterial survival. Our work highlights how Mtb engages its metal efflux pumps to exploit host autophagic process for its proliferation.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhya Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prakruti Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
15
|
Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis. Biochem J 2020; 477:1669-1682. [PMID: 32309848 DOI: 10.1042/bcj20200113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022]
Abstract
The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.
Collapse
|
16
|
Metabolic Switching of Mycobacterium tuberculosis during Hypoxia Is Controlled by the Virulence Regulator PhoP. J Bacteriol 2020; 202:JB.00705-19. [PMID: 31932312 DOI: 10.1128/jb.00705-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis retains the ability to establish an asymptomatic latent infection. A fundamental question in mycobacterial physiology is to understand the mechanisms involved in hypoxic stress, a critical player in persistence. Here, we show that the virulence regulator PhoP responds to hypoxia, the dormancy signal, and effectively integrates hypoxia with nitrogen metabolism. We also provide evidence to demonstrate that both under nitrogen limiting conditions and during hypoxia, phoP locus controls key genes involved in nitrogen metabolism. Consistently, under hypoxia a ΔphoP strain shows growth attenuation even with surplus nitrogen, the alternate electron acceptor, and complementation of the mutant restores bacterial growth. Together, our observations provide new biological insights into the role of PhoP in integrating nitrogen metabolism with hypoxia by the assistance of the hypoxia regulator DosR. The results have significant implications on the mechanism of intracellular survival and growth of the tubercle bacilli under a hypoxic environment within the phagosome.IMPORTANCE M. tuberculosis retains the unique ability to establish an asymptomatic latent infection. To understand the mechanisms involved in hypoxic stress which play a critical role in persistence, we show that the virulence regulator PhoP is linked to hypoxia, the dormancy signal. In keeping with this, phoP was shown to play a major role in M. tuberculosis growth under hypoxia even in the presence of surplus nitrogen, the alternate electron acceptor. Our results showing regulation of hypoxia-responsive genes provide new biological insights into role of the virulence regulator in metabolic switching by sensing hypoxia and integrating nitrogen metabolism with hypoxia by the assistance of the hypoxia regulator DosR.
Collapse
|
17
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
18
|
Zheng H, Williams JT, Aleiwi B, Ellsworth E, Abramovitch RB. Inhibiting Mycobacterium tuberculosis DosRST Signaling by Targeting Response Regulator DNA Binding and Sensor Kinase Heme. ACS Chem Biol 2020; 15:52-62. [PMID: 31556993 PMCID: PMC6970277 DOI: 10.1021/acschembio.8b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb) possesses a two-component
regulatory system, DosRST, that enables Mtb to sense host immune cues
and establish a state of nonreplicating persistence (NRP). NRP bacteria
are tolerant to several antimycobacterial drugs in vitro and are thought to play a role in the long course of tuberculosis
therapy. Previously, we reported the discovery of six novel chemical
inhibitors of DosRST, named HC101A–106A, from a whole cell,
reporter-based phenotypic high throughput screen. Here, we report
functional and mechanism of action studies of HC104A and HC106A. RNaseq
transcriptional profiling shows that the compounds downregulate genes
of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol
synthesis by ∼50%. HC106A inhibits Mtb survival during hypoxia-induced
NRP; however, HC104A did not inhibit survival during NRP. An electrophoretic
mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent
manner, indicating that HC104A may function by directly targeting
DosR. In contrast, UV–visible spectroscopy studies suggest
HC106A directly targets the sensor kinase heme, via a mechanism that
is distinct from the oxidation and alkylation of heme previously observed
with artemisinin (HC101A). Synergistic interactions were observed
when DosRST inhibitors were examined in pairwise combinations with
the strongest potentiation observed between artemisinin paired with
HC102A, HC103A, or HC106A. Our data collectively show that the DosRST
pathway can be inhibited by multiple distinct mechanisms.
Collapse
|
19
|
Gutti G, Arya K, Singh SK. Latent Tuberculosis Infection (LTBI) and Its Potential Targets: An Investigation into Dormant Phase Pathogens. Mini Rev Med Chem 2019; 19:1627-1642. [PMID: 31241015 DOI: 10.2174/1389557519666190625165512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/06/2018] [Accepted: 05/28/2018] [Indexed: 11/22/2022]
Abstract
One-third of the world's population harbours the latent tuberculosis infection (LTBI) with a lifetime risk of reactivation. Although, the treatment of LTBI relies significantly on the first-line therapy, identification of novel drug targets and therapies are the emerging focus for researchers across the globe. The current review provides an insight into the infection, diagnostic methods and epigrammatic explanations of potential molecular targets of dormant phase bacilli. This study also includes current preclinical and clinical aspects of tubercular infections and new approaches in antitubercular drug discovery.
Collapse
Affiliation(s)
- Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Karan Arya
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| |
Collapse
|
20
|
Nandi M, Sikri K, Chaudhary N, Mande SC, Sharma RD, Tyagi JS. Multiple transcription factors co-regulate the Mycobacterium tuberculosis adaptation response to vitamin C. BMC Genomics 2019; 20:887. [PMID: 31752669 PMCID: PMC6868718 DOI: 10.1186/s12864-019-6190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background Latent tuberculosis infection is attributed in part to the existence of Mycobacterium tuberculosis in a persistent non-replicating dormant state that is associated with tolerance to host defence mechanisms and antibiotics. We have recently reported that vitamin C treatment of M. tuberculosis triggers the rapid development of bacterial dormancy. Temporal genome-wide transcriptome analysis has revealed that vitamin C-induced dormancy is associated with a large-scale modulation of gene expression in M. tuberculosis. Results An updated transcriptional regulatory network of M.tuberculosis (Mtb-TRN) consisting of 178 regulators and 3432 target genes was constructed. The temporal transcriptome data generated in response to vitamin C was overlaid on the Mtb-TRN (vitamin C Mtb-TRN) to derive insights into the transcriptional regulatory features in vitamin C-adapted bacteria. Statistical analysis using Fisher’s exact test predicted that 56 regulators play a central role in modulating genes which are involved in growth, respiration, metabolism and repair functions. Rv0348, DevR, MprA and RegX3 participate in a core temporal regulatory response during 0.25 h to 8 h of vitamin C treatment. Temporal network analysis further revealed Rv0348 to be the most prominent hub regulator with maximum interactions in the vitamin C Mtb-TRN. Experimental analysis revealed that Rv0348 and DevR proteins interact with each other, and this interaction results in an enhanced binding of DevR to its target promoter. These findings, together with the enhanced expression of devR and Rv0348 transcriptional regulators, indicate a second-level regulation of target genes through transcription factor- transcription factor interactions. Conclusions Temporal regulatory analysis of the vitamin C Mtb-TRN revealed that there is involvement of multiple regulators during bacterial adaptation to dormancy. Our findings suggest that Rv0348 is a prominent hub regulator in the vitamin C model and large-scale modulation of gene expression is achieved through interactions of Rv0348 with other transcriptional regulators.
Collapse
Affiliation(s)
- Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Kriti Sikri
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Chaudhary
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.,Present address: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, 122413, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| |
Collapse
|
21
|
Kasempimolporn S, Areekul P, Thaveekarn W, Sutthisri R, Boonchang S, Sawangvaree A, Sitprija V. Application of transdermal patches with new skin test reagents for detection of latent tuberculosis. J Med Microbiol 2019; 68:1314-1319. [PMID: 31274404 DOI: 10.1099/jmm.0.001037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Current intradermal tuberculin skin tests for latent tuberculosis infection (LTBI) based on purified protein derivative (PPD) have poor specificity.Aims. Developing a better skin test antigen as well as a simple skin patch test may improve and facilitate diagnostic performance.Methodology. Defined recombinant antigens that were unique to Mycobacterium tuberculosis (MTB), including two potential latency-associated antigens (ESAT-6 and Rv2653c) and five DosR-encoded latency proteins (Rv1996, Rv2031c, Rv2032, DevR and Rv3716c), were used as diagnostic skin test reagents in comparison with a standard PPD. The performance of the skin tests based on the detection of delayed-type hypersensitivity (DTH) reaction in guinea pigs sensitized to MTB and M. bovis bacille Calmette-Guérin (BCG) vaccine was evaluated.Results. The latency antigens Rv1996, Rv2031c, Rv2032 and Rv2653c and the ESAT-6 protein elicited less reactive DTH skin responses in MTB-sensitized guinea pigs than those resulting from PPD, but elicited no response in BCG-vaccinated guinea pigs. The remaining two latency antigens (DevR and Rv3716c) elicited DTH responses in both groups of animals, as did PPD. The reactivity of PPD in BCG-vaccinated guinea pigs was greater than that of any of the selected skin test reagents. Using stronger concentrations of selected skin test reagents in the patch test led to increased DTH responses that were comparable to those elicited by PPD in guinea pigs sensitized with MTB.Conclusion. Transdermal application of defined purified antigens might be a promising method for LTBI screening.
Collapse
Affiliation(s)
- Songsri Kasempimolporn
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pannatat Areekul
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wichit Thaveekarn
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Rattana Sutthisri
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Supatsorn Boonchang
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Artikaya Sawangvaree
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Visith Sitprija
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Hu Q, Zhang J, Chen Y, Hu L, Li W, He ZG. Cyclic di-GMP co-activates the two-component transcriptional regulator DevR in Mycobacterium smegmatis in response to oxidative stress. J Biol Chem 2019; 294:12729-12742. [PMID: 31270210 DOI: 10.1074/jbc.ra119.008252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is an important second messenger in bacteria, and its regulatory network has been extensively studied. However, information regarding the activation mechanisms of its receptors remains limited. In this study, we characterized the two-component regulator DevR as a new c-di-GMP receptor and further uncovered a novel co-activation mechanism for effective regulation of DevR in mycobacteria. We show that high c-di-GMP levels induce the expression of the devR operon in Mycobacterium smegmatis and increase mycobacterial survival under oxidative stress. The deletion of either DevR or its two-component kinase DevS significantly weakened the stimulating effect of c-di-GMP on oxidative-stress tolerance of mycobacteria. We also found that DevR senses the c-di-GMP signal through its C-terminal structure and that c-di-GMP alone does not directly affect the DNA-binding activity of DevR. Strikingly, c-di-GMP stimulated DevR phosphorylation by the kinase DevS, thereby activating DevR's DNA-binding affinity. In summary, our results indicated that c-di-GMP triggers a phosphorylation-dependent mechanism that co-activates DevR's transcriptional activity. Our findings suggest a novel paradigm for the cross-talk between c-di-GMP signaling and two-component regulatory systems that activates transcription of stress-response genes in bacteria.
Collapse
Affiliation(s)
- Qingbin Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxun Zhang
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chen
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihua Hu
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zheng-Guo He
- From the National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
MnoSR Is a Bona Fide Two-Component System Involved in Methylotrophic Metabolism in Mycobacterium smegmatis. Appl Environ Microbiol 2019; 85:AEM.00535-19. [PMID: 31003982 DOI: 10.1128/aem.00535-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium smegmatis and several other mycobacteria are able to utilize methanol as the sole source of carbon and energy. We recently showed that N,N-dimethyl-p-nitrosoaniline (NDMA)-dependent methanol dehydrogenase (Mno) is essential for the growth of M. smegmatis on methanol. Although Mno from this bacterium shares high homology with other known methanol dehydrogenases, methanol metabolism in M. smegmatis differs significantly from that of other described methylotrophs. In this study, we dissect the regulatory mechanism involved in the methylotrophic metabolism in M. smegmatis We identify a two-component system (TCS), mnoSR, that is involved in the regulation of mno expression. We show that the MnoSR TCS is comprised of a sensor kinase (MnoS) and a response regulator (MnoR). Our results demonstrate that MnoS undergoes autophosphorylation and is able to transfer its phosphate to MnoR by means of phosphotransferase activity. Furthermore, MnoR shows specific binding to the putative mno promoter region in vitro, thus suggesting its role in the regulation of mno expression. Additionally, we find that the MnoSR system is involved in the regulation of MSMEG_6239, which codes for a putative 1,3-propanediol dehydrogenase. We further show that M. smegmatis lacking mnoSR is unable to utilize methanol and 1,3-propanediol as the sole carbon source, which confirms the role of MnoSR in the regulation of alcohol metabolism. Our data, thus, suggest that the regulation of mno expression in M. smegmatis provides new insight into the regulation of methanol metabolism, which furthers our understanding of methylotrophy in mycobacteria.IMPORTANCE Methylotrophic metabolism has gained huge attention considering its broad application in ecology, agriculture, industries, and human health. The genus Mycobacterium comprises both pathogenic and nonpathogenic species. Several members of this genus are known to utilize methanol as the sole carbon source for growth. Although various pathways underlying methanol utilization have been established, the regulation of methylotrophic metabolism is not well studied. In the present work, we explore the regulation of methanol metabolism in M. smegmatis and discover a dedicated two-component system (TCS), MnoSR, that is involved in its regulation. We show that the loss of MnoSR renders the bacterium incapable of utilizing methanol and 1,3-propanediol as the sole carbon sources. Additionally, we establish that MnoS acts as the common sensor for the alcohols in M. smegmatis.
Collapse
|
24
|
Singh KK, Bhardwaj N, Sankhe GD, Udaykumar N, Singh R, Malhotra V, Saini DK. Acetylation of Response Regulator Proteins, TcrX and MtrA in M. tuberculosis Tunes their Phosphotransfer Ability and Modulates Two-Component Signaling Crosstalk. J Mol Biol 2019; 431:777-793. [DOI: 10.1016/j.jmb.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 01/31/2023]
|
25
|
Sharma S, Kumari P, Vashist A, Kumar C, Nandi M, Tyagi JS. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design. Mol Microbiol 2019; 111:1182-1194. [PMID: 30589958 DOI: 10.1111/mmi.14196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Priyanka Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and other Mycobacterial Diseases, Tajganj, Agra, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Chanchal Kumar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Malobi Nandi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Haryana, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
26
|
Lobão JBDS, Gondim ACS, Guimarães WG, Gilles‐Gonzalez M, Lopes LGDF, Sousa EHS. Oxygen triggers signal transduction in the DevS (DosS) sensor of
Mycobacterium tuberculosis
by modulating the quaternary structure. FEBS J 2019; 286:479-494. [DOI: 10.1111/febs.14734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Josiane Bezerra da Silva Lobão
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Ana C. S. Gondim
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Wellinson G. Guimarães
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | | | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Eduardo H. S. Sousa
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| |
Collapse
|
27
|
Ganief N, Sjouerman J, Albeldas C, Nakedi KC, Hermann C, Calder B, Blackburn JM, Soares NC. Associating H 2O 2-and NO-related changes in the proteome of Mycobacterium smegmatis with enhanced survival in macrophage. Emerg Microbes Infect 2018; 7:212. [PMID: 30546046 PMCID: PMC6292918 DOI: 10.1038/s41426-018-0210-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Mycobacterium manages to evade the host cell immune system, partially owing to its ability to survive redox stress after macrophage engulfment. Exposure to redox stress has been linked to later replication, persistence, and latent infection. In this work, mass spectrometry was used to elucidate the cell-wide changes that occur in response to sublethal doses of hydrogen peroxide and nitric oxide over time, with Mycobacterium smegmatis being used as a model organism. A total of 3135 proteins were confidently assigned, of which 1713, 1674, and 1713 were identified under NO, H2O2, and control conditions, respectively. Both treatment conditions resulted in changes of protein expression from the DosR regulon as well as those related to lipid metabolism. Complementary to the changes in the proteome, sublethal exposure to NO and H2O2 improved the survival of the bacteria after macrophage infection. Our data indicate that pre-exposure to sublethal doses of these redox stressors causes an alteration in the expression of proteins related to lipid metabolism, suggesting a link between altered lipid metabolism and enhanced survival in macrophages.
Collapse
Affiliation(s)
- Naadir Ganief
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Jessica Sjouerman
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Claudia Albeldas
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Kehilwe C Nakedi
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Clemens Hermann
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Bridget Calder
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Nelson C Soares
- Division of Chemical & System Biology, Department of Integrative Biomedical Science, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Davlieva M, Wu C, Zhou Y, Arias CA, Shamoo Y. Two Mutations Commonly Associated with Daptomycin Resistance in Enterococcus faecium LiaS T120A and LiaR W73C Appear To Function Epistatically in LiaFSR Signaling. Biochemistry 2018; 57:6797-6805. [PMID: 30403130 DOI: 10.1021/acs.biochem.8b01072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyclic antimicrobial lipopeptide daptomycin is now frequently used as a first-line therapy in serious infections caused by multidrug-resistant Enterococcus faecium. Resistance to daptomycin in E. faecium is mediated by activation of the LiaFSR membrane stress response pathway. Deletion of liaR, encoding the response regulator of the system, restores susceptibility to daptomycin, suggesting that the LiaFSR pathway is a potential target for the development of drugs that would induce hypersusceptibility to daptomycin and make it more difficult for enterococci to become daptomycin-resistant. In clinical isolates of E. faecium, substitutions in the membrane-bound histidine kinase LiaS (T120A) and its response regulator LiaR (W73C) are found together, suggesting a potential epistatic relationship in daptomycin resistance. Using in vitro phosphorylation studies, we show that while the phosphotransfer rate of wild-type LiaS and LiaST120A to either wild-type LiaR or LiaRW73C remains rapid and comparable, the LiaS-dependent dephosphorylation rate of phosphorylated LiaRW73C is markedly higher. When the two adaptive mutants LiaRW73C and LiaST210A are paired, however, LiaS-mediated LiaR dephosphorylation is restored back to wild-type levels. Taken together with earlier work showing that LiaRW73C leads to an increased level of oligomerization and subsequently favors an increased level of transcription of the LiaFSR regulon, the net effect of the two commonly found LiaST120A and LiaRW73C alleles would be to coordinately increase the strength and persistence of LiaFSR signaling and decrease daptomycin susceptibility. The in vitro approaches developed in this work also provide the basis for screens for identifying drug candidates that inhibit the LiaFSR pathway.
Collapse
Affiliation(s)
- Milya Davlieva
- Department of Biosciences , Rice University , Houston , Texas 77005 , United States
| | - Chelsea Wu
- Department of Biosciences , Rice University , Houston , Texas 77005 , United States
| | - Yue Zhou
- Department of Biosciences , Rice University , Houston , Texas 77005 , United States
| | - Cesar A Arias
- Core for Biomolecular Structure and Function, Department of Genomic Medicine , The University of Texas M. D. Anderson Cancer Center , Houston , Texas 77054 , United States.,Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Department of Microbiology and Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Center for Infectious Diseases, School of Public Health , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá 110121 , Colombia
| | - Yousif Shamoo
- Department of Biosciences , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
29
|
Vashist A, Malhotra V, Sharma G, Tyagi JS, Clark-Curtiss JE. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis. J Biol Chem 2018; 293:16413-16425. [PMID: 30181216 PMCID: PMC6200940 DOI: 10.1074/jbc.ra118.004331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Indexed: 11/06/2022] Open
Abstract
The DevR response regulator of Mycobacterium tuberculosis is an established regulator of the dormancy response in mycobacteria and can also be activated during aerobic growth conditions in avirulent strains, suggesting a complex regulatory system. Previously, we reported culture medium-specific aerobic induction of the DevR regulon genes in avirulent M. tuberculosis H37Ra that was absent in the virulent H37Rv strain. To understand the underlying basis of this differential response, we have investigated aerobic expression of the Rv3134c-devR-devS operon using M. tuberculosis H37Ra and H37Rv devR overexpression strains, designated as LIX48 and LIX50, respectively. Overexpression of DevR led to the up-regulation of a large number of DevR regulon genes in aerobic cultures of LIX48, but not in LIX50. To ascertain the involvement of PhoP response regulator, also known to co-regulate a subset of DevR regulon genes, we complemented the naturally occurring mutant phoPRa gene of LIX48 with the WT phoPRv gene. PhoPRv dampened the induced expression of the DevR regulon by >70-80%, implicating PhoP in the negative regulation of devR expression. Electrophoretic mobility shift assays confirmed phosphorylation-independent binding of PhoPRv to the Rv3134c promoter and further revealed that DevR and PhoPRv proteins exhibit differential DNA binding properties to the target DNA. Through co-incubations with DNA, ELISA, and protein complementation assays, we demonstrate that DevR forms a heterodimer with PhoPRv but not with the mutant PhoPRa protein. The study puts forward a new possible mechanism for coordinated expression of the dormancy regulon, having implications in growth adaptations critical for development of latency.
Collapse
Affiliation(s)
- Atul Vashist
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- From the Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Gunjan Sharma
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- the Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Josephine E Clark-Curtiss
- the Center for Infectious Diseases and Vaccinology, Biodesign Institute, and
- the School of Life Sciences, Arizona State University, Tempe, Arizona 85287, and
| |
Collapse
|
30
|
Maarsingh JD, Haydel SE. Mycobacterium smegmatis PrrAB two-component system influences triacylglycerol accumulation during ammonium stress. Microbiology (Reading) 2018; 164:1276-1288. [DOI: 10.1099/mic.0.000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jason D. Maarsingh
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shelley E. Haydel
- 2Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
31
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
32
|
Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia. Emerg Microbes Infect 2018; 7:108. [PMID: 29899473 PMCID: PMC5999986 DOI: 10.1038/s41426-018-0112-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 11/08/2022]
Abstract
The DosR regulon is believed to be a key factor in latency adaptation of Mycobacterium tuberculosis and is strongly induced by multiple stresses, including hypoxia. Previous studies have revealed reversible acetylation of the conserved core DNA-binding lysine residue 182 (K182) of DosR in M. tuberculosis. In this study, we demonstrated that acetylated K182 plays an important role in the DNA-binding ability of DosR and that acetylation of K182 completely abolished the affinity of DosR for DNA in vitro. Antibodies that specifically recognized acetyllysine at position 182 of DosR were used to monitor DosR acetylation. We found that in vitro acetylation of K182 could be removed by deacetylase Rv1151c and that either the deacetylase-deletion strain ∆npdA or treatment with a deacetylase inhibitor resulted in increased levels of K182 acetylation in vivo. The physiological significance of DosR acetylation was demonstrated by decreased levels of acetylated K182 in M. tuberculosis in response to hypoxia and by the effects of K182 acetylation on the transcript levels of DosR regulon genes. Since the DosR regulon plays a critical role during host infection by M. tuberculosis, our findings suggest that targeting DosR acetylation may be a viable strategy for antituberculosis drug development.
Collapse
|
33
|
Kundu M. The role of two-component systems in the physiology of Mycobacterium tuberculosis. IUBMB Life 2018; 70:710-717. [PMID: 29885211 DOI: 10.1002/iub.1872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis is a global health problem, with a third of the world's population infected with the bacillus, Mycobacterium tuberculosis. The problem is exacerbated by the emergence of multidrug resistant and extensively drug resistant strains. The search for new drug targets is therefore a priority for researchers in the field. The two-component systems (TCSs) are central to the ability of the bacterium to sense and to respond appropriately to its environment. Here we summarize current knowledge on the paired TCSs of M. tuberculosis. We discuss what is currently understood regarding the signals to which each of the sensor kinases responds, and the regulons of each of the cognate response regulators. We also discuss what is known regarding attempts to inhibit the TCSs by small molecules and project their potential as pharmacological targets for the development of novel antimycobacterial agents. © 2018 IUBMB Life, 70(8):710-717, 2018.
Collapse
|
34
|
Adipocyte Model of Mycobacterium tuberculosis Infection Reveals Differential Availability of Iron to Bacilli in the Lipid-Rich Caseous Environment. Infect Immun 2018; 86:IAI.00041-18. [PMID: 29632245 PMCID: PMC5964510 DOI: 10.1128/iai.00041-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis, a successful human pathogen, utilizes multiple carbon sources from the host but adapts to a fatty-acid-rich environment in vivo. We sought to delineate the physiologic response of M. tuberculosis to a lipid-rich environment by using differentiated adipocytes as a model system. Global transcriptome profiling based on RNA sequencing was performed for bacilli from infected adipocytes and preadipocytes. Genes involved in de novo fatty acid synthesis were downregulated, while those predicted to be involved in triglyceride biosynthesis were upregulated, in bacilli isolated from adipocytes, indicating reliance on host-derived fatty acids. Transcription factor network analysis indicated suppression of IdeR-regulated genes, suggesting decreased iron uptake by M. tuberculosis in the adipocyte model. This suppression of iron uptake coincided with higher ferritin and iron levels in adipocytes than in preadipocytes. In accord with the role of iron in mediating oxidative stress, we observed upregulation of genes involved in mitigating oxidative stress in M. tuberculosis isolated from adipocytes. We provide evidence that oleic acid, a major host-derived fatty acid, helps reduce the bacterial cytoplasm, thereby providing a safe haven for an M. tuberculosis mutant that is sensitive to iron-mediated oxidative stress. Via an independent mechanism, host ferritin is also able to rescue the growth of this mutant. Our work highlights the inherent synergy between macronutrients and micronutrients of the host environment that converge to provide resilience to the pathogen. This complex synergy afforded by the adipocyte model of infection will aid in the identification of genes required by M. tuberculosis in a caseous host environment.
Collapse
|
35
|
Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, Thwaites GE, Thuong NTT. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol 2018; 8:2681. [PMID: 29379477 PMCID: PMC5770828 DOI: 10.3389/fmicb.2017.02681] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mycobacteria have several unique cellular characteristics, such as multiple cell envelope layers, elongation at cell poles, asymmetric cell division, and accumulation of intracytoplasmic lipid inclusions, which contributes to their survival under stress conditions. However, the understanding of these characteristics in clinical Mycobacterium tuberculosis (M. tuberculosis) isolates and under host stress is limited. We previously reported the influence of host stress on the cell length distribution in a large set of clinical M. tuberculosis isolates (n = 158). Here, we investigate the influence of host stress on the cellular ultrastructure of few clinical M. tuberculosis isolates (n = 8) from that study. The purpose of this study is to further understand the influence of host stress on the cellular adaptations of clinical M. tuberculosis isolates. Methods: We selected few M. tuberculosis isolates (n = 8) for analyzing the cellular ultrastructure ex vivo in sputum and under in vitro stress conditions by transmission electron microscopy. The cellular adaptations of M. tuberculosis in sputum were correlated with the ultrastructure of antibiotic sensitive and resistant isolates in liquid culture, under oxidative stress, iron deficiency, and exposure to isoniazid. Results: In sputum, M. tuberculosis accumulated intracytoplasmic lipid inclusions. In liquid culture, clinical M. tuberculosis revealed isolate to isolate variation in the extent of intracytoplasmic lipid inclusions, which were absent in the laboratory strain H37Rv. Oxidative stress, iron deficiency, and exposure to isoniazid increased the accumulation of lipid inclusions and decreased the thickness of the cell envelope electron transparent layer in M. tuberculosis cells. Furthermore, intracytoplasmic compartments were observed in iron deficient cells. Conclusion: Our ultrastructural analysis has revealed significant influence of host stress on the cellular adaptations in clinical M. tuberculosis isolates. These adaptations may contribute to the survival of M. tuberculosis under host and antibiotic stress conditions. Variation in the cellular adaptations among clinical M. tuberculosis isolates may correlate with their ability to persist in tuberculosis patients during antibiotic treatment. These observations indicate the need for further analyzing these cellular adaptations in a large set of clinical M. tuberculosis isolates. This will help to determine the significance of these cellular adaptations in the tuberculosis treatment.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nguyen H Phu
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Sousa EHS, Gonzalez G, Gilles-Gonzalez MA. Target DNA stabilizes Mycobacterium tuberculosis DevR/DosR phosphorylation by the full-length oxygen sensors DevS/DosS and DosT. FEBS J 2017; 284:3954-3967. [PMID: 28977726 DOI: 10.1111/febs.14284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis strongly relies on a latency, or nonreplicating persistence, to escape a human host's immune system. The DevR (DosR), DevS (DosS), and DosT proteins are key components of this process. Like the rhizobial FixL oxygen sensor, DevS and DosT are histidine protein kinases with a heme-binding domain. Like the FixJ partner and substrate of FixL, DevR is a classical response regulator of the two-component class. When activated by DevS or DosT during hypoxia in vivo, DevR induces a dormancy regulon of more than 40 genes. To investigate the contributions of DevS, DosT, and target DNA to the phosphorylation of DevR, we developed an in vitro assay in which the full-length, sensing, DevS and DosT proteins were used to phosphorylate DevR with ATP, in the presence of target DNAs that were introduced as oligonucleotides linked to magnetic nanoparticles. We found that the DevR phosphorylations proceeded only for the deoxy states of the sensors. The reaction was strongly inhibited by O2 , but not CO or NO. The production of phospho-DevR was enhanced sixfold by target consensus DNA or acr-DNA. The phospho-DevR bound tightly to that DNA (Kd ~ 0.8 nm toward acr-DNA), and it was only slightly displaced by a 200-fold excess of unphosphorylated DevR or of a truncated DevR with only a DNA-binding domain. To our knowledge, this represents the first in vitro study of the ligand regulation of DevR phosphorylation by full-length DevS and DosT, and demonstration of a positive effect of DNA on this reaction.
Collapse
Affiliation(s)
- Eduardo H S Sousa
- Laboratory of Bioinorganic Chemistry, Department of Organic and Inorganic Chemistry, Federal University of Ceara, Center for Sciences, Fortaleza, Brazil
| | - Gonzalo Gonzalez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
37
|
Duncan C, Jamieson FB, Troudt J, Izzo L, Bielefeldt-Ohmann H, Izzo A, Mehaffy C. Whole transcriptomic and proteomic analyses of an isogenic M. tuberculosis clinical strain with a naturally occurring 15 Kb genomic deletion. PLoS One 2017; 12:e0179996. [PMID: 28650996 PMCID: PMC5484546 DOI: 10.1371/journal.pone.0179996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis remains one of the most difficult to control infectious diseases in the world. Many different factors contribute to the complexity of this disease. These include the ability of the host to control the infection which may directly relate to nutritional status, presence of co-morbidities and genetic predisposition. Pathogen factors, in particular the ability of different Mycobacterium tuberculosis strains to respond to the harsh environment of the host granuloma, which includes low oxygen and nutrient availability and the presence of damaging radical oxygen and nitrogen species, also play an important role in the success of different strains to cause disease. In this study we evaluated the impact of a naturally occurring 12 gene 15 Kb genomic deletion on the physiology and virulence of M. tuberculosis. The strains denominated ON-A WT (wild type) and ON-A NM (natural mutant) were isolated from a previously reported TB outbreak in an inner city under-housed population in Toronto, Canada. Here we subjected these isogenic strains to transcriptomic (via RNA-seq) and proteomic analyses and identified several gene clusters with differential expression in the natural mutant, including the DosR regulon and the molybdenum cofactor biosynthesis genes, both of which were found in lower abundance in the natural mutant. We also demonstrated lesser virulence of the natural mutant in the guinea pig animal model. Overall, our findings suggest that the ON-A natural mutant is less fit to cause disease, but nevertheless has the potential to cause extended transmission in at-risk populations.
Collapse
Affiliation(s)
| | - Frances B. Jamieson
- Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - JoLynn Troudt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Linda Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, University of Queensland, Gatton, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, St Lucia, QLD, Australia
| | - Angelo Izzo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - Carolina Mehaffy
- Public Health Ontario, Toronto, ON, Canada
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
38
|
Unique Regulation of the DosR Regulon in the Beijing Lineage of Mycobacterium tuberculosis. J Bacteriol 2016; 199:JB.00696-16. [PMID: 27799329 DOI: 10.1128/jb.00696-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
The DosR regulon, a set of 48 genes normally expressed in Mycobacterium tuberculosis under conditions that inhibit aerobic respiration, is controlled via the DosR-DosS/DosT two-component system. While the regulon requires induction in most M. tuberculosis isolates, for members of the Beijing lineage, its expression is uncoupled from the need for signaling. In our attempts to understand the mechanistic basis for this uncoupling in the Beijing background, we previously reported the identification of two synonymous single-nucleotide polymorphisms (SNPs) within the adjacent Rv3134c gene. In the present study, we have interrogated the impact of these SNPs on dosR expression in wild-type strains, as well as a range of dosR-dosS-dosT mutants, for both Beijing and non-Beijing M. tuberculosis backgrounds. In this manner, we have unequivocally determined that the C601T dosR promoter SNP is the sole requirement for the dramatic shift in the pattern of DosR regulon expression seen in this globally important lineage. Interestingly, we also show that DosT is completely nonfunctional within these strains. Thus, a complex series of evolutionary steps has led to the present-day Beijing DosR phenotype that, in turn, potentially confers a fitness advantage in the face of some form of host-associated selective pressure. IMPORTANCE Mycobacterium tuberculosis strains of the Beijing lineage have been described as being of enhanced virulence compared to other lineages, and in certain regions, they are associated with the dramatic spread of multidrug-resistant tuberculosis (TB). In terms of trying to understand the functional basis for these broad epidemiological phenomena, it is interesting that, in contrast to the other major lineages, the Beijing strains all constitutively overexpress members of the DosR regulon. Here, we identify the mutational events that led to the evolution of this unique phenotype. In addition, our work highlights the fact that important phenotypic differences exist between distinct M. tuberculosis lineages, with the potential to impact the efficacy of diagnosis, vaccination, and treatment programs.
Collapse
|
39
|
McLean KJ, Munro AW. Drug targeting of heme proteins in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:566-575. [PMID: 27856345 DOI: 10.1016/j.drudis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
TB, caused by the human pathogen Mycobacterium tuberculosis (Mtb), causes more deaths than any other infectious disease. Iron is crucial for Mtb to infect the host and to sustain infection, with Mtb encoding large numbers of iron-binding proteins. Many of these are hemoproteins with key roles, including defense against oxidative stress, cellular signaling and regulation, host cholesterol metabolism, and respiratory processes. Various heme enzymes in Mtb are validated drug targets and/or products of genes essential for bacterial viability or survival in the host. Here, we review the structure, function, and druggability of key Mtb heme enzymes and strategies used for their inhibition.
Collapse
Affiliation(s)
- Kirsty J McLean
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew W Munro
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
40
|
Liu Z, Gao Y, Yang H, Bao H, Qin L, Zhu C, Chen Y, Hu Z. Impact of Hypoxia on Drug Resistance and Growth Characteristics of Mycobacterium tuberculosis Clinical Isolates. PLoS One 2016; 11:e0166052. [PMID: 27835653 PMCID: PMC5106006 DOI: 10.1371/journal.pone.0166052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.
Collapse
Affiliation(s)
- Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yulu Gao
- Department of Laboratory Medicine, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Bao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changtai Zhu
- Department of Transfusion, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail: (CTZ); (YWC); (ZYH)
| | - Yawen Chen
- Department of Nursing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail: (CTZ); (YWC); (ZYH)
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (CTZ); (YWC); (ZYH)
| |
Collapse
|
41
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
42
|
Sharma S, Tyagi JS. Mycobacterium tuberculosis DevR/DosR Dormancy Regulator Activation Mechanism: Dispensability of Phosphorylation, Cooperativity and Essentiality of α10 Helix. PLoS One 2016; 11:e0160723. [PMID: 27490491 PMCID: PMC4973870 DOI: 10.1371/journal.pone.0160723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
DevR/DosR is a well-characterized regulator in Mycobacterium tuberculosis which is implicated in various processes ranging from dormancy/persistence to drug tolerance. DevR induces the expression of an ~48-gene dormancy regulon in response to gaseous stresses, including hypoxia. Strains of the Beijing lineage constitutively express this regulon, which may confer upon them a significant advantage, since they would be ‘pre-adapted’ to the environmental stresses that predominate during infection. Aerobic DevR regulon expression in laboratory-manipulated overexpression strains is also reported. In both instances, the need for an inducing signal is bypassed. While a phosphorylation-mediated conformational change in DevR was proposed as the activation mechanism under hypoxia, the mechanism underlying constitutive expression is not understood. Because DevR is implicated in bacterial dormancy/persistence and is a promising drug target, it is relevant to resolve the mechanistic puzzle of hypoxic activation on one hand and constitutive expression under ‘non-inducing’ conditions on the other. Here, an overexpression strategy was employed to elucidate the DevR activation mechanism. Using a panel of kinase and transcription factor mutants, we establish that DevR, upon overexpression, circumvents DevS/DosT sensor kinase-mediated or small molecule phosphodonor-dependent activation, and also cooperativity-mediated effects, which are key aspects of hypoxic activation mechanism. However, overexpression failed to rescue the defect of C-terminal-truncated DevR lacking the α10 helix, establishing the α10 helix as an indispensable component of DevR activation mechanism. We propose that aerobic overexpression of DevR likely increases the concentration of α10 helix-mediated active dimer species to above the threshold level, as during hypoxia, and enables regulon expression. This advance in the understanding of DevR activation mechanism clarifies a long standing question as to the mechanism of DevR overexpression-mediated induction of the regulon in the absence of the normal environmental cue and establishes the α10 helix as an universal and pivotal targeting interface for DevR inhibitor development.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail: ;
| |
Collapse
|
43
|
Kaur K, Kumari P, Sharma S, Sehgal S, Tyagi JS. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression inMycobacterium tuberculosis. FEBS J 2016; 283:2949-62. [DOI: 10.1111/febs.13787] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Kohinoor Kaur
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Priyanka Kumari
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Saurabh Sharma
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Snigdha Sehgal
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
44
|
Saini DK, Tyagi JS. High-Throughput Microplate Phosphorylation Assays Based on DevR-DevS/Rv2027c 2-Component Signal Transduction Pathway to Screen for Novel Antitubercular Compounds. ACTA ACUST UNITED AC 2016; 10:215-24. [PMID: 15809317 DOI: 10.1177/1087057104272090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DevR-DevS (Rv3133c-Rv3132c) and DevR-Rv2027c have been established through their autophosphorylation and phospho-transfer properties to constitute bonafide regulatory 2-component systems of Mycobacterium tuberculosis. DevR has also been shown by others to play a key regulatory role in the expression of M. tuberculosis genes comprising the dormancy regulon. The authors describe high-throughput phosphorylation assays in a microplate format using DevS and Rv2027c histidine kinases and DevR response regulator proteins from M. tuberculosis. The assays were designed to measure [γ-32P]ATP-dependent autophosphorylation of DevS/Rv2027c and also the phosphotransfer reaction to DevR. First, the optimal reaction conditions were established using the conventional method of radiolabeling the 2-component proteins by [γ-32P]ATP and followed by gel electrophoresis-based analysis. Next, the assays were converted to a high-throughput format in which the radiolabeled protein retained on a filter using mixed cellulose ester-based 96-well filter plates was analyzed for radioactivity retention by scintillation counting. The utility of these assays to screen for inhibitors is illustrated using 2-mercaptobenzimidazole, ethidium bromide, and EDTA. The high quality and flexibility of these assays will enable their use in high-throughput screening for new antitubercular compounds directed against 2-component systems that comprise a novel target in dormant mycobacteria.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110-029, India
| | | |
Collapse
|
45
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
Kirtania P, Ghosh S, Bhawsinghka N, Chakladar M, Das Gupta SK. Vitamin C induced DevR-dependent synchronization of Mycobacterium smegmatis growth and its effect on the proliferation of mycobacteriophage D29. FEMS Microbiol Lett 2016; 363:fnw097. [PMID: 27190284 DOI: 10.1093/femsle/fnw097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 01/18/2023] Open
Abstract
Vitamin C is known to inhibit mycobacterial growth by acting as a hypoxia inducing agent. While investigating how mycobacteriophage growth is influenced by hypoxic conditions induced by vitamin C, using Mycobacterium smegmatis- mycobacteriophage D29 as a model system, it was observed that prior exposure of the host to such conditions resulted in increased burst size of the phage. Vitamin C pre-exposure was also found to induce synchronous growth of the host. A mutant defective in DevR, the response regulator that controls hypoxic responses in mycobacteria, neither supported higher phage bursts nor was it able to undergo synchronized growth following vitamin C pre-exposure, indicating thereby that the two phenomena are interrelated. Further evidence supporting such an interrelationship was obtained from the observation that phage burst sizes varied depending on the stage of synchronous growth that the host cells were in, at the time of infection-higher bursts were observed in the resting/synthetic phases and lower in the dividing ones. The effects were specific in nature as synchronization by an unrelated method, known as 'crowding', did not lead to the same consequence. The results indicate that growth synchronization induced by vitamin C treatment is a DevR-dependent phenomenon which is exploited by mycobacteriophage D29 to grow in larger numbers.
Collapse
Affiliation(s)
- Prithwiraj Kirtania
- Bose Institute, Department Of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Shreya Ghosh
- Bose Institute, Department Of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Niketa Bhawsinghka
- Bose Institute, Department Of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Madhumita Chakladar
- Bose Institute, Department Of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sujoy K Das Gupta
- Bose Institute, Department Of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
47
|
Vashist A, Prithvi Raj D, Gupta UD, Bhat R, Tyagi JS. The α10 helix of DevR, the Mycobacterium tuberculosis dormancy response regulator, regulates its DNA binding and activity. FEBS J 2016; 283:1286-99. [PMID: 26799615 DOI: 10.1111/febs.13664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 11/26/2022]
Abstract
The crystal structures of several bacterial response regulators provide insight into the various interdomain molecular interactions potentially involved in maintaining their 'active' or 'inactive' states. However, the requirement of high concentrations of protein, an optimal pH and ionic strength buffers during crystallization may result in a structure somewhat different from that observed in solution. Therefore, functional assessment of the physiological relevance of the crystal structure data is imperative. DevR/DosR dormancy regulator of Mycobacterium tuberculosis (Mtb) belongs to the NarL subfamily of response regulators. The crystal structure of unphosphorylated DevR revealed that it forms a dimer through the α5/α6 interface. It was proposed that phosphorylation may trigger extensive structural rearrangements in DevR that culminate in the formation of a DNA-binding competent dimeric species via α10-α10 helix interactions. The α10 helix-deleted DevR protein (DevR∆α10 ) was hyperphosphorylated but defective with respect to in vitro DNA binding. Biophysical characterization reveals that DevR∆α10 has an open but less stable conformation. The combined cross-linking and DNA-binding data demonstrate that the α10 helix is essential for the formation and stabilization of the DNA-binding proficient DevR structure in both the phosphorylated and unphosphorylated states. Genetic studies establish that Mtb strains expressing DevR∆α10 are defective with respect to dormancy regulon expression under hypoxia. The present study highlights the indispensable role of the α10 helix in DevR activation and function under hypoxia and establishes the α10-α10 helix interface as a novel target for developing inhibitors against DevR, a key regulator of hypoxia-triggered dormancy.
Collapse
Affiliation(s)
- Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.,Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - D Prithvi Raj
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Umesh Datta Gupta
- Experimental Animal Facility, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
49
|
Abstract
The emerging field of proteomics has contributed greatly to improving our understanding of the human pathogen Mycobacterium tuberculosis over the last two decades. In this chapter we provide a comprehensive overview of mycobacterial proteome research and highlight key findings. First, studies employing a combination of two-dimensional gel electrophoresis and mass spectrometry (MS) provided insights into the proteomic composition, initially of the whole bacillus and subsequently of subfractions, such as the cell wall, cytosol, and secreted proteins. Comparison of results obtained under various culture conditions, i.e., acidic pH, nutrient starvation, and low oxygen tension, aiming to mimic facets of the intracellular lifestyle of M. tuberculosis, provided initial clues to proteins relevant for intracellular survival and manipulation of the host cell. Further attempts were aimed at identifying the biological functions of the hypothetical M. tuberculosis proteins, which still make up a quarter of the gene products of M. tuberculosis, and at characterizing posttranslational modifications. Recent technological advances in MS have given rise to new methods such as selected reaction monitoring (SRM) and data-independent acquisition (DIA). These targeted, cutting-edge techniques combined with a public database of specific MS assays covering the entire proteome of M. tuberculosis allow the simple and reliable detection of any mycobacterial protein. Most recent studies attempt not only to identify but also to quantify absolute amounts of single proteins in the complex background of host cells without prior sample fractionation or enrichment. Finally, we will discuss the potential of proteomics to advance vaccinology, drug discovery, and biomarker identification to improve intervention and prevention measures for tuberculosis.
Collapse
|
50
|
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95. [PMID: 26502963 DOI: 10.1007/s12275-015-5333-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.
Collapse
|