1
|
Noviyanti F, Hosotani Y, Inatsu Y, Kawasaki S. A comparison of Listeria monocytogenes growth monitoring in ground pork samples by real-time polymerase chain reaction to conventional agar and most probable number methods. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fia Noviyanti
- National Food Research Institute, Food Hygiene Laboratory
| | - Yukie Hosotani
- National Food Research Institute, Food Hygiene Laboratory
| | | | | |
Collapse
|
2
|
Exploring Listeria monocytogenes Transcriptomes in Correlation with Divergence of Lineages and Virulence as Measured in Galleria mellonella. Appl Environ Microbiol 2019; 85:AEM.01370-19. [PMID: 31471303 DOI: 10.1128/aem.01370-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022] Open
Abstract
As for many opportunistic pathogens, the virulence potential of Listeria monocytogenes is highly heterogeneous between isolates and correlated, to some extent, with phylogeny and gene repertoires. In sharp contrast with copious data on intraspecies genome diversity, little is known about transcriptome diversity despite the role of complex genetic regulation in pathogenicity. The current study implemented RNA sequencing to characterize the transcriptome profiles of 33 isolates under optimal in vitro growth conditions. Transcript levels of conserved single-copy genes were comprehensively explored from several perspectives, including phylogeny, in silico-predicted virulence category based on epidemiological multilocus sequence typing (MLST) data, and in vivo virulence phenotype assessed in Galleria mellonella Comparing baseline transcriptomes between isolates was intrinsically more complex than standard genome comparison because of the inherent plasticity of gene expression in response to environmental conditions. We show that the relevance of correlation analyses and their statistical power can be enhanced by using principal-component analysis to remove the first level of irrelevant, highly coordinated changes linked to growth phase. Our results highlight the major contribution of transcription factors with key roles in virulence to the diversity of transcriptomes. Divergence in the basal transcript levels of a substantial fraction of the transcriptome was observed between lineages I and II, echoing previously reported epidemiological differences. Correlation analysis with in vivo virulence identified numerous sugar metabolism-related genes, suggesting that specific pathways might play roles in the onset of infection in G. mellonella IMPORTANCE Listeria monocytogenes is a multifaceted bacterium able to proliferate in a wide range of environments from soil to mammalian host cells. The accumulated genomic data underscore the contribution of intraspecies variations in gene repertoire to differential adaptation strategies between strains, including infection and stress resistance. It seems very likely that the fine-tuning of the transcriptional regulatory network is also a key component of the phenotypic diversity, albeit more difficult to investigate than genome content. Some studies reported incongruity in the basal transcriptome between isolates, suggesting a putative relationship with phenotypes, but small isolate numbers hampered proper correlation analyses with respect to their characteristics. The present study is the embodiment of the promising approach that consists of analyzing correlations between transcriptomes and various isolate characteristics. Statistically significant correlations were found with phylogenetic groups, epidemiological evidence of virulence potential, and virulence in Galleria mellonella larvae used as an in vivo model.
Collapse
|
3
|
Cao TN, Joyet P, Aké FMD, Milohanic E, Deutscher J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. J Mol Microbiol Biotechnol 2019; 29:10-26. [PMID: 31269503 DOI: 10.1159/000500090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/31/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many bacteria transport cellobiose via a phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). In Listeria monocytogenes, two pairs of soluble PTS components (EIIACel1/EIIBCel1 and EIIACel2/EIIBCel2) and the permease EIICCel1 were suggested to contribute to cellobiose uptake. Interestingly, utilization of several carbohydrates, including cellobiose, strongly represses virulence gene expression by inhibiting PrfA, the virulence gene activator. RESULTS The LevR-like transcription regulator CelR activates expression of the cellobiose-induced PTS operons celB1-celC1-celA1, celB2-celA2, and the EIIC-encoding monocistronic celC2. Phosphorylation by P∼His-HPr at His550 activates CelR, whereas phosphorylation by P∼EIIBCel1 or P∼EIIBCel2 at His823 inhibits it. Replacement of His823 with Ala or deletion of both celA or celB genes caused constitutive CelR regulon expression. Mutants lacking EIICCel1, CelR or both EIIACel exhibitedslow cellobiose consumption. Deletion of celC1 or celR prevented virulence gene repression by the disaccharide, but not by glucose and fructose. Surprisingly, deletion of both celA genes caused virulence gene repression even during growth on non-repressing carbohydrates. No cellobiose-related phenotype was found for the celC2 mutant. CONCLUSION The two EIIA/BCel pairs are similarly efficient as phosphoryl donors in EIICCel1-catalyzed cellobiose transport and CelR regulation. The permanent virulence gene repression in the celA double mutant further supports a role of PTSCel components in PrfA regulation.
Collapse
Affiliation(s)
- Thanh Nguyen Cao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, .,Centre National de la Recherche Scientifique, UMR8261 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France,
| |
Collapse
|
4
|
Chen JQ, Healey S, Regan P, Laksanalamai P, Hu Z. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Kentache T, Milohanic E, Cao TN, Mokhtari A, Aké FM, Ma Pham QM, Joyet P, Deutscher J. Transport and Catabolism of Pentitols by Listeria monocytogenes. J Mol Microbiol Biotechnol 2016; 26:369-380. [PMID: 27553222 DOI: 10.1159/000447774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Transposon insertion into Listeria monocytogenes lmo2665, which encodes an EIIC of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), was found to prevent D-arabitol utilization. We confirm this result with a deletion mutant and show that Lmo2665 is also required for D-xylitol utilization. We therefore called this protein EIICAxl. Both pentitols are probably catabolized via the pentose phosphate pathway (PPP) because lmo2665 belongs to an operon, which encodes the three PTSAxl components, two sugar-P dehydrogenases, and most PPP enzymes. The two dehydrogenases oxidize the pentitol-phosphates produced during PTS-catalyzed transport to the PPP intermediate xylulose-5-P. L. monocytogenes contains another PTS, which exhibits significant sequence identity to PTSAxl. Its genes are also part of an operon encoding PPP enzymes. Deletion of the EIIC-encoding gene (lmo0508) affected neither D-arabitol nor D-xylitol utilization, although D-arabitol induces the expression of this operon. Both operons are controlled by MtlR/LicR-type transcription activators (Lmo2668 and Lmo0501, respectively). Phosphorylation of Lmo0501 by the soluble PTSAxl components probably explains why D-arabitol also induces the second pentitol operon. Listerial virulence genes are submitted to strong repression by PTS sugars, such as glucose. However, D-arabitol inhibited virulence gene expression only at high concentrations, probably owing to its less efficient utilization compared to glucose.
Collapse
Affiliation(s)
- Takfarinas Kentache
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hadjilouka A, Molfeta C, Panagiotopoulou O, Paramithiotis S, Mataragas M, Drosinos EH. Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30 °C. Food Microbiol 2016; 55:7-15. [DOI: 10.1016/j.fm.2015.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
7
|
Nie X, Yang B, Zhang L, Gu Y, Yang S, Jiang W, Yang C. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ54control cellobiose utilization inClostridium acetobutylicum. Mol Microbiol 2016; 100:289-302. [DOI: 10.1111/mmi.13316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoqun Nie
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Bin Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yang Gu
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Chen Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
8
|
Hadjilouka A, Nikolidakis K, Paramithiotis S, H. Drosinos E. Effect of co-culture with enterocinogenic E. faecium on L. monocytogenes key virulence gene expression. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes. J Bacteriol 2015; 197:1559-72. [PMID: 25691525 DOI: 10.1128/jb.02522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Listeriae take up glucose and mannose predominantly through a mannose class phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS(Man)), whose three components are encoded by the manLMN genes. The expression of these genes is controlled by ManR, a LevR-type transcription activator containing two PTS regulation domains (PRDs) and two PTS-like domains (enzyme IIA(Man) [EIIA(Man)]- and EIIB(Gat)-like). We demonstrate here that in Listeria monocytogenes, ManR is activated via the phosphorylation of His585 in the EIIA(Man)-like domain by the general PTS components enzyme I and HPr. We also show that ManR is regulated by the PTS(Mpo) and that EIIB(Mpo) plays a dual role in ManR regulation. First, yeast two-hybrid experiments revealed that unphosphorylated EIIB(Mpo) interacts with the two C-terminal domains of ManR (EIIB(Gat)-like and PRD2) and that this interaction is required for ManR activity. Second, in the absence of glucose/mannose, phosphorylated EIIB(Mpo) (P∼EIIB(Mpo)) inhibits ManR activity by phosphorylating His871 in PRD2. The presence of glucose/mannose causes the dephosphorylation of P∼EIIB(Mpo) and P∼PRD2 of ManR, which together lead to the induction of the manLMN operon. Complementation of a ΔmanR mutant with various manR alleles confirmed the antagonistic effects of PTS-catalyzed phosphorylation at the two different histidine residues of ManR. Deletion of manR prevented not only the expression of the manLMN operon but also glucose-mediated repression of virulence gene expression; however, repression by other carbohydrates was unaffected. Interestingly, the expression of manLMN in Listeria innocua was reported to require not only ManR but also the Crp-like transcription activator Lin0142. Unlike Lin0142, the L. monocytogenes homologue, Lmo0095, is not required for manLMN expression; its absence rather stimulates man expression. IMPORTANCE Listeria monocytogenes is a human pathogen causing the foodborne disease listeriosis. The expression of most virulence genes is controlled by the transcription activator PrfA. Its activity is strongly repressed by carbohydrates, including glucose, which is transported into L. monocytogenes mainly via a mannose/glucose-specific phosphotransferase system (PTS(Man)). Expression of the man operon is regulated by the transcription activator ManR, the activity of which is controlled by a second, low-efficiency PTS of the mannose family, which functions as glucose sensor. Here we demonstrate that the EIIB(Mpo) component plays a dual role in ManR regulation: it inactivates ManR by phosphorylating its His871 residue and stimulates ManR by interacting with its two C-terminal domains.
Collapse
|
10
|
A prl mutation in SecY suppresses secretion and virulence defects of Listeria monocytogenes secA2 mutants. J Bacteriol 2014; 197:932-42. [PMID: 25535272 DOI: 10.1128/jb.02284-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bulk of bacterial protein secretion occurs through the conserved SecY translocation channel that is powered by SecA-dependent ATP hydrolysis. Many Gram-positive bacteria, including the human pathogen Listeria monocytogenes, possess an additional nonessential specialized ATPase, SecA2. SecA2-dependent secretion is required for normal cell morphology and virulence in L. monocytogenes; however, the mechanism of export via this pathway is poorly understood. L. monocytogenes secA2 mutants form rough colonies, have septation defects, are impaired for swarming motility, and form small plaques in tissue culture cells. In this study, 70 spontaneous mutants were isolated that restored swarming motility to L. monocytogenes secA2 mutants. Most of the mutants had smooth colony morphology and septated normally, but all were lysozyme sensitive. Five representative mutants were subjected to whole-genome sequencing. Four of the five had mutations in proteins encoded by the lmo2769 operon that conferred lysozyme sensitivity and increased swarming but did not rescue virulence defects. A point mutation in secY was identified that conferred smooth colony morphology to secA2 mutants, restored wild-type plaque formation, and increased virulence in mice. This secY mutation resembled a prl suppressor known to expand the repertoire of proteins secreted through the SecY translocation complex. Accordingly, the ΔsecA2prlA1 mutant showed wild-type secretion levels of P60, an established SecA2-dependent secreted autolysin. Although the prl mutation largely suppressed almost all of the measurable SecA2-dependent traits, the ΔsecA2prlA1 mutant was still less virulent in vivo than the wild-type strain, suggesting that SecA2 function was still required for pathogenesis.
Collapse
|
11
|
Kun X, Qingling M, Qiao J, Yelong P, Tianli L, Cheng C, Yu M, Zhengxiang H, Xuepeng C, Chuangfu C. Impact of rli87 gene deletion on response of Listeria monocytogenes to environmental stress. FEMS Microbiol Lett 2014; 359:50-4. [PMID: 25091276 DOI: 10.1111/1574-6968.12561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/06/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes (LM) is a zoonotic pathogen that widely adapts to various environments. Recent studies have found that noncoding RNAs (ncRNAs) play regulatory roles in LM responses to environmental stress. To understand the role of ncRNA rli87 in the response regulation, a rli87 deletion strain LM-Δrli87 was constructed by homologous recombination and tested for stress responses to high temperature, low temperature, high osmotic pressure, alcohol, acidity, alkaline and oxidative environments, along with LM EGD-e strain (control). The results showed that compared with LM EGD-e, LM-Δrli87 grew faster (P < 0.05) at low temperature (30 °C), high temperature (42 °C), and in alkaline condition (pH = 9), similarly (P > 0.05) in acidic and high osmatic pressure (10% NaCl) conditions. When cultured in medium containing 3.8% ethanol, the growth was not significantly different between the two strains (P > 0.05). When cultured at pH 9, they had similar growth rates in the first 5 h (P > 0.05), but the rates were significantly different after 6 h (P < 0.05). The expression of rsbV, rsbW, hpt, clpP, and ctsR was upregulated in LM-∆rli87 compared with LM EGD-e at pH 9, indicating that the rli87 gene regulated the expression of the five genes in alkaline environment. Our results suggest that the rli87 gene has an important regulatory role in LM's response to temperature (30 and 42 °C), alkaline stresses.
Collapse
Affiliation(s)
- Xie Kun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Aké FMD, Joyet P, Deutscher J, Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol Microbiol 2011; 81:274-93. [PMID: 21564334 DOI: 10.1111/j.1365-2958.2011.07692.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Listeria monocytogenes transports glucose/mannose via non-PTS permeases and phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS). Two mannose class PTS are encoded by the constitutively expressed mpoABCD and the inducible manLMN operons. The man operon encodes the main glucose transporter because manL or manM deletion significantly slows glucose utilization, whereas mpoA deletion has no effect. The PTS(Mpo) mainly functions as a constitutively synthesized glucose sensor controlling man operon expression by phosphorylating and interacting with ManR, a LevR-like transcription activator. EIIB(Mpo) plays a dual role in ManR regulation: P~EIIB(Mpo) prevailing in the absence of glucose phosphorylates and thereby inhibits ManR activity, whereas unphosphorylated EIIB(Mpo) prevailing during glucose uptake is needed to render ManR active. In contrast to mpoA, deletion of mpoB therefore strongly inhibits man operon expression and glucose consumption. A ΔptsI (EI) mutant consumes glucose at an even slower rate probably via GlcU-like non-PTS transporters. Interestingly, deletion of ptsI, manL, manM or mpoB causes elevated PrfA-mediated virulence gene expression. The PTS(Man) is the major player in glucose-mediated PrfA inhibition because the ΔmpoA mutant showed normal PrfA activity. The four mutants showing PrfA derepression contain no or only little unphosphorylated EIIAB(Man) (ManL), which probably plays a central role in glucose-mediated PrfA regulation.
Collapse
Affiliation(s)
- Francine M D Aké
- Laboratoire de Microbiologie de l'Alimentation au Service de la Santé, AgroParisTech-INRA UMR1319, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
14
|
Stoll R, Goebel W. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. MICROBIOLOGY-SGM 2010; 156:1069-1083. [PMID: 20056707 DOI: 10.1099/mic.0.034934-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this report we examine the PEP-dependent phosphotransferase systems (PTSs) of Listeria monocytogenes EGD-e, especially those involved in glucose and cellobiose transport. This L. monocytogenes strain possesses in total 86 pts genes, encoding 29 complete PTSs for the transport of carbohydrates and sugar alcohols, and several single PTS components, possibly supporting transport of these compounds. By a systematic deletion analysis we identified the major PTSs involved in glucose, mannose and cellobiose transport, when L. monocytogenes grows in a defined minimal medium in the presence of these carbohydrates. Whereas all four PTS permeases belonging to the PTS(Man) family may be involved in mannose transport, only two of these (PTS(Man)-2 and PTS(Man)-3), and in addition at least one (PTS(Glc)-1) of the five PTS permeases belonging to the PTS(Glc) family, are able to transport glucose, albeit with different efficiencies. Cellobiose is transported mainly by one (PTS(Lac)-4) of the six members belonging to the PTS(Lac) family. In addition, PTS(Glc)-1 appears to be also able to transport cellobiose. The transcription of the operons encoding PTS(Man)-2 and PTS(Lac)-4 (but not that of the operon for PTS(Man)-3) is regulated by LevR-homologous PTS regulation domain (PRD) activators. Whereas the growth rate of the mutant lacking PTS(Man)-2, PTS(Man)-3 and PTS(Glc)-1 is drastically reduced (compared with the wild-type strain) in the presence of glucose, and that of the mutant lacking PTS(Lac)-4 and PTS(Glc)-1 in the presence of cellobiose, replication of both mutants within epithelial cells or macrophages is as efficient as that of the wild-type strain.
Collapse
Affiliation(s)
- Regina Stoll
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | - Werner Goebel
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
15
|
Chao NX, Wei K, Chen Q, Meng QL, Tang DJ, He YQ, Lu GT, Jiang BL, Liang XX, Feng JX, Chen B, Tang JL. The rsmA-like gene rsmA(Xcc) of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:411-423. [PMID: 18321187 DOI: 10.1094/mpmi-21-4-0411] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RsmA is an RNA-binding protein functioning as a global post-transcriptional regulator of various cellular processes in bacteria and has been demonstrated to be an important virulence regulator in many animal bacterial pathogens. However, its function in other phytopathogenic bacteria is unclear, except for the Erwinia carotovora RsmA, which acts as a negative virulence regulator. In this work, we investigated the function of the rsmA-like gene, named rsmA(Xcc), of the phytopathogen Xanthomonas campestris pv. campestris. Deletion of rsmA(Xcc) resulted in complete loss of virulence on the host plant Chinese radish, hypersensitive response on the nonhost plant pepper ECW-10R, and motility on the surface of an agar plate. The rsmA(Xcc) mutant displayed a significant reduction in the production of extracellular amylase, endoglucanase, and polysaccharide, but a significant increase in intracellular glycogen accumulation and an enhanced bacterial aggregation and cell adhesion. Microarray hybridization and semiquantitative reverse-transcription polymerase chain reaction analysis showed that deletion of rsmA(Xcc) led to significantly reduced expression of genes encoding the type III secretion system (T3SS), T3SS-effectors, and the bacterial aggregate dispersing enzyme endo-beta-1,4-mannanase. These results suggest that rsmA(Xcc) is involved in the control of various cellular processes, including pathogenesis of X. campestris pv. campestris.
Collapse
Affiliation(s)
- Nai-Xia Chao
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning Guangxi 530004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Joshi MV, Bignell DRD, Johnson EG, Sparks JP, Gibson DM, Loria R. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol Microbiol 2007; 66:633-42. [PMID: 17919290 DOI: 10.1111/j.1365-2958.2007.05942.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Streptomyces scabies is the best studied of those streptomycetes that cause an economically important disease known as potato scab. The phytotoxin thaxtomin is made exclusively by these pathogens and is required for virulence. Here we describe regulation of thaxtomin biosynthesis by TxtR, a member of the AraC/XylS family of transcriptional regulators. The txtR gene is imbedded in the thaxtomin biosynthetic pathway and is located on a conserved pathogenicity island in S. scabies, S. turgidiscabies and S. acidiscabies. Thaxtomin biosynthesis was abolished and virulence was almost eliminated in the txtR deletion mutant of S. scabies 87.22. Accumulation of thaxtomin biosynthetic gene (txtA, txtB, txtC, nos) transcripts was reduced compared with the wild-type S. scabies 87.22. NOS-dependent nitric oxide production by S. scabies was also reduced in the mutant. The TxtR protein bound cellobiose, an inducer of thaxtomin production, and transcription of txtR and thaxtomin biosynthetic genes was upregulated in response to cellobiose. TxtR is the first example of an AraC/XylS family protein regulated by cellobiose. Together, these data suggest that cellobiose, the smallest oligomer of cellulose, may signal the availability of expanding plant tissue, which is the site of action of thaxtomin.
Collapse
Affiliation(s)
- Madhumita V Joshi
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-5904, USA
| | | | | | | | | | | |
Collapse
|
17
|
McGann P, Wiedmann M, Boor KJ. The alternative sigma factor sigma B and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol 2007; 73:2919-30. [PMID: 17337550 PMCID: PMC1892873 DOI: 10.1128/aem.02664-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Some Listeria monocytogenes internalins are recognized as contributing to invasion of mammalian tissue culture cells. While PrfA is well established as a positive regulator of L. monocytogenes virulence gene expression, the stress-responsive sigma(B) has been recognized only recently as contributing to expression of virulence genes, including some that encode internalins. To measure the relative contributions of PrfA and sigma(B) to internalin gene transcription, we used reverse transcription-PCR to quantify transcript levels for eight internalin genes (inlA, inlB, inlC, inlC2, inlD, inlE, inlF, and inlG) in L. monocytogenes 10403S and in isogenic Delta prfA, Delta sigB, and Delta sigB Delta prfA strains. Strains were grown under defined conditions to produce (i) active PrfA, (ii) active sigma(B) and active PrfA, (iii) inactive PrfA, and (iv) active sigma(B) and inactive PrfA. Under the conditions tested, sigma(B) and PrfA contributed differentially to the expression of the various internalins such that (i) both sigma(B) and PrfA contributed to inlA and inlB transcription, (ii) only PrfA contributed to inlC transcription, (iii) only sigma(B) contributed to inlC2 and inlD transcription, and (iv) neither sigma(B) nor PrfA contributed to inlF and inlG transcription. inlE transcript levels were undetectable. The important role for sigma(B) in regulating expression of L. monocytogenes internalins suggests that exposure of this organism to environmental stress conditions, such as those encountered in the gastrointestinal tract, may activate internalin transcription. Interplay between sigma(B) and PrfA also appears to be critical for regulating transcription of some virulence genes, including inlA, inlB, and prfA.
Collapse
Affiliation(s)
- Patrick McGann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
18
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
19
|
Larsen MH, Kallipolitis BH, Christiansen JK, Olsen JE, Ingmer H. The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes. Mol Microbiol 2006; 61:1622-35. [PMID: 16968229 DOI: 10.1111/j.1365-2958.2006.05328.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment.
Collapse
Affiliation(s)
- Marianne H Larsen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
20
|
Mauder N, Ecke R, Mertins S, Loeffler DIM, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S. Species-specific differences in the activity of PrfA, the key regulator of listerial virulence genes. J Bacteriol 2006; 188:7941-56. [PMID: 16980455 PMCID: PMC1636310 DOI: 10.1128/jb.00473-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PrfA, the master regulator of LIPI-1, is indispensable for the pathogenesis of the human pathogen Listeria monocytogenes and the animal pathogen Listeria ivanovii. PrfA is also present in the apathogenic species Listeria seeligeri, and in this study, we elucidate the differences between PrfA proteins from the pathogenic and apathogenic species of the genus Listeria. PrfA proteins of L. monocytogenes (PrfA(Lm) and PrfA*(Lm)), L. ivanovii (PrfA(Li)), and L. seeligeri (PrfA(Ls)) were purified, and their equilibrium constants for binding to the PrfA box of the hly promoter (Phly(Lm)) were determined by surface plasmon resonance. In addition, the capacities of these PrfA proteins to bind to the PrfA-dependent promoters Phly and PactA and to form ternary complexes together with RNA polymerase were analyzed in electrophoretic mobility shift assays, and their abilities to initiate transcription in vitro starting at these promoters were compared. The results show that PrfA(Li) resembled the constitutively active mutant PrfA*(Lm) more than the wild-type PrfA(Lm), whereas PrfA(Ls) showed a drastically reduced capacity to bind to the PrfA-dependent promoters Phly and PactA. In contrast, the efficiencies of PrfA(Lm), PrfA*(Lm), and PrfA(Li) forming ternary complexes and initiating transcription at Phly and PactA were rather similar, while those of PrfA(Ls) were also much lower. The low binding and transcriptional activation capacities of PrfA(Ls) seem to be in part due to amino acid exchanges in its C-terminal domain (compared to PrfA(Lm) and PrfA(Li)). In contrast to the significant differences in the biochemical properties of PrfA(Lm), PrfA(Li), and PrfA(Ls), the PrfA-dependent promoters of hly (Phly(Lm), Phly(L)(i), and Phly(L)(s)) and actA (PactA(Lm), PactA(L)(i), and PactA(L)(s)) of the three Listeria species did not significantly differ in their binding affinities to the various PrfA proteins and in their strengths to promote transcription in vitro. The allelic replacement of prfA(Lm) with prfA(Ls) in L. monocytogenes leads to low expression of PrfA-dependent genes and to reduced in vivo virulence of L. monocytogenes, suggesting that the altered properties of PrfA(Ls) protein are a major cause for the low virulence of L. seeligeri.
Collapse
Affiliation(s)
- Norman Mauder
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ouhib O, Clavel T, Schmitt P. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr Microbiol 2006; 53:222-6. [PMID: 16802202 DOI: 10.1007/s00284-006-0094-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
Enterotoxin production is a key factor in Bacillus cereus food poisoning. Herein, the effect of the growth rate (mu) on B. cereus toxin production when grown on sucrose was studied and the Hemolytic BL enterotoxin (HBL) and nonhemolytic enterotoxin (Nhe) production by B. cereus was compared according to carbohydrate at mu = 0.2 h(-1). The anaerobic growth was carried out on continuous cultures in synthetic medium supplemented with glucose, fructose, sucrose, or an equimolar mixture of glucose and fructose. Concerning the HBL and Nhe enterotoxin production: (1) the highest enterotoxin production has occurred at mu = 0.2 h(-1) when growing on sucrose; (2) HBL production was repressed when glucose was consumed and the presence of fructose (alone or in mixture) cancelled glucose catabolite repression; (3) the consumption of sucrose increased Nhe production, which was not affected by the catabolite repression. Furthermore, analysis of the fermentative metabolism showed that whatever the mu or the carbon source, B. cereus used the mixed acid fermentation to ferment the different carbohydrates. The enterotoxin productions by this strain at mu = 0.2 h(-1) are highly influenced by the carbohydrates that do not involve any fermentative metabolism changes.
Collapse
Affiliation(s)
- Ouassila Ouhib
- INRA, UMR A408, Sécurité et Qualité des Produits d'Origine Végétale, Avignon F-84914, France
| | | | | |
Collapse
|
22
|
Gray MJ, Freitag NE, Boor KJ. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun 2006; 74:2505-12. [PMID: 16622185 PMCID: PMC1459693 DOI: 10.1128/iai.74.5.2505-2512.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Michael J Gray
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
23
|
Herro R, Poncet S, Cossart P, Buchrieser C, Gouin E, Glaser P, Deutscher J. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes. J Mol Microbiol Biotechnol 2006; 9:224-34. [PMID: 16415595 DOI: 10.1159/000089650] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes PrfA, a transcription activator for several virulence genes, including the hemolysin-encoding hly, is inhibited by rapidly metabolizable carbon sources (glucose, fructose, etc.). This inhibition is not mediated via the major carbon catabolite repression mechanism of gram-positive bacteria, since inactivation of the catabolite control protein A (CcpA) did not prevent the repression of virulence genes by the above sugars. In order to test whether the catabolite co-repressor P-Ser-HPr might be involved in PrfA regulation, we used a Bacillus subtilis strain (BUG1199) containing L. monocytogenes prfA under control of pspac and the lacZ reporter gene fused to the PrfA-activated hly promoter. Formation of P-Ser-HPr requires the bifunctional HPr kinase/phosphorylase (HprK/P), which, depending on the concentration of certain metabolites, either phosphorylates HPr at Ser-46 or dephosphorylates P-Ser-HPr. The hprKV267F allele codes for an HprK/P leading to the accumulation of P-Ser-HPr, since it has normal kinase, but almost no phosphorylase activity. Interestingly, introducing hprKV267F into BUG1199 strongly inhibited transcription activation by PrfA. Preventing the accumulation of P-Ser-HPr in the hprKV267F mutant by replacing Ser-46 in HPr with an alanine restored PrfA activity, while ccpA inactivation had no effect. Interestingly, disruption of ccpA in the hprK wild-type strain BUG1199 also led to inhibition of PrfA. The lowered lacZ expression in the ccpA strain is probably also due to elevated amounts of P-Ser-HPr, since it disappeared when Ser-46 in HPr was replaced with an alanine. To carry out its catalytic function in sugar transport, HPr of the phosphotransferase system (PTS) is also phosphorylated by phosphoenolpyruvate and enzyme I at His-15. However, P-Ser-HPr is only very slowly phosphorylated by enzyme I, which probably accounts for PrfA inhibition. In agreement with this concept, disruption of the enzyme I- or HPr-encoding genes also strongly inhibited PrfA activity. PrfA activity therefore seems to depend on a fully functional PTS phosphorylation cascade.
Collapse
Affiliation(s)
- Rana Herro
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG, Thiverval-Grignon, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Luo Q, Herler M, Müller-Altrock S, Goebel W. Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocytogenes. Mol Microbiol 2005; 55:986-97. [PMID: 15686548 DOI: 10.1111/j.1365-2958.2005.04417.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elements essential for PrfA-dependent transcription were analysed on two promoters of Listeria monocytogenes, the PrfA-dependent promoter of the phospholipase gene plcA (PplcA) and a putative promoter of the aroA gene (ParoA2) which contains a similar PrfA-binding site and a similar -10 box as PplcA but does not function as PrfA-dependent promoter. We constructed a series of hybrid plcA-aroA promoters by exchanging corresponding sequence elements of these two 'promoters'. The results showed that the two critical elements of PrfA-dependent promoters, the PrfA-box and the -10 box, can be functionally exchanged as long as the distance in between is maintained to 22 or 23 bp. However, the interspace sequence and the sequence downstream of the -10 box of ParoA2 were strongly inhibitory for PrfA-dependent transcription. A detailed analysis of these two sequences revealed that the RNA polymerase binding site being part of the actual in vivo and in vitro used aroA promoter (ParoA1) and a sequence immediately downstream of the putative -10 site, possibly blocking the formation of the open complex, were responsible for the inhibition of PrfA-dependent transcription from ParoA2. Taking into consideration the lessons learned from this study we were able to construct a functional PrfA-dependent aroA promoter.
Collapse
Affiliation(s)
- Qin Luo
- Biocenter (Microbiology), University of Würzburg, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|