1
|
Liu J, Wang J, Zhang Z, Bai Q, Pan X, Chen R, Yao H, Yu Y, Ma J. Streptococcus suis Deploys Multiple ATP-Dependent Proteases for Heat Stress Adaptation. J Basic Microbiol 2024; 64:e2400030. [PMID: 39031597 DOI: 10.1002/jobm.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Streptococcus suis is an important zoonotic pathogen, causing cytokine storms of Streptococcal toxic shock-like syndrome amongst humans after a wound infection into the bloodstream. To overcome the challenges of fever and leukocyte recruitment, invasive S. suis must deploy multiple stress responses forming a network and utilize proteases to degrade short-lived regulatory and misfolded proteins induced by adverse stresses, thereby adapting and evading host immune responses. In this study, we found that S. suis encodes multiple ATP-dependent proteases, including single-chain FtsH and double-subunit Clp protease complexes ClpAP, ClpBP, ClpCP, and ClpXP, which were activated as the fever of infected mice in vivo. The expression of genes ftsH, clpA/B/C, and clpP, but not clpX, were significantly upregulated in S. suis in response to heat stress, while were not changed notably under the treatments with several other stresses, including oxidative, acidic, and cold stimulation. FtsH and ClpP were required for S. suis survival within host blood under heat stress in vitro and in vivo. Deletion of ftsH or clpP attenuated the tolerance of S. suis to heat, oxidative and acidic stresses, and significantly impaired the bacterial survival within macrophages. Further analysis identified that repressor CtsR directly binds and controls the clpA/B/C and clpP operons and is relieved by heat stress. In summary, the deployments of multiple ATP-dependent proteases form a flexible heat stress response network that appears to allow S. suis to fine-tune the degradation or refolding of the misfolded proteins to maintain cellular homeostasis and optimal survival during infection.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Jianzhong Wang
- Suzhou Xiangcheng Fisheries Technology Promotion Center, Suzhou Animal Disease Prevention and Control Center, Suzhou, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Pang Z, Ren N, Wu Y, Qi J, Hu F, Guo Y, Xie Y, Zhou D, Jiang X. Tuning Ligands Ratio Allows for Controlling Gold Nanocluster Conformation and Activating a Nonantimicrobial Thiol Fragrance for Effective Treatment of MRSA-Induced Keratitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303562. [PMID: 37515441 DOI: 10.1002/adma.202303562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Bacterial keratitis is a serious ocular disease that affects millions of people worldwide each year, among which ≈25% are caused by Staphylococcus aureus. With the spread of bacterial resistance, refractory keratitis caused by methicillin-resistant S. aureus (MRSA) affects ≈120 000-190 000 people annually and is a significant cause of infectious blindness. Atomically precise gold nanoclusters (GNCs) recently emerged as promising antibacterial agents; although how the GNC structure and capping ligands control the antibacterial properties remains largely unexplored. In this study, by adjusting the ratio of a "bulky" thiol fragrance to a linear zwitterionic ligand, the GNC conformation is transformed from Au25 (SR)18 to Au23 (SR)16 species, simultaneously converting both inactive thiol ligands into potent antibacterial nanomaterials. Surprisingly, mixed-ligand capped Au23 (SR)16 GNCs exhibit superior antibacterial potency compared to their monoligand counterparts. The optimal GNC is highly potent against MRSA, showing >1024-fold lower minimum inhibitory concentration than the corresponding free ligands. Moreover, it displays excellent potency in treating MRSA-induced keratitis in mice with greatly accelerated corneal recovery (by approximately ninefold). Thus, this study establishes a feasible method to synthesize antibacterial GNCs by adjusting the ligand ratio to control GNC conformation and active non-antibacterial ligands, thereby greatly increasing the repertoires for combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zeyang Pang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ning Ren
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Yujie Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuan Guo
- School of Food Science and Nutrition, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Yangzhouyun Xie
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Dejian Zhou
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
4
|
Sha Y, Yan Q, Liu J, Yu J, Xu S, He Z, Ren J, Qu J, Zheng S, Wang G, Dong W. Homologous genes shared between probiotics and pathogens affect the adhesion of probiotics and exclusion of pathogens in the gut mucus of shrimp. Front Microbiol 2023; 14:1195137. [PMID: 37389343 PMCID: PMC10301755 DOI: 10.3389/fmicb.2023.1195137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Clarifying mechanisms underlying the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine is a central theme for shrimp health. Under experimental manipulation of probiotic strain (i.e., Lactiplantibacillus plantarum HC-2) adhesion to the shrimp mucus, this study tested the core hypothesis that homologous genes shared between probiotic and pathogen would affect the adhesion of probiotics and exclusion of pathogens by regulating the membrane proteins of probiotics. Results indicated that the reduction of FtsH protease activity, which significantly correlated with the increase of membrane proteins, could increase the adhesion ability of L. plantarum HC-2 to the mucus. These membrane proteins mainly involved in transport (glycine betaine/carnitine/choline ABC transporter choS, ABC transporter, ATP synthase subunit a atpB, amino acid permease) and regulation of cellular processes (histidine kinase). The genes encoding the membrane proteins were significantly (p < 0.05) up-regulated except those encoding ABC transporters and histidine kinases in L. plantarum HC-2 when co-cultured with Vibrio parahaemolyticus E1, indicating that these genes could help L. plantarum HC-2 to competitively exclude pathogens. Moreover, an arsenal of genes predicted to be involved in carbohydrate metabolism and bacteria-host interactions were identified in L. plantarum HC-2, indicating a clear strain adaption to host's gastrointestinal tract. This study advances our mechanistic understanding of the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine, and has important implications for screening and applying new probiotics for maintaining gut stability and host health.
Collapse
Affiliation(s)
- Yujie Sha
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jing Ren
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shiying Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Guomin Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Weiying Dong
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
5
|
Xue C, Zhang Y, Li H, Liu Z, Gao W, Liu M, Wang H, Liu P, Zhao J. The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics. BMC PLANT BIOLOGY 2023; 23:251. [PMID: 37173622 PMCID: PMC10176825 DOI: 10.1186/s12870-023-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
6
|
Zhao N, Wang Y, Liu J, Yang Z, Jian Y, Wang H, Ahmed M, Li M, Bae T, Liu Q. Molybdopterin biosynthesis pathway contributes to the regulation of SaeRS two-component system by ClpP in Staphylococcus aureus. Virulence 2022; 13:727-739. [PMID: 35481455 PMCID: PMC9067530 DOI: 10.1080/21505594.2022.2065961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
In Staphylococcus aureus, the SaeRS two-component system is essential for the bacterium's hemolytic activity and virulence. The Newman strain of S. aureus contains a variant of SaeS sensor kinase, SaeS L18P. Previously, we showed that, in the strain Newman, SaeS L18P is degraded by the membrane-bound protease FtsH. Intriguingly, the knockout mutation of clpP, encoding the cytoplasmic protease ClpP, greatly reduces the expression of SaeS L18P. Here, we report that, in the strain Newman, the positive regulatory role of ClpP on the SaeS L18P expression is due to its destabilizing effect on FtsH and degradation of MoeA, a molybdopterin biosynthesis protein. Although the transcription of ftsH was not affected by ClpP, the expression level of FtsH was increased in the clpP mutant. The destabilizing effect appears to be indirect because ClpXP did not directly degrade FtsH in an in vitro assay. Through transposon mutagenesis, we found out that the moeA gene, encoding the molybdopterin biosynthesis protein A, suppresses the hemolytic activity of S. aureus along with the transcription and expression of SaeS L18P. In a proteolysis assay, ClpXP directly degraded MoeA, demonstrating that MoeA is a substrate of the protease. In a murine bloodstream infection model, the moeA mutant displayed reduced virulence and lower survival compared with the WT strain. Based on these results, we concluded that ClpP positively controls the expression of SaeS L18P in an FtsH and MoeA-dependent manner, and the physiological role of MoeA outweighs its suppressive effect on the SaeRS TCS during infection.
Collapse
Affiliation(s)
- Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junlan Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, IN, USA
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Ftsh Sensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics by Degrading YpfP, a Lipoteichoic Acid Synthesis Enzyme. Antibiotics (Basel) 2021; 10:antibiotics10101198. [PMID: 34680778 PMCID: PMC8532640 DOI: 10.3390/antibiotics10101198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, FtsH, a membrane-bound metalloprotease, plays a critical role in bacterial virulence and stress resistance. This protease is also known to sensitize methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics; however, the molecular mechanism is not known. Here, by the analysis of FtsH substrate mutants, we found that FtsH sensitizes MRSA specifically to β-lactams by degrading YpfP, the enzyme synthesizing the anchor molecule for lipoteichoic acid (LTA). Both the overexpression of FtsH and the disruption of ypfP-sensitized MRSA to β-lactams were observed. The knockout mutation in ftsH and ypfP increased the thickness of the cell wall. The β-lactam sensitization coincided with the production of aberrantly large LTA molecules. The combination of three mutations in the rpoC, vraB, and SAUSA300_2133 genes blocked the β-lactam-sensitizing effect of FtsH. Murine infection with the ypfP mutant could be treated by oxacillin, a β-lactam antibiotic ineffective against MRSA; however, the effective concentration of oxacillin differed depending on the S. aureus strain. Our study demonstrated that the β-lactam sensitizing effect of FtsH is due to its digestion of YpfP. It also suggests that the larger LTA molecules are responsible for the β-lactam sensitization phenotype, and YpfP is a viable target for developing novel anti-MRSA drugs.
Collapse
|
8
|
Wang W, Jiang J, Chen H, Zhang Y, Liu Q. FtsH is required for protein secretion homeostasis and full bacterial virulence in Edwardsiella piscicida. Microb Pathog 2021; 161:105194. [PMID: 34534640 DOI: 10.1016/j.micpath.2021.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
Edwardsiella piscicida, as an important pathogen of fish, has caused huge losses in aquaculture. The virulence in E. piscicida has been increasingly concerned, but few studies have focused on the relationship between virulence and protein secretion homeostasis. FtsH, as a member of the AAA protease family, has important cellular functions, such as controlling the quality of membrane proteins. In this study, FtsH was demonstrated to be essential in maintaining protein secretion homeostasis, and its deletion could result in the secretion of massive cytoplasmic proteins by non-classical secretion pathway. Furthermore it was showed that FtsH is vital for E. piscicida to proliferate within host cells, and E. piscicida mutant ΔftsH will be obviously attenuated. After zebrafish was infected with the mutant ΔftsH, the lethality rate for zebrafish and the bacterial colonization in its organs were greatly reduced. These results suggested that FtsH, as a regulatory factor, closely linked protein secretory homeostasis with bacterial virulence, which provided clues for further exploring the involvement of protein secretion homeostasis in bacterial virulence.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiatiao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
9
|
Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0076021. [PMID: 34125595 DOI: 10.1128/aac.00760-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Collapse
|
10
|
Cafiso V, Stracquadanio S, Lo Verde F, De Guidi I, Zega A, Pigola G, Stefani S. Genomic and Long-Term Transcriptomic Imprints Related to the Daptomycin Mechanism of Action Occurring in Daptomycin- and Methicillin-Resistant Staphylococcus aureus Under Daptomycin Exposure. Front Microbiol 2020; 11:1893. [PMID: 32922373 PMCID: PMC7456847 DOI: 10.3389/fmicb.2020.01893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
Daptomycin (DAP) is one of the last-resort treatments for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. DAP resistance (DAP-R) is multifactorial and mainly related to cell-envelope modifications caused by single-nucleotide polymorphisms and/or modulation mechanisms of transcription emerging as result of a self-defense process in response to DAP exposure. Nevertheless, the role of these adaptations remains unclear. We aim to investigate the comparative genomics and late post-exponential growth-phase transcriptomics of two DAP-resistant/DAP-susceptible (DAPR/S) methicillin-resistant S. aureus (MRSA) clinical strain pairs to focalize the genomic and long-term transcriptomic fingerprinting and adaptations related to the DAP mechanism of action acquired in vivo under DAP pressure using Illumina whole-genome sequencing (WGS), RNA-seq, bioinformatics, and real-time qPCR validation. Comparative genomics revealed that membrane protein and transcriptional regulator coding genes emerged as shared functional coding-gene clusters harboring mutational events related to the DAP-R onset in a strain-dependent manner. Pairwise transcriptomic enrichment analysis highlighted common and strain pair-dependent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, whereas DAPR/S double-pair cross-filtering returned 53 differentially expressed genes (DEGs). A multifactorial long-term transcriptomic-network characterized DAPR MRSA includes alterations in (i) peptidoglycan biosynthesis, cell division, and cell-membrane (CM) organization genes, as well as a cidB/lytS autolysin genes; (ii) ldh2 involved in fermentative metabolism; (iii) CM-potential perturbation genes; and (iv) oxidative and heat/cold stress response-related genes. Moreover, a D-alanyl–D-alanine decrease in cell-wall muropeptide characterized DAP/glycopeptide cross-reduced susceptibility mechanisms in DAPR MRSA. Our data provide a snapshot of DAPR MRSA genomic and long-term transcriptome signatures related to the DAP mechanism of action (MOA) evidencing that a complex network of genomic changes and transcriptomic adaptations is required to acquire DAP-R.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Flavia Lo Verde
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irene De Guidi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Zega
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Pigola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Yeo WS, Anokwute C, Marcadis P, Levitan M, Ahmed M, Bae Y, Kim K, Kostrominova T, Liu Q, Bae T. A Membrane-Bound Transcription Factor is Proteolytically Regulated by the AAA+ Protease FtsH in Staphylococcus aureus. J Bacteriol 2020; 202:e00019-20. [PMID: 32094161 PMCID: PMC7148131 DOI: 10.1128/jb.00019-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In bacteria, chromosomal DNA resides in the cytoplasm, and most transcription factors are also found in the cytoplasm. However, some transcription factors, called membrane-bound transcription factors (MTFs), reside in the cytoplasmic membrane. Here, we report the identification of a new MTF in the Gram-positive pathogen Staphylococcus aureus and its regulation by the protease FtsH. The MTF, named MbtS (membrane-bound transcription factor of Staphylococcus aureus), is encoded by SAUSA300_2640 and predicted to have an N-terminal DNA binding domain and three transmembrane helices. The MbtS protein was degraded by membrane vesicles containing FtsH or by the purified FtsH. MbtS bound to an inverted repeat sequence in its promoter region, and the DNA binding was essential for its transcription. Transcriptional comparison between the ftsH deletion mutant and the ftsH mbtS double mutant showed that MbtS could alter the transcription of over 200 genes. Although the MbtS protein was not detected in wild-type (WT) cells grown in a liquid medium, the protein was detected in some isolated colonies on an agar plate. In a murine model of a skin infection, the disruption of mbtS increased the lesion size. Based on these results, we concluded that MbtS is a new S. aureus MTF whose activity is proteolytically regulated by FtsH.IMPORTANCEStaphylococcus aureus is an important pathogenic bacterium causing various diseases in humans. In the bacterium, transcription is typically regulated by the transcription factors located in the cytoplasm. In this study, we report an atypical transcription factor identified in S. aureus Unlike most other transcription factors, the newly identified transcription factor is located in the cytoplasmic membrane, and its activity is proteolytically controlled by the membrane-bound AAA+ protease FtsH. The newly identified MTF, named MbtS, has the potential to regulate the transcription of over 200 genes. This study provides a molecular mechanism by which a protease affects bacterial transcription and illustrates the diversity of the bacterial transcriptional regulation.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Chiamara Anokwute
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Philip Marcadis
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Marcus Levitan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, Indiana, USA
| | - Yeun Bae
- Department of Psychology, Indiana University, Bloomington, Indiana, USA
| | - Kyeongkyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tatiana Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| |
Collapse
|
12
|
Screen for fitness and virulence factors of Francisella sp. strain W12-1067 using amoebae. Int J Med Microbiol 2019; 309:151341. [PMID: 31451389 DOI: 10.1016/j.ijmm.2019.151341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is the causative agent of the human disease referred to as tularemia. Other Francisella species are known but less is understood about their virulence factors. The role of environmental amoebae in the life-cycle of Francisella is still under discussion. Francisella sp. strain W12-1067 (F-W12) is an environmental Francisella isolate recently identified in Germany which is negative for the Francisella pathogenicity island, but exhibits a putative alternative type VI secretion system. Putative virulence factors have been identified in silico in the genome of F-W12. In this work, we established a "scatter screen", used earlier for pathogenic Legionella, to verify experimentally and identify candidate fitness factors using a transposon mutant bank of F-W12 and Acanthamoeba lenticulata as host organism. In these experiments, we identified 79 scatter clones (amoeba sensitive), which were further analyzed by an infection assay identifying 9 known virulence factors, but also candidate fitness factors of F-W12 not yet described as fitness factors in Francisella. The majority of the identified genes encoded proteins involved in the synthesis or maintenance of the cell envelope (LPS, outer membrane, capsule) or in the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Further 13C-flux analysis of the Tn5 glucokinase mutant strain revealed that the identified gene indeed encodes the sole active glucokinase in F-W12. In conclusion, candidate fitness factors of the new Francisella species F-W12 were identified using the scatter screen method which might also be usable for other Francisella species.
Collapse
|
13
|
Rewiring of the FtsH regulatory network by a single nucleotide change in saeS of Staphylococcus aureus. Sci Rep 2017; 7:8456. [PMID: 28814746 PMCID: PMC5559551 DOI: 10.1038/s41598-017-08774-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, the membrane-bound ATP-dependent metalloprotease FtsH plays a critical role in resistance to various stressors. However, the molecular mechanism of the FtsH functions is not known. Here, we identified core FtsH target proteins in S. aureus. In the strains Newman and USA300, the abundance of 33 proteins were altered in both strains, of which 11 were identified as core FtsH substrate protein candidates. In the strain Newman and some other S. aureus strains, the sensor histidine kinase SaeS has an L18P (T53C in saeS) substitution, which transformed the protein into an FtsH substrate. Due to the increase of SaeS L18P in the ftsH mutant, Eap, a sae-regulon protein, was also increased in abundance, causing the Newman-specific cell-aggregation phenotype. Regardless of the strain background, however, the ftsH mutants showed lower virulence and survival in a murine infection model. Our study illustrates the elasticity of the bacterial regulatory network, which can be rewired by a single substitution mutation.
Collapse
|
14
|
Pressler K, Vorkapic D, Lichtenegger S, Malli G, Barilich BP, Cakar F, Zingl FG, Reidl J, Schild S. AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle. Int J Med Microbiol 2016; 306:452-62. [PMID: 27345492 DOI: 10.1016/j.ijmm.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/29/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae has to adapt to different environmental conditions along its lifecycle by means of transcriptional, translational and post-translational regulation. This study provides a first comprehensive analysis regarding the contribution of the cytoplasmic AAA+ proteases Lon, ClpP and HslV to distinct features of V. cholerae behaviour, including biofilm formation, motility, cholera toxin expression and colonization fitness in the mouse model. While absence of HslV did not yield to any altered phenotype compared to wildtype, absence of Lon or ClpP resulted in significantly reduced colonization in vivo. In addition, a Δlon deletion mutant showed altered biofilm formation and increased motility, which could be correlated with higher expression of V. cholerae flagella gene class IV. Concordantly, we could show by immunoblot analysis, that Lon is the main protease responsible for proteolytic control of FliA, which is required for class IV flagella gene transcription, but also downregulates virulence gene expression. FliA becomes highly sensitive to proteolytic degradation in absence of its anti-sigma factor FlgM, a scenario reported to occur during mucosal penetration due to FlgM secretion through the broken flagellum. Our results confirm that the high stability of FliA in the absence of Lon results in less cholera toxin and toxin corgulated pilus production under virulence gene inducing conditions and in the presence of a damaged flagellum. Thus, the data presented herein provide a molecular explanation on how V. cholerae can achieve full expression of virulence genes during early stages of colonization, despite FliA getting liberated from the anti-sigma factor FlgM.
Collapse
Affiliation(s)
- Katharina Pressler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Sabine Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Gerald Malli
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Benjamin P Barilich
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, A-8010 Graz, Austria.
| |
Collapse
|
15
|
Ronholm J, Raymond-Bouchard I, Creskey M, Cyr T, Cloutis EA, Whyte LG. Characterizing the surface-exposed proteome of Planococcus halocryophilus during cryophilic growth. Extremophiles 2015; 19:619-29. [PMID: 25832669 DOI: 10.1007/s00792-015-0743-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/01/2015] [Indexed: 12/16/2022]
Abstract
Planococcus halocryophilus OR1 is a bacterial isolate capable of growth at temperatures ranging from -15 to +37 °C. During sub-zero (cryophilic) growth, nodular features appear on its cell surface; however, the biochemical compositions of these features as well as any cold-adaptive benefits they may offer are not understood. This study aimed to identify differences in the cell surface proteome (surfaceome) of P. halocryophilus cells grown under optimal (24 °C, no added salt), low- and mid-salt (5 and 12 % NaCl, respectively) at 24 °C, and low- and mid-salt sub-zero (5 % NaCl at -5 °C and 12 % NaCl at -10 °C) culture conditions, for the purpose of gaining insight into cold-adapted proteomic traits at the cell surface. Mid-log cells were harvested, treated briefly with trypsin and the resultant peptides were purified followed by identification by LC-MS/MS analysis. One hundred and forty-four proteins were subsequently identified in at least one culture condition. Statistically significant differences in amino acid usage, a known indicator of cold adaptation, were identified through in silico analysis. Two proteins with roles in peptidoglycan (PG) metabolism, an N-acetyl-L-alanine amidase and a multimodular transpeptidase-transglycosylase, were detected, though each was only detected under optimal conditions, indicating that high-salt and high-cold stress each affect PG metabolism. Two iron transport-binding proteins, associated with two different iron transport strategies, were identified, indicating that P. halocryophilus uses a different iron acquisition strategy at very low temperatures. Here we present the first set of data that describes bacterial adaptations at the cellular surface that occur as a cryophilic bacterium is transitioned from optimal to near-inhibitory sub-zero culture conditions.
Collapse
Affiliation(s)
- Jennifer Ronholm
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Rd. Sainte-Anne-de-Bellevue, Montreal, QC, H9X3V9, Canada,
| | | | | | | | | | | |
Collapse
|
16
|
Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 2015; 16:252. [PMID: 25888466 PMCID: PMC4389836 DOI: 10.1186/s12864-015-1361-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed. RESULTS Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures. CONCLUSIONS The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus.
Collapse
Affiliation(s)
- Marina Santiago
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Leigh M Matano
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Samir H Moussa
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael S Gilmore
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy C Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
18
|
Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 2014; 196:4140-51. [PMID: 25225270 DOI: 10.1128/jb.02222-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.
Collapse
|
19
|
Lin TH, Hu YN, Shaw GC. Two enzymes, TilS and HprT, can form a complex to function as a transcriptional activator for the cell division protease gene ftsH in Bacillus subtilis. J Biochem 2013; 155:5-16. [PMID: 24001521 DOI: 10.1093/jb/mvt081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The FtsH protein is an ATP-dependent cytoplasmic membrane protease involved in the control of membrane protein quality, cell division and heat shock response in Bacillus subtilis and many other bacteria. TilS, the tRNA(Ile2) lysidine synthetase, is a tRNA-binding protein that can modify pre-tRNA(Ile2). HprT, the hypoxanthine-guanine phosphoribosyltransferase, is implicated in purine salvage. Both tilS and hprT are essential for cell viability of B. subtilis. In this report, by co-purification experiments and gel filtration analyses, we show that there is complex formation between co-expressed TilS and HprT. Electrophoretic mobility shift assays and in vitro transcription analyses demonstrated that the TilS/HprT complex functions as a specific DNA-binding protein that can stimulate ftsH transcription in vitro. Two regions located upstream of the ftsH promoter have been identified as the TilS/HprT-binding sites and shown to be required for TilS/HprT-dependent ftsH transcription in vitro and in vivo. Results from gel supershift assays support the notion that the TilS/HprT complex likely employs its distinct segments for interaction with these two distinct TilS/HprT-binding sites, respectively. In conclusion, we present the first evidence that bi-functional TilS and HprT can form a complex to function as a transcriptional activator to stimulate ftsH transcription.
Collapse
Affiliation(s)
- Ta-Hui Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan, People's Republic of China
| | | | | |
Collapse
|
20
|
Regulation of toxin–antitoxin systems by proteolysis. Plasmid 2013; 70:33-41. [DOI: 10.1016/j.plasmid.2013.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
|
21
|
Yan Q, Sreedharan A, Wei S, Wang J, Pelz-Stelinski K, Folimonova S, Wang N. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. MOLECULAR PLANT PATHOLOGY 2013; 14:391-404. [PMID: 23336388 PMCID: PMC6638839 DOI: 10.1111/mpp.12015] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Huanglongbing (HLB) or citrus greening disease is a destructive disease of citrus worldwide, which is associated with Candidatus Liberibacter asiaticus. This phloem-limited fastidious pathogen is transmitted by the Asian citrus psyllid, Diaphorina citri, and appears to be an intracellular pathogen that maintains an intimate association with the psyllid or the plant throughout its life cycle. The molecular basis of the interaction of this pathogen with its hosts is not well understood. We hypothesized that, during infection, Ca. L. asiaticus differentially expresses the genes critical for its survival and/or pathogenicity in either host. To test this hypothesis, quantitative reverse transcription-polymerase chain reaction was performed to compare the gene expression of Ca. L. asiaticus in planta and in psyllid. Overall, 381 genes were analysed for their gene expression in planta and in psyllid. Among them, 182 genes were up-regulated in planta compared with in psyllid (P < 0.05), 16 genes were up-regulated in psyllid (P < 0.05) and 183 genes showed no statistically significant difference (P ≥ 0.05) in expression between in planta and in psyllid. Our study indicates that the expression of the Ca. L. asiaticus genes involved in transcriptional regulation, transport system, secretion system, flagella assembly, metabolic pathway and stress resistance are changed significantly in a host-specific manner to adapt to the distinct environments of plant and insect. To our knowledge, this is the first large-scale study to evaluate the differential expression of Ca. L. asiaticus genes in a plant host and its insect vector.
Collapse
Affiliation(s)
- Qing Yan
- Department of Microbiology and Cell Science, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Seemüller E, Sule S, Kube M, Jelkmann W, Schneider B. The AAA+ ATPases and HflB/FtsH proteases of 'Candidatus Phytoplasma mali': phylogenetic diversity, membrane topology, and relationship to strain virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:367-376. [PMID: 23387471 DOI: 10.1094/mpmi-09-12-0221-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous examination revealed a correlation of phytopathogenic data of 'Candidatus Phytoplasma mali' strains and the DNA sequence variability of a type ATP00464 hflB gene fragment. To further investigate such a relationship, all distinct genes previously annotated as hflB in the genome of 'Ca. P. mali' strain AT were fully sequenced and analyzed from a number of representative mild, moderate, and severe strains. The re-annotation indicated that the sequences encode six AAA+ ATPases and six HflB proteases. Each of the nine distinct deduced AAA+ proteins that were examined formed a coherent phylogenetic cluster. However, within these groups, sequences of three ATPases and three proteases from mild and severe strains clustered distantly, according to their virulence. This grouping was supported by an association with virulence-related amino acid substitutions. Another finding was that full-length genes from ATPase AP11 could only be identified in mild and moderate strains. Prediction of the membrane topology indicated that the long ATPase- and protease-carrying C-terminal tails of approximately half of the AAA+ proteins are extracellular, putatively facing the environment of the sieve tubes. Thus, they may be involved in pathogen-host interactions and may compromise phloem function, a major effect of phytoplasma infection. All full-length genes examined appear transcriptionally active and all deduced peptides show the key positions indicative for protein function.
Collapse
|
23
|
Seemüller E, Kampmann M, Kiss E, Schneider B. HflB gene-based phytopathogenic classification of 'Candidatus phytoplasma mali' strains and evidence that strain composition determines virulence in multiply infected apple trees. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1258-1266. [PMID: 21899439 DOI: 10.1094/mpmi-05-11-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Analysis of pathological and molecular data of 'Candidatus Phytoplasma mali' accessions from 27 apple trees differing considerably in symptomatology was used to molecularly characterize and classify strains of the infecting apple proliferation phytoplasma. Single-strand conformation polymorphism and sequence analysis of a variable fragment of ATP00464-type hflB gene revealed that these sources consisted of single-strain and multiple-strain accessions that occurred in similar numbers. The latter group was composed of two to five distinct strains. Analysis of cloned sequences of mild and severe single-strain accessions resulted in two groups of reads that clustered, according to their virulence, distantly in the phylogram. Based on this data, the clustering patterns of multiple-strain accession sequences indicated that nearly all of them were composed of mild and severe strains. The distinct clustering of sequences representing mild and severe strains was associated with a range of molecular markers at the nucleotide and amino acid level. Data indicate that the virulence of multiple-strain accessions is determined by the ratio of the occurring mild and severe strains in that mild accessions were characterized by the predominance of sequences representing mild strains and vice versa. There is evidence that shifts in the population and other events may occur that drastically alter virulence of multiple-strain accessions.
Collapse
Affiliation(s)
- Erich Seemüller
- Julius Kuehn Institute, Federal Research Center for Cultivated Palnts, Institute for Plant Protection in Fruuit Crops, Germany.
| | | | | | | |
Collapse
|
24
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
25
|
Reniere ML, Haley KP, Skaar EP. The flexible loop of Staphylococcus aureus IsdG is required for its degradation in the absence of heme. Biochemistry 2011; 50:6730-7. [PMID: 21728357 DOI: 10.1021/bi200999q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradation of specific native proteins allows bacteria to rapidly adapt to changing environments when the activity of those proteins is no longer required. Although these processes are vital to bacterial survival, relatively little is known regarding how bacterial proteins are recognized and targeted for degradation. Staphylococcus aureus is an important human pathogen that requires iron for growth and pathogenesis. In the vertebrate host, S. aureus fulfills its iron requirement by obtaining heme iron from host hemoproteins via IsdG- and IsdI-mediated heme degradation. IsdG and IsdI are structurally and mechanistically analogous but are differentially regulated by iron and heme availability. Specifically, IsdG is targeted for degradation in the absence of heme. Therefore, we utilized the differential regulation of IsdG and IsdI to investigate the mechanism of regulated proteolysis. In contrast to canonical protease recognition sequences, we show that IsdG is targeted for degradation by internally coded sequences. Specifically, a flexible loop near the heme-binding pocket is required for IsdG degradation in the absence of heme.
Collapse
Affiliation(s)
- Michelle L Reniere
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
26
|
Overton IM, Graham S, Gould KA, Hinds J, Botting CH, Shirran S, Barton GJ, Coote PJ. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC SYSTEMS BIOLOGY 2011; 5:68. [PMID: 21569391 PMCID: PMC3123200 DOI: 10.1186/1752-0509-5-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 05/12/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Staphylococcus aureus is a major human pathogen and strains resistant to existing treatments continue to emerge. Development of novel treatments is therefore important. Antimicrobial peptides represent a source of potential novel antibiotics to combat resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA). A promising antimicrobial peptide is ranalexin, which has potent activity against Gram-positive bacteria, and particularly S. aureus. Understanding mode of action is a key component of drug discovery and network biology approaches enable a global, integrated view of microbial physiology, including mechanisms of antibiotic killing. We developed a systems-wide functional association network approach to integrate proteome and transcriptome profiles, enabling study of drug resistance and mode of action. RESULTS The functional association network was constructed by Bayesian logistic regression, providing a framework for identification of antimicrobial peptide (ranalexin) response modules from S. aureus MRSA-252 transcriptome and proteome profiling. These signatures of ranalexin treatment revealed multiple killing mechanisms, including cell wall activity. Cell wall effects were supported by gene disruption and osmotic fragility experiments. Furthermore, twenty-two novel virulence factors were inferred, while the VraRS two-component system and PhoU-mediated persister formation were implicated in MRSA tolerance to cationic antimicrobial peptides. CONCLUSIONS This work demonstrates a powerful integrative approach to study drug resistance and mode of action. Our findings are informative to the development of novel therapeutic strategies against Staphylococcus aureus and particularly MRSA.
Collapse
Affiliation(s)
- Ian M Overton
- Biomedical Systems Analysis, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J Bacteriol 2010; 192:3068-77. [PMID: 20400547 DOI: 10.1128/jb.00928-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of staphylococcal infections is multifactorial. Golden pigment is an eponymous feature of the human pathogen Staphylococcus aureus that shields the microbe from oxidation-based clearance, an innate host immune response to infection. Here, we screened a collection of S. aureus transposon mutants for pigment production variants. A total of 15 previously unidentified genes were discovered. Notably, disrupting metabolic pathways such as the tricarboxylic acid cycle, purine biosynthesis, and oxidative phosphorylation yields mutants with enhanced pigmentation. The dramatic effect on pigment production seems to correlate with altered expression of virulence determinants. Microarray analysis further indicates that purine biosynthesis impacts the expression of approximately 400 genes involved in a broad spectrum of functions including virulence. The purine biosynthesis mutant and oxidative phosphorylation mutant strains exhibit significantly attenuated virulence in a murine abscess model of infection. Inhibition of purine biosynthesis with a known small-molecule inhibitor results in altered virulence gene expression and virulence attenuation during infection. Taken together, these results suggest an intimate link between metabolic processes and virulence gene expression in S. aureus. This study also establishes the importance of purine biosynthesis and oxidative phosphorylation for in vivo survival.
Collapse
|
28
|
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 2009; 192:1416-22. [PMID: 20038589 DOI: 10.1128/jb.00233-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazE(sa), Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t(1/2)], approximately 18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t(1/2), approximately 30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
Collapse
|
29
|
Ells TC, Speers RA, Hansen LT. Insertional mutagenesis of Listeria monocytogenes 568 reveals genes that contribute to enhanced thermotolerance. Int J Food Microbiol 2009; 136:1-9. [PMID: 19836093 DOI: 10.1016/j.ijfoodmicro.2009.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to identify molecular mechanisms of thermotolerance using transposon mutants of Listeria monocytogenes 568, serotype 1/2a, and to compare their thermal death kinetics at 52, 56 and 60 degrees C. Sixteen Tn917 transposon mutants with enhanced heat resistance were acquired from a library of 4300 mutants following a multi-step screening process. Genetic regions with Tn917 insertions encompassed a broad range of functionalities including; transport, metabolism, replication and repair, general stress, and structural properties. Modeling of the heat inactivation data using the Geeraerd et al. and Whiting (Fermi) models showed that the mutants' enhanced thermal resistance was manifested mostly through a significant (p<or=0.05) extension of the lag period on the thermal death curve. This new knowledge impacts our understanding of molecular mechanisms affecting the kinetics of thermally induced cell death and enables the development of safer thermal processes.
Collapse
Affiliation(s)
- Timothy C Ells
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, Kentville, NS, Canada
| | | | | |
Collapse
|
30
|
Ingmer H, Brøndsted L. Proteases in bacterial pathogenesis. Res Microbiol 2009; 160:704-10. [PMID: 19778606 DOI: 10.1016/j.resmic.2009.08.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 01/03/2023]
Abstract
Bacterial pathogens rely on proteolysis for protein quality control under adverse conditions experienced in the host, as well as for the timely degradation of central virulence regulators. We have focused on the contribution of the conserved Lon, Clp, HtrA and FtsH proteases to pathogenesis and have highlighted common biological processes for which their activities are important for virulence.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Faculty of Life Sciences Stigbøjlen 4, University of Copenhagen, Frederiksberg C. DK1870, Denmark.
| | | |
Collapse
|
31
|
van der Veen S, Abee T, de Vos WM, Wells-Bennik MH. Genome-wide screen forListeria monocytogenesgenes important for growth at high temperatures. FEMS Microbiol Lett 2009; 295:195-203. [DOI: 10.1111/j.1574-6968.2009.01586.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Stirnberg M, Fulda S, Huckauf J, Hagemann M, Krämer R, Marin K. A membrane-bound FtsH protease is involved in osmoregulation in Synechocystis sp. PCC 6803: the compatible solute synthesizing enzyme GgpS is one of the targets for proteolysis. Mol Microbiol 2007; 63:86-102. [PMID: 17116240 DOI: 10.1111/j.1365-2958.2006.05495.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein quality control and proteolysis are involved in cell maintenance and environmental acclimatization in bacteria and eukaryotes. The AAA protease FtsH2 of the cyanobacterium Synechocystis sp. PCC 6803 was identified during a screening for mutants impaired in osmoregulation. The ftsH2(-) mutant was salt sensitive because of a decreased level of the osmoprotectant glucosylglycerol (GG). In spite of wild type-like transcription of the ggpS gene in ftsH2(-) cells the GgpS protein content increased but only low levels of GgpS activity were observed. Consequently, salt tolerance of the ftsH2(-) mutant decreased while addition of external osmolyte complemented the salt sensitivity. The proteolytic degradation of the GgpS protein by FtsH2 was demonstrated by an in vitro assay using inverted membrane vesicles. The GgpS is part of a GG synthesizing complex, because yeast two-hybrid screens identified a close interaction with the GG-phosphate phosphatase. Besides GgpS as the first soluble substrate of a cyanobacterial FtsH protease, several other putative targets were identified by a proteomic approach. We present a novel molecular explanation for the salt-sensitive phenotype of bacterial ftsH(-) mutants as the result of accumulation of inactive enzymes for compatible solute synthesis, in this case GgpS the key enzyme of GG synthesis.
Collapse
Affiliation(s)
- Marit Stirnberg
- Universität zu Köln, Institut für Biochemie, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Srinivasan R, Anilkumar G, Rajeswari H, Ajitkumar P. Functional characterization of AAA family FtsH protease of Mycobacterium tuberculosis. FEMS Microbiol Lett 2006; 259:97-105. [PMID: 16684108 DOI: 10.1111/j.1574-6968.2006.00251.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
FtsH is a membrane-bound ATP-dependent zinc-metalloprotease which proteolytically regulates the levels of specific membrane and cytoplasmic proteins that participate in diverse cellular functions, and which therefore might be of critical importance to a human pathogen such as Mycobacterium tuberculosis. As the substrates of MtFtsH in mycobacteria are not known, we examined whether recombinant MtFtsH could complement the lethality of a DeltaftsH3::kan mutation in Escherichia coli and elicit proteolytic activity against the known substrates of E. coli FtsH, namely heat shock transcription factor sigma(32) protein, protein translocation subunit SecY and bacteriophage lambdaCII repressor protein. The MtFtsH protein could not only efficiently complement lethality of DeltaftsH3::kan mutation in E. coli, but could also degrade all three heterologous substrates with specificity when expressed in ftsH-null cells of E. coli. These observations probably reveal the degree of conservation in the mechanisms of substrate recognition and cellular processes involving FtsH protease of M. tuberculosis and E. coli.
Collapse
Affiliation(s)
- Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
34
|
von Eiff C, McNamara P, Becker K, Bates D, Lei XH, Ziman M, Bochner BR, Peters G, Proctor RA. Phenotype microarray profiling of Staphylococcus aureus menD and hemB mutants with the small-colony-variant phenotype. J Bacteriol 2006; 188:687-93. [PMID: 16385058 PMCID: PMC1347289 DOI: 10.1128/jb.188.2.687-693.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Standard biochemical tests have revealed that hemin and menadione auxotrophic Staphylococcus aureus small-colony variants (SCVs) exhibit multiple phenotypic changes. To provide a more complete analysis of the SCV phenotype, two genetically defined mutants with a stable SCV phenotype were comprehensively tested. These mutants, generated via mutations in menD or hemB that yielded menadione and hemin auxotrophs, were subjected to phenotype microarray (PM) analysis of over 1,500 phenotypes (including utilization of different carbon, nitrogen, phosphate, and sulfur sources; growth stimulation or inhibition by amino acids and other nutrients, osmolytes, and metabolic inhibitors; and susceptibility to antibiotics). Compared to parent strain COL, the hemB mutant was defective in utilization of a variety of carbon sources, including Krebs cycle intermediates and compounds that ultimately generate ATP via electron transport. The phenotype of the menD mutant was similar to that of the hemB mutant, but the defects in carbon metabolism were more pronounced than those seen with the hemB mutant. In both mutant strains, hexose phosphates and other carbohydrates that provide ATP in the absence of electron transport stimulated growth. Other phenotypes of SCV mutants, such as hypersensitivity to sodium selenite, sodium tellurite, and sodium nitrite, were also uncovered by the PM analysis. Key results of the PM analysis were confirmed in independent growth studies and by using Etest strips for susceptibility testing. PM technology is a new and efficient technology for assessing cellular phenotypes in S. aureus.
Collapse
Affiliation(s)
- Christof von Eiff
- Institute of Medical Microbiology, University Hospital of Münster, Domagkstrasse 10, 48149 Münster, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
García-Lara J, Needham AJ, Foster SJ. Invertebrates as animal models forStaphylococcus aureuspathogenesis: a window into hostâpathogen interaction. ACTA ACUST UNITED AC 2005; 43:311-23. [PMID: 15708304 DOI: 10.1016/j.femsim.2004.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/17/2004] [Indexed: 01/23/2023]
Abstract
Recently, the use of invertebrate models of infection has given exciting insights into host-pathogen interaction for a number of bacteria. In particular, this has revealed important factors of the host response with remarkable parallels in higher organisms. Here, we review the advances attained in the elucidation of virulence determinants of a major human pathogen, Staphylococcus aureus, in relation to the invertebrate models thus far applied, the silkworm (Bombyx mori), the fruit fly (Drosophila melanogaster) and the roundworm (Caenorhabditis elegans). Also, the major pathways of host defence are covered in light of the response to S. aureus and the similarities and divergences in innate immunity of vertebrates and invertebrates. Consequently, we comparatively consider pathogen recognition receptors, signal transduction pathways (including Toll, Imd and others), and the humoral and cellular antimicrobial effectors. The technically convenient and ethically acceptable invertebrates appear as a valuable first tool to discriminate molecules participating from both sides of the host-S. aureus interaction as well as a high throughput method for antimicrobial screening.
Collapse
Affiliation(s)
- Jorge García-Lara
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
36
|
Rigoulay C, Entenza JM, Halpern D, Widmer E, Moreillon P, Poquet I, Gruss A. Comparative analysis of the roles of HtrA-like surface proteases in two virulent Staphylococcus aureus strains. Infect Immun 2005; 73:563-72. [PMID: 15618196 PMCID: PMC538960 DOI: 10.1128/iai.73.1.563-572.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.
Collapse
Affiliation(s)
- Candice Rigoulay
- Unité de Recherches Laitières et Génétique Appliquée, INRA, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 2004; 101:12312-7. [PMID: 15304642 PMCID: PMC514475 DOI: 10.1073/pnas.0404728101] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is the leading cause of wound and hospital-acquired infections worldwide. The emergence of S. aureus strains with resistance to multiple antibiotics requires the identification of bacterial virulence genes and the development of novel therapeutic strategies. Herein, bursa aurealis, a mariner-based transposon, was used for random mutagenesis and for the isolation of 10,325 S. aureus variants with defined insertion sites. By screening for loss-of-function mutants in a Caenorhabditis elegans killing assay, 71 S. aureus virulence genes were identified. Some of these genes are also required for S. aureus abscess formation in a murine infection model.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|