1
|
Morimoto Y, Uesaka K, Fujita Y, Yamamoto H. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. mSphere 2024; 9:e0049824. [PMID: 39191391 PMCID: PMC11423573 DOI: 10.1128/msphere.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Prokaryotes contribute to the global sulfur cycle by using diverse sulfur compounds as sulfur sources or electron acceptors. In this study, we report that a nitrogenase-like enzyme (NFL) and a radical SAM enzyme (RSE) are involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus. The nflHDK genes for NFL are localized at a locus containing genes for known sulfonate metabolism in the genome. A gene nflB encoding an RSE is present just upstream of nflH, forming a small gene cluster nflBHDK. Mutants lacking any nflBHDK genes are incapable of growing with isethionate as the sole sulfur source under anaerobic photosynthetic conditions, indicating that all four NflBHDK proteins are essential for the isethionate assimilation pathway. Heterologous expression of the islAB genes encoding a known isethionate lyase that degrades isethionate to sulfite and acetaldehyde restored the isethionate-dependent growth of a mutant lacking nflDK, indicating that the enzyme encoding nflBHDK is involved in an isethionate assimilation reaction to release sulfite. Furthermore, the heterologous expression of nflBHDK and ssuCAB encoding an isethionate transporter in the closely related species R. sphaeroides, which does not have nflBHDK and cannot grow with isethionate as the sole sulfur source, conferred isethionate-dependent growth ability to this species. We propose to rename nflBHDK as isrBHDK (isethionate reductase). The isrBHDK genes are widely distributed among various prokaryote phyla. Discovery of the isethionate assimilation pathway by IsrBHDK provides a missing piece for the anaerobic sulfur cycle and for understanding the evolution of ancient sulfur metabolism.IMPORTANCENitrogenase is an important enzyme found in prokaryotes that reduces atmospheric nitrogen to ammonia and plays a fundamental role in the global nitrogen cycle. It has been noted that nitrogenase-like enzymes (NFLs), which share an evolutionary origin with nitrogenase, have evolved to catalyze diverse reactions such as chlorophyll biosynthesis (photosynthesis), coenzyme F430 biosynthesis (methanogenesis), and methionine biosynthesis. In this study, we discovered that an NFL with unknown function in the photosynthetic bacterium Rhodobacter capsulatus is a novel isethionate reductase (Isr), which catalyzes the assimilatory degradation of isethionate, a sulfonate, releasing sulfite used as the sulfur source under anaerobic conditions. Isr is widely distributed among various bacterial phyla, including intestinal bacteria, and is presumed to play an important role in sulfur metabolism in anaerobic environments such as animal guts and microbial mats. This finding provides a clue for understanding ancient metabolism that evolved under anaerobic environments at the dawn of life.
Collapse
Affiliation(s)
- Yoshiki Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Jouan R, Lextrait G, Lachat J, Yokota A, Cossard R, Naquin D, Timchenko T, Kikuchi Y, Ohbayashi T, Mergaert P. Transposon sequencing reveals the essential gene set and genes enabling gut symbiosis in the insect symbiont Caballeronia insecticola. ISME COMMUNICATIONS 2024; 4:ycad001. [PMID: 38282642 PMCID: PMC10809759 DOI: 10.1093/ismeco/ycad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Caballeronia insecticola is a bacterium belonging to the Burkholderia genus sensu lato, which is able to colonize multiple environments like soils and the gut of the bean bug Riptortus pedestris. We constructed a saturated Himar1 mariner transposon library and revealed by transposon-sequencing that 498 protein-coding genes constitute the essential genome of Caballeronia insecticola for growth in free-living conditions. By comparing essential gene sets of Caballeronia insecticola and seven related Burkholderia s.l. strains, only 120 common genes were identified, indicating that a large part of the essential genome is strain-specific. In order to reproduce specific nutritional conditions that are present in the gut of Riptortus pedestris, we grew the mutant library in minimal media supplemented with candidate gut nutrients and identified several condition-dependent fitness-defect genes by transposon-sequencing. To validate the robustness of the approach, insertion mutants in six fitness genes were constructed and their growth deficiency in media supplemented with the corresponding nutrient was confirmed. The mutants were further tested for their efficiency in Riptortus pedestris gut colonization, confirming that gluconeogenic carbon sources, taurine and inositol, are nutrients consumed by the symbiont in the gut. Thus, our study provides insights about specific contributions provided by the insect host to the bacterial symbiont.
Collapse
Grants
- JSPS Research Fellowship for Young Scientists, Japan
- Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
- Ministry of Higher Education, Research, and Innovation, France
- CNRS International Research Project, France
- JSPS-CNRS Bilateral Open Partnership Joint Research Project, France-Japan
- Agence Nationale de la Recherche, France
- Saclay Plant Sciences-SPS
Collapse
Affiliation(s)
- Romain Jouan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Gaëlle Lextrait
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Aya Yokota
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raynald Cossard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo 062-8517, Japan
| | - Tsubasa Ohbayashi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8604, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Moeller FU, Herbold CW, Schintlmeister A, Mooshammer M, Motti C, Glasl B, Kitzinger K, Behnam F, Watzka M, Schweder T, Albertsen M, Richter A, Webster NS, Wagner M. Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta. THE ISME JOURNAL 2023; 17:1208-1223. [PMID: 37188915 PMCID: PMC10356861 DOI: 10.1038/s41396-023-01420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.
Collapse
Affiliation(s)
- Florian U Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cherie Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, St Lucia, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Abstract
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Collapse
Affiliation(s)
- Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology; and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| |
Collapse
|
5
|
New structural insights into bacterial sulfoacetaldehyde and taurine metabolism. Biochem J 2020; 477:1367-1371. [PMID: 32322897 DOI: 10.1042/bcj20200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
In last year's issue 4 of Biochemical Journal, Zhou et al. (Biochem J. 476, 733-746) kinetically and structurally characterized the reductase IsfD from Klebsiella oxytoca that catalyzes the reversible reduction in sulfoacetaldehyde to the corresponding alcohol isethionate. This is a key step in detoxification of the carbonyl intermediate formed in bacterial nitrogen assimilation from the α-aminoalkanesulfonic acid taurine. In 2019, the work on sulfoacetaldehyde reductase IsfD was the exciting start to a quite remarkable series of articles dealing with structural elucidation of proteins involved in taurine metabolism as well as the discovery of novel degradation pathways in bacteria.
Collapse
|
6
|
Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020; 52:329-360. [PMID: 32072297 PMCID: PMC7088015 DOI: 10.1007/s00726-020-02823-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Taurine (a sulfur-containing β-amino acid), creatine (a metabolite of arginine, glycine and methionine), carnosine (a dipeptide; β-alanyl-L-histidine), and 4-hydroxyproline (an imino acid; also often referred to as an amino acid) were discovered in cattle, and the discovery of anserine (a methylated product of carnosine; β-alanyl-1-methyl-L-histidine) also originated with cattle. These five nutrients are highly abundant in beef, and have important physiological roles in anti-oxidative and anti-inflammatory reactions, as well as neurological, muscular, retinal, immunological and cardiovascular function. Of particular note, taurine, carnosine, anserine, and creatine are absent from plants, and hydroxyproline is negligible in many plant-source foods. Consumption of 30 g dry beef can fully meet daily physiological needs of the healthy 70-kg adult human for taurine and carnosine, and can also provide large amounts of creatine, anserine and 4-hydroxyproline to improve human nutrition and health, including metabolic, retinal, immunological, muscular, cartilage, neurological, and cardiovascular health. The present review provides the public with the much-needed knowledge of nutritionally and physiologically significant amino acids, dipeptides and creatine in animal-source foods (including beef). Dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline are beneficial for preventing and treating obesity, cardiovascular dysfunction, and ageing-related disorders, as well as inhibiting tumorigenesis, improving skin and bone health, ameliorating neurological abnormalities, and promoting well being in infants, children and adults. Furthermore, these nutrients may promote the immunological defense of humans against infections by bacteria, fungi, parasites, and viruses (including coronavirus) through enhancing the metabolism and functions of monocytes, macrophages, and other cells of the immune system. Red meat (including beef) is a functional food for optimizing human growth, development and health.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
7
|
Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. ISME JOURNAL 2019; 13:2536-2550. [PMID: 31227817 DOI: 10.1038/s41396-019-0455-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 11/09/2022]
Abstract
Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.
Collapse
|
8
|
Heine V, Meinert-Berning C, Lück J, Mikowsky N, Voigt B, Riedel K, Steinbüchel A. The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis. PLoS One 2019; 14:e0211876. [PMID: 30742653 PMCID: PMC6370202 DOI: 10.1371/journal.pone.0211876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP.
Collapse
Affiliation(s)
- Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Janina Lück
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Hegedüs B, Kós PB, Bende G, Bounedjoum N, Maróti G, Laczi K, Szuhaj M, Perei K, Rákhely G. Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1. Appl Microbiol Biotechnol 2017; 102:305-318. [PMID: 29051988 DOI: 10.1007/s00253-017-8553-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Novosphingobium resinovorum SA1 was the first single isolate capable of degrading sulfanilic acid, a widely used representative of sulfonated aromatic compounds. The genome of the strain was recently sequenced, and here, we present whole-cell transcriptome analyses of cells exposed to sulfanilic acid as compared to cells grown on glucose. The comparison of the transcript profiles suggested that the primary impact of sulfanilic acid on the cell transcriptome was a starvation-like effect. The genes of the peripheral, central, and common pathways of sulfanilic acid biodegradation had distinct transcript profiles. The peripheral genes located on a plasmid had very high basal expressions which were hardly upregulated by sulfanilic acid. The genomic context and the codon usage preference of these genes suggested that they were acquired by horizontal gene transfer. The genes of the central pathways were remarkably inducible by sulfanilic acid indicating the presence of a substrate-specific regulatory system in the cells. Surprisingly, the genes of the common part of the metabolic pathway had low and sulfanilic acid-independent transcript levels. The approach applied resulted in the identification of the genes of proteins involved in auxiliary processes such as electron transfer, substrate and iron transports, sulfite oxidases, and sulfite transporters. The whole transcriptome analysis revealed that the cells exposed to xenobiotics had multiple responses including general starvation-like, substrate-specific, and substrate-related effects. From the results, we propose that the genes of the peripheral, central, and common parts of the pathway have been evolved independently.
Collapse
Affiliation(s)
- Botond Hegedüs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Gábor Bende
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gergely Maróti
- Seqomics Ltd, Mórahalom, Vállalkozók útja 7, Mórahalom, 6782, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary. .,Institute of Environmental and Technological Sciences, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
10
|
Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur Cycling and the Intestinal Microbiome. Dig Dis Sci 2017; 62:2241-2257. [PMID: 28766244 DOI: 10.1007/s10620-017-4689-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, MSCO3 2020, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Nathaniel L Ritz
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guy D Fauque
- CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, Université de Toulon, Campus de Luminy, Case 901, 13288, Marseille Cedex 09, France
| | - Henry C Lin
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
11
|
Collingro A, Köstlbacher S, Mussmann M, Stepanauskas R, Hallam SJ, Horn M. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME JOURNAL 2017. [PMID: 28644443 PMCID: PMC5604735 DOI: 10.1038/ismej.2017.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chlamydiae are obligate intracellular bacteria comprising important human pathogens and symbionts of protists. Molecular evidence indicates a tremendous diversity of chlamydiae particularly in marine environments, yet our current knowledge is based mainly on terrestrial representatives. Here we provide first insights into the biology of marine chlamydiae representing three divergent clades. Our analysis of single-cell amplified genomes revealed hallmarks of the chlamydial lifestyle, supporting the ancient origin of their characteristic developmental cycle and major virulence mechanisms. Surprisingly, these chlamydial genomes encode a complete flagellar apparatus, a previously unreported feature. We show that flagella are an ancient trait that was subject to differential gene loss among extant chlamydiae. Together with a chemotaxis system, these marine chlamydiae are likely motile, with flagella potentially playing a role during host cell infection. This study broadens our view on chlamydial biology and indicates a largely underestimated potential to adapt to different hosts and environments.
Collapse
Affiliation(s)
- Astrid Collingro
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Marc Mussmann
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | | | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Horn
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Holt S, Kankipati H, De Graeve S, Van Zeebroeck G, Foulquié-Moreno MR, Lindgreen S, Thevelein JM. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 2017; 8:14247. [PMID: 28165463 PMCID: PMC5303821 DOI: 10.1038/ncomms14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022] Open
Abstract
Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1Δ sul2Δ soa1Δ strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline sulfate as sulfur sources in the natural environment of S. cerevisiae and other fungi by identifying fungal transporters for these compounds. Sulfonates are a major source of sulphur for soil microbes but their cellular uptake is still not fully understood. Here the authors show that Saccharomyces cerevisiae YIL166C(SOA1) encodes for an inorganic sulphur transporter that can also function as a sulfonate and choline sulphate transporter.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Harish Kankipati
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stijn De Graeve
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| | - Stinus Lindgreen
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, 1799 Copenhagen V, Denmark
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Institute of Botany and Microbiology Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium.,Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, B-3001 Leuven-Heverlee, Belgium
| |
Collapse
|
13
|
Abstract
Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in 'metabolism of aromatic compounds', 'mobile genetic elements', 'potassium metabolism' and 'pathways that utilize osmolytes' in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.
Collapse
|
14
|
Wübbeler JH, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters. J Biotechnol 2015; 209:85-95. [PMID: 26073999 DOI: 10.1016/j.jbiotec.2015.06.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Mostafavi M, Lewis JC, Saini T, Bustamante JA, Gao IT, Tran TT, King SN, Huang Z, Chen JC. Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression. BMC Microbiol 2014; 14:295. [PMID: 25420869 PMCID: PMC4254191 DOI: 10.1186/s12866-014-0295-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Background Genetic models have been developed in divergent branches of the class Alphaproteobacteria to help answer a wide spectrum of questions regarding bacterial physiology. For example, Sinorhizobium meliloti serves as a useful representative for investigating rhizobia-plant symbiosis and nitrogen fixation, Caulobacter crescentus for studying cell cycle regulation and organelle biogenesis, and Zymomonas mobilis for assessing the potentials of metabolic engineering and biofuel production. A tightly regulated promoter that enables titratable expression of a cloned gene in these different models is highly desirable, as it can facilitate observation of phenotypes that would otherwise be obfuscated by leaky expression. Results We compared the functionality of four promoter regions in S. meliloti (ParaA, PtauA, PrhaR, and PmelA) by constructing strains carrying fusions to the uidA reporter in their genomes and measuring beta-glucuronidase activities when they were induced by arabinose, taurine, rhamnose, or melibiose. PtauA was chosen for further study because it, and, to a lesser extent, PmelA, exhibited characteristics suitable for efficient modulation of gene expression. The levels of expression from PtauA depended on the concentrations of taurine, in both complex and defined media, in S. meliloti as well as C. crescentus and Z. mobilis. Moreover, our analysis indicated that TauR, TauC, and TauY are each necessary for taurine catabolism and substantiated their designated roles as a transcriptional activator, the permease component of an ABC transporter, and a major subunit of the taurine dehydrogenase, respectively. Finally, we demonstrated that PtauA can be used to deplete essential cellular factors in S. meliloti, such as the PleC histidine kinase and TatB, a component of the twin-arginine transport machinery. Conclusions The PtauA promoter of S. meliloti can control gene expression with a relatively inexpensive and permeable inducer, taurine, in diverse alpha-proteobacteria. Regulated expression of the same gene in different hosts can be achieved by placing both tauR and PtauA on appropriate vectors, thus facilitating inspection of conservation of gene function across species. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0295-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mina Mostafavi
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Jainee Christa Lewis
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Tanisha Saini
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | | | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Tuyet Thi Tran
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Sean Nicholas King
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Joseph C Chen
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| |
Collapse
|
16
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
17
|
Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth. J Bacteriol 2013; 195:2921-30. [PMID: 23603744 DOI: 10.1128/jb.00307-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypotaurine (HT; 2-aminoethane-sulfinate) is known to be utilized by bacteria as a sole source of carbon, nitrogen, and energy for growth, as is taurine (2-aminoethane-sulfonate); however, the corresponding HT degradation pathway has remained undefined. Genome-sequenced Paracoccus denitrificans PD1222 utilized HT (and taurine) quantitatively for heterotrophic growth and released the HT sulfur as sulfite (and sulfate) and HT nitrogen as ammonium. Enzyme assays with cell extracts suggested that an HT-inducible HT:pyruvate aminotransferase (Hpa) catalyzes the deamination of HT in an initial reaction step. Partial purification of the Hpa activity and peptide fingerprinting-mass spectrometry (PF-MS) identified the Hpa candidate gene; it encoded an archetypal taurine:pyruvate aminotransferase (Tpa). The same gene product was identified via differential PAGE and PF-MS, as was the gene of a strongly HT-inducible aldehyde dehydrogenase (Adh). Both genes were overexpressed in Escherichia coli. The overexpressed, purified Hpa/Tpa showed HT:pyruvate-aminotransferase activity. Alanine, acetaldehyde, and sulfite were identified as the reaction products but not sulfinoacetaldehyde; the reaction of Hpa/Tpa with taurine yielded sulfoacetaldehyde, which is stable. The overexpressed, purified Adh oxidized the acetaldehyde generated during the Hpa reaction to acetate in an NAD(+)-dependent reaction. Based on these results, the following degradation pathway for HT in strain PD1222 can be depicted. The identified aminotransferase converts HT to sulfinoacetaldehyde, which desulfinates spontaneously to acetaldehyde and sulfite; the inducible aldehyde dehydrogenase oxidizes acetaldehyde to yield acetate, which is metabolized, and sulfite, which is excreted.
Collapse
|
18
|
Bastiat B, Sauviac L, Picheraux C, Rossignol M, Bruand C. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite. PLoS One 2012; 7:e50768. [PMID: 23226379 PMCID: PMC3511301 DOI: 10.1371/journal.pone.0050768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/24/2012] [Indexed: 12/02/2022] Open
Abstract
Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4) belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i) are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine), ii) display overlapping regulatory activities, iii) govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv) are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.
Collapse
Affiliation(s)
- Bénédicte Bastiat
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France
| | - Laurent Sauviac
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France
| | - Carole Picheraux
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Michel Rossignol
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversités, Plateforme Protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Claude Bruand
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
19
|
A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164. Arch Microbiol 2012; 194:857-63. [DOI: 10.1007/s00203-012-0806-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/23/2012] [Accepted: 03/15/2012] [Indexed: 11/26/2022]
|
20
|
Denger K, Lehmann S, Cook AM. Molecular genetics and biochemistry of N-acetyltaurine degradation by Cupriavidus necator H16. MICROBIOLOGY-SGM 2011; 157:2983-2991. [PMID: 21757489 DOI: 10.1099/mic.0.048462-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cupriavidus necator H16 (DSM 428), whose genome has been sequenced, was found to degrade N-acetyltaurine as a sole source of carbon and energy for growth. Utilization of the compound was quantitative. The degradative pathway involved an inducible N-acetyltaurine amidohydrolase (NaaS), which catalysed the cleavage of N-acetyltaurine to acetate and taurine. The degradation of the latter compound is via an inducible, degradative pathway that involves taurine dehydrogenase [EC 1.4.2.-], sulfoacetaldehyde acetyltransferase [EC 2.3.3.15], phosphotransacetylase [EC 2.4.1.8], a sulfite exporter [TC 9.A.29.2.1] and sulfite dehydrogenase [EC 1.8.2.1]. Induction of the expression of representative gene products, encoded by at least four gene clusters, was confirmed biochemically. The acetate released by NaaS was activated to acetyl-CoA by an inducible acetate-CoA ligase [EC 6.2.1.1]. NaaS was purified to homogeneity; it had a K(m) value of 9.4 mM for N-acetyltaurine, and it contained tightly bound Zn and Fe atoms. The denatured enzyme has a molecular mass of about 61 kDa (determined by SDS-PAGE) and the native enzyme was apparently monomeric. Peptide-mass fingerprinting identified the locus tag as H16_B0868 in a five-gene cluster, naaROPST (H16_B0865-H16_B0869). The cluster presumably encodes a LysR-type transcriptional regulator (NaaR), a membrane protein (NaaO), a solute : sodium symporter-family permease [TC 2.A.21] (NaaP), the metal-dependent amidohydrolase (NaaS) and a putative metallochaperone (COG0523) (NaaT). Reverse-transcription PCR indicated that naaOPST were inducibly transcribed.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Sabine Lehmann
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
21
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
22
|
Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits THM, Cook AM. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem 2010; 285:35249-54. [PMID: 20693281 PMCID: PMC2975148 DOI: 10.1074/jbc.m110.127043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/05/2010] [Indexed: 11/06/2022] Open
Abstract
Bacterial degradation of sulfoacetate, a widespread natural product, proceeds via sulfoacetaldehyde and requires a considerable initial energy input. Whereas the fate of sulfoacetaldehyde in Cupriavidus necator (Ralstonia eutropha) H16 is known, the pathway from sulfoacetate to sulfoacetaldehyde is not. The genome sequence of the organism enabled us to hypothesize that the inducible pathway, which initiates sau (sulfoacetate utilization), involved a four-gene cluster (sauRSTU; H16_A2746 to H16_A2749). The sauR gene, divergently orientated to the other three genes, probably encodes the transcriptional regulator of the presumed sauSTU operon, which is subject to inducible transcription. SauU was tentatively identified as a transporter of the major facilitator superfamily, and SauT was deduced to be a sulfoacetate-CoA ligase. SauT was a labile protein, but it could be separated and shown to generate AMP and an unknown, labile CoA-derivative from sulfoacetate, CoA, and ATP. This unknown compound, analyzed by MALDI-TOF-MS, had a relative molecular mass of 889.7, which identified it as protonated sulfoacetyl-CoA (calculated 889.6). SauS was deduced to be sulfoacetaldehyde dehydrogenase (acylating). The enzyme was purified 175-fold to homogeneity and characterized. Peptide mass fingerprinting confirmed the sauS locus (H16_A2747). SauS converted sulfoacetyl-CoA and NADPH to sulfoacetaldehyde, CoA, and NADP(+), thus confirming the hypothesis.
Collapse
Affiliation(s)
- Sonja Weinitschke
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- the Institute of Biochemical Engineering, Saarland University, D-66041 Saarbrücken, Germany
| | - Bernhard Kusian
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Botho Bowien
- the Institute of Microbiology and Genetics, University of Göttingen, D-37077 Göttingen, Germany, and
| | - Theo H. M. Smits
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
- Agroscope Changins-Wädenswil, Swiss Federal Research Station, CH-8820 Wädenswil, Switzerland
| | - Alasdair M. Cook
- From the Department of Biology, The University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
23
|
Krejčík Z, Hollemeyer K, Smits THM, Cook AM. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. MICROBIOLOGY-SGM 2010; 156:1547-1555. [PMID: 20133363 DOI: 10.1099/mic.0.036699-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial generation of isethionate (2-hydroxyethanesulfonate) from taurine (2-aminoethanesulfonate) by anaerobic gut bacteria was established in 1980. That phenomenon in pure culture was recognized as a pathway of assimilation of taurine-nitrogen. Based on the latter work, we predicted from genome-sequence data that the marine gammaproteobacterium Chromohalobacter salexigens DSM 3043 would exhibit this trait. Quantitative conversion of taurine to isethionate, identified by mass spectrometry, was confirmed, and the taurine-nitrogen was recovered as cell material. An eight-gene cluster was predicted to encode the inducible vectorial, scalar and regulatory enzymes involved, some of which were known from other taurine pathways. The genes (Csal_0153-Csal_0156) encoding a putative ATP-binding-cassette (ABC) transporter for taurine (TauAB(1)B(2)C) were shown to be inducibly transcribed by reverse transcription (RT-) PCR. An inducible taurine : 2-oxoglutarate aminotransferase [EC 2.6.1.55] was found (Csal_0158); the reaction yielded glutamate and sulfoacetaldehyde. The sulfoacetaldehyde was reduced to isethionate by NADPH-dependent sulfoacetaldehyde reductase (IsfD), a member of the short-chain alcohol dehydrogenase superfamily. The 27 kDa protein (SDS-PAGE) was identified by peptide-mass fingerprinting as the gene product of Csal_0161. The putative exporter of isethionate (IsfE) is encoded by Csal_0160; isfE was inducibly transcribed (RT-PCR). The presumed transcriptional regulator, TauR (Csal_0157), may autoregulate its own expression, typical of GntR-type regulators. Similar gene clusters were found in several marine and terrestrial gammaproteobacteria, which, in the gut canal, could be the source of not only mammalian, but also arachnid and cephalopod isethionate.
Collapse
Affiliation(s)
- Zdeněk Krejčík
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-16637 Prague, Czech Republic.,Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Theo H M Smits
- Agroscope Changins-Wädenswil ACW, Schloss, Postfach, CH-8820 Wädenswil, Switzerland.,Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
24
|
Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits THM. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl Environ Microbiol 2010; 76:618-21. [PMID: 19933343 PMCID: PMC2805217 DOI: 10.1128/aem.01818-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022] Open
Abstract
Ubiquitous isethionate (2-hydroxyethanesulfonate) is dissimilated by diverse bacteria. Growth of Cupriavidus necator H16 with isethionate was observed, as was inducible membrane-bound isethionate dehydrogenase (IseJ) and inducible transcription of the genes predicted to encode IseJ and a transporter (IseU). Biodiversity in isethionate transport genes was observed and investigated by transcription experiments.
Collapse
|
25
|
Sulfite oxidation in Sinorhizobium meliloti. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1516-25. [DOI: 10.1016/j.bbabio.2009.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
|
26
|
Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits THM. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 2008; 190:159-68. [PMID: 18506422 DOI: 10.1007/s00203-008-0386-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.
Collapse
Affiliation(s)
- Zdenĕk Krejcík
- Department of Biology, The University, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Different bacterial strategies to degrade taurocholate. Arch Microbiol 2008; 190:11-8. [DOI: 10.1007/s00203-008-0357-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/31/2008] [Accepted: 02/18/2008] [Indexed: 01/18/2023]
|
28
|
Weinitschke S, Denger K, Cook AM, Smits THM. The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2 sulfonates. MICROBIOLOGY-SGM 2007; 153:3055-3060. [PMID: 17768248 DOI: 10.1099/mic.0.2007/009845-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The degradation of taurine, isethionate and sulfoacetate in Cupriavidus necator (Ralstonia eutropha) H16 was shown by enzyme assays to be inducible, and each pathway involved sulfoacetaldehyde, which was subject to phosphatolysis by a common sulfoacetaldehyde acetyltransferase (Xsc, H16_B1870) to yield acetyl phosphate and sulfite. The neighbouring genes encoded phosphate acetyltransferase (Pta, H16_B1871) and a hypothetical protein [domain of unknown function (DUF)81, H16_B1872], with eight derived transmembrane helices. RT-PCR showed inducible transcription of these three genes, and led to the hypothesis that H16_B1872 and orthologous proteins represent a sulfite exporter, which was named TauE.
Collapse
Affiliation(s)
| | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Theo H M Smits
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
29
|
The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol 2007; 190:487-93. [PMID: 17981966 DOI: 10.1128/jb.01510-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus can efficiently grow with taurine as the sole sulfur source. The products of the tpa-tauR-xsc gene region are essential for this activity. TauR, a MocR-like member of the GntR superfamily of transcriptional regulators, activates tpa transcription, as shown by analysis of wild-type and tauR mutant strains carrying a tpa-lacZ reporter fusion. Activation of the tpa promoter requires taurine but is not inhibited by sulfate, which is the preferred sulfur source. TauR directly binds to the tpa promoter, as demonstrated by DNA mobility shift assays. As expected for a transcriptional activator, the TauR binding site is located upstream of the transcription start site, which has been determined by primer extension. Site-directed promoter mutations reveal that TauR binds to direct repeats, an unusual property that has to date been shown for only one other member of the MocR subfamily, namely, GabR from Bacillus subtilis. In contrast, all other members of the GntR family analyzed so far bind to inverted repeats.
Collapse
|
30
|
Mulligan C, Kelly DJ, Thomas GH. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization. J Mol Microbiol Biotechnol 2007; 12:218-26. [PMID: 17587870 DOI: 10.1159/000099643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are a family of extracytoplasmic solute receptor-dependent secondary transporters that are widespread in the prokaryotic world but which have not been extensively studied. Here, we present results of a genome-wide analysis of TRAP sequences and genome organization from application of TRAPDb, a relational database created for the collection, curation and analysis of TRAP sequences. This has revealed a specific enrichment in the number of TRAP transporters in several bacteria which is consistent with increased use of TRAP transporters in saline environments. Additionally, we report a number of new organizations of TRAP transporter genes and proteins which suggest the recruitment of TRAP transporter components for use in other biological contexts.
Collapse
|
31
|
Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A. Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 2006; 72:3662-72. [PMID: 16672515 PMCID: PMC1472397 DOI: 10.1128/aem.72.5.3662-3672.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Sinorhizobium meliloti type strain Rm1021 consists of three replicons: the chromosome and two megaplasmids, pSymA and pSymB. Additionally, many indigenous S. meliloti strains possess one or more smaller plasmids, which represent the accessory genome of this species. Here we describe the complete nucleotide sequence of an accessory plasmid, designated pSmeSM11a, that was isolated from a dominant indigenous S. meliloti subpopulation in the context of a long-term field release experiment with genetically modified S. meliloti strains. Sequence analysis of plasmid pSmeSM11a revealed that it is 144,170 bp long and has a mean G+C content of 59.5 mol%. Annotation of the sequence resulted in a total of 160 coding sequences. Functional predictions could be made for 43% of the genes, whereas 57% of the genes encode hypothetical or unknown gene products. Two plasmid replication modules, one belonging to the repABC replicon family and the other belonging to the plasmid type A replicator region family, were identified. Plasmid pSmeSM11a contains a mobilization (mob) module composed of the type IV secretion system-related genes traG and traA and a putative mobC gene. A large continuous region that is about 42 kb long is very similar to a corresponding region located on S. meliloti Rm1021 megaplasmid pSymA. Single-base-pair deletions in the homologous regions are responsible for frameshifts that result in nonparalogous coding sequences. Plasmid pSmeSM11a carries additional copies of the nodulation genes nodP and nodQ that are responsible for Nod factor sulfation. Furthermore, a tauD gene encoding a putative taurine dioxygenase was identified on pSmeSM11a. An acdS gene located on pSmeSM11a is the first example of such a gene in S. meliloti. The deduced acdS gene product is able to deaminate 1-aminocyclopropane-1-carboxylate and is proposed to be involved in reducing the phytohormone ethylene, thus influencing nodulation events. The presence of numerous insertion sequences suggests that these elements mediated acquisition of accessory plasmid modules.
Collapse
Affiliation(s)
- M Stiens
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Mayer J, Denger K, Smits THM, Hollemeyer K, Groth U, Cook AM. N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT. Arch Microbiol 2006; 186:61-7. [PMID: 16802176 DOI: 10.1007/s00203-006-0123-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 11/27/2022]
Abstract
The naturally occurring sulfonate N-acetyltaurine was synthesized chemically and its identity was confirmed. Aerobic enrichment cultures for bacteria able to utilize N-acetyltaurine as sole source of fixed nitrogen or as sole source of carbon were successful. One representative isolate, strain NAT, which was identified as a strain of Delftia acidovorans, grew with N-acetyltaurine as carbon source and excreted stoichiometric amounts of sulfate and ammonium. Inducible enzyme activities were measured in crude extracts of this organism to elucidate the degradative pathway. Cleavage of N-acetyltaurine by a highly active amidase yielded acetate and taurine. The latter was oxidatively deaminated by taurine dehydrogenase to ammonium and sulfoacetaldehyde. This key intermediate of sulfonate catabolism was desulfonated by the known reaction of sulfoacetaldehyde acetyltransferase to sulfite and acetyl phosphate, which was further degraded to enter central metabolism. A degradative pathway including transport functions is proposed.
Collapse
Affiliation(s)
- Jutta Mayer
- Fachbereich Biologie der Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Thomas GH, Southworth T, León-Kempis MR, Leech A, Kelly DJ. Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. MICROBIOLOGY-SGM 2006; 152:187-198. [PMID: 16385129 DOI: 10.1099/mic.0.28334-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are relatively common prokaryotic secondary transporters which comprise an extracytoplasmic solute receptor (ESR) protein and two dissimilar membrane proteins or domains, yet the substrates and physiological functions of only a few of these systems are so far known. In this study, a biophysical approach was used to identify the ligands for the purified Rhodobacter capsulatus RRC01191 and Escherichia coli YiaO proteins, which are members of two phylogenetically distinct families of TRAP-ESRs found in diverse bacteria. In contrast to previous indirect evidence pointing to RRC01191 orthologues being involved in polyol uptake, it was shown that RRC01191 binds pyruvate, 2-oxobutyrate and a broad range of aliphatic monocarboxylic 2-oxoacid anions with varying affinities (K(d) values 0.08-3 muM), consistent with a predicted role in monocarboxylate transport related to branched-chain amino-acid biosynthesis. The E. coli YiaMNO TRAP transporter has previously been proposed to be an l-xylulose uptake system [Plantinga et al. (2004) Mol Membr Biol 21, 51-57], but purified YiaO did not bind l- or d-xylulose as judged by fluorescence spectroscopy, circular dichroism or mass spectrometry. Instead, these techniques showed that a breakdown product of l-ascorbate, 2,3-diketo-l-gulonate (2,3-DKG), binds by a simple one-step mechanism with sub-micromolar affinity. The data provide the first evidence for the existence of ESR-dependent transporters for 2-oxoacids and 2,3-DKG, homologues of which appear to be widespread amongst prokaryotes. The results also underline the utility of direct ESR ligand-binding studies for TRAP transporter characterization.
Collapse
Affiliation(s)
- Gavin H Thomas
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Southworth
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Maria Rocio León-Kempis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Leech
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
34
|
Weinitschke S, Denger K, Smits THM, Hollemeyer K, Cook AM. The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine. Microbiology (Reading) 2006; 152:1179-1186. [PMID: 16549680 DOI: 10.1099/mic.0.28622-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective enrichments yielded bacterial cultures able to utilize the osmolyte N-methyltaurine as sole source of carbon and energy or as sole source of fixed nitrogen for aerobic growth. Strain MT1, which degraded N-methyltaurine as a sole source of carbon concomitantly with growth, was identified as a strain of Alcaligenes faecalis. Stoichiometric amounts of methylamine, whose identity was confirmed by matrix-assisted, laser-desorption ionization time-of-flight mass spectrometry, and of sulfate were released during growth. Inducible N-methyltaurine dehydrogenase, sulfoacetaldehyde acetyltransferase (Xsc) and a sulfite dehydrogenase could be detected. Taurine dehydrogenase was also present and it was hypothesized that taurine dehydrogenase has a substrate range that includes N-methyltaurine. Partial sequences of a tauY-like gene (encoding the putative large component of taurine dehydrogenase) and an xsc gene were obtained by PCR with degenerate primers. Strain N-MT utilized N-methyltaurine as a sole source of fixed nitrogen for growth and could also utilize the compound as sole source of carbon. This bacterium was identified as a strain of Paracoccus versutus. This organism also expressed inducible (N-methyl)taurine dehydrogenase, Xsc and a sulfite dehydrogenase. The presence of a gene cluster with high identity to a larger cluster from Paracoccus pantotrophus NKNCYSA, which is now known to dissimilate N-methyltaurine via Xsc, allowed most of the overall pathway, including transport and excretion, to be defined. N-Methyltaurine is thus another compound whose catabolism is channelled directly through sulfoacetaldehyde.
Collapse
Affiliation(s)
- Sonja Weinitschke
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Theo H M Smits
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
35
|
Gorzynska AK, Denger K, Cook AM, Smits THM. Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T. Arch Microbiol 2006; 185:402-6. [PMID: 16541231 DOI: 10.1007/s00203-006-0106-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/14/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
A largely untested hypothesis for the bacterial dissimilation of taurine was explored in Silicibacter pomeroyi DSS-3, whose genome has been sequenced. Substrate-specific transcription of candidate genes encoding taurine uptake and dissimilation (tauABC, tpa, ald, xsc, pta) was found, which corresponded to the induction of Tpa, Ald, Xsc and Pta, that was observed.
Collapse
|
36
|
Denger K, Smits T, Cook A. L-cysteate sulpho-lyase, a widespread pyridoxal 5'-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3(T). Biochem J 2006; 394:657-64. [PMID: 16302849 PMCID: PMC1383715 DOI: 10.1042/bj20051311] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/14/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
Quantitative utilization of L-cysteate (2-amino-3-sulphopropionate) as the sole source of carbon and energy for growth of the aerobic, marine bacterium Silicibacter pomeroyi DSS-3(T) was observed. The sulphonate moiety was recovered in the medium largely as sulphite, and the appropriate amount of the ammonium ion was also observed. Genes [suyAB (3-sulpholactate sulpho-lyase)] encoding the known desulphonation reaction in cysteate degradation were absent from the genome, but a homologue of a putative sulphate exporter gene (suyZ) was found, and its neighbour, annotated as a D-cysteine desulphhydrase, was postulated to encode pyridoxal 5'-phosphate-coupled L-cysteate sulpho-lyase (CuyA), a novel enzyme. Inducible CuyA was detected in cysteate-grown cells. The enzyme released equimolar pyruvate, sulphite and the ammonium ion from L-cysteate and was purified to homogeneity by anion-exchange, hydrophobic-interaction and gel-filtration chromatography. The N-terminal amino acid sequence of this 39-kDa subunit confirmed the identification of the cuyA gene. The native enzyme was soluble and homomultimeric. The K(m)-value for L-cysteate was high (11.7 mM) and the enzyme also catalysed the D-cysteine desulphhydrase reaction. The gene cuyZ, encoding the putative sulphite exporter, was co-transcribed with cuyA. Sulphite was exported despite the presence of a ferricyanide-coupled sulphite dehydrogenase. CuyA was found in many bacteria that utilize cysteate.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Theo H. M. Smits
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alasdair M. Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
37
|
Cook AM, Denger K. Metabolism of taurine in microorganisms: a primer in molecular biodiversity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:3-13. [PMID: 17153584 DOI: 10.1007/978-0-387-33504-9_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Alasdair M Cook
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany.
| | | |
Collapse
|
38
|
Erwin KN, Nakano S, Zuber P. Sulfate-dependent repression of genes that function in organosulfur metabolism in Bacillus subtilis requires Spx. J Bacteriol 2005; 187:4042-9. [PMID: 15937167 PMCID: PMC1151713 DOI: 10.1128/jb.187.12.4042-4049.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase alpha subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions.
Collapse
Affiliation(s)
- Kyle N Erwin
- Department of Environmental & Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | | | |
Collapse
|
39
|
Abstract
To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
40
|
Styp von Rekowski K, Denger K, Cook AM. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1. Arch Microbiol 2005; 183:325-30. [PMID: 15883781 DOI: 10.1007/s00203-005-0776-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/10/2005] [Accepted: 04/04/2005] [Indexed: 11/30/2022]
Abstract
Klebsiella oxytoca TauN1 represents a group of isolates which utilise taurine (2-aminoethanesulfonate) quantitatively as a sole source of combined nitrogen for aerobic growth. During growth, a compound is excreted, which has now been identified as isethionate (2-hydroxyethanesulfonate). An ion-chromatographic separation of isethionate was developed to quantify the putative isethionate, whose identity was confirmed by matrix-assisted, laser-desorption ionisation time-of-flight mass spectrometry. Strain TauN1 utilised taurine (and excreted isethionate) concomitantly with growth. Cell-free extracts contained inducible taurine transaminase, which yielded sulfoacetaldehyde. A soluble, NADP-dependent isethionate dehydrogenase converted sulfoacetaldehyde to isethionate. The enzyme was partially purified and it apparently belonged to the family of short-chain alcohol dehydrogenases.
Collapse
|
41
|
Weinitschke S, von Rekowski KS, Denger K, Cook AM. Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology (Reading) 2005; 151:1285-1290. [PMID: 15817795 DOI: 10.1099/mic.0.27838-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eighteen enrichment cultures with taurine (2-aminoethanesulfonate) as the sole source of combined nitrogen under aerobic conditions were all successful, and 24 pure cultures were obtained. Only three of the cultures yielded an inorganic product, sulfate, from the sulfonate moiety of taurine, and the others were presumed to yield organosulfonates. Sulfoacetate, known from Rhodopseudomonas palustris CGA009 under these conditions, was not detected in any culture, but sulfoacetaldehyde (as a hydrazone derivative) was tentatively detected in the outgrown medium of nine isolates. The compound was stable under these conditions and the identification was confirmed by MALDI-TOF-MS. Most sulfoacetaldehyde-releasing isolates were determined to be strains of Acinetobacter calcoaceticus, and a representative organism, strain SW1, was chosen for further work. A quantitative enzymic determination of sulfoacetaldehyde and its bisulfite addition complex was developed: it involved the NAD-coupled sulfoacetaldehyde dehydrogenase from R. palustris. A. calcoaceticus SW1 utilized taurine quantitatively and concomitantly with growth in, for example, an adipate-salts medium, and the release of sulfoacetaldehyde was stoichiometric. The deamination reaction involved a taurine dehydrogenase. Enrichment cultures to explore the possible release of organophosphonates from the analogous substrate, 2-aminoethanephosphonate, led to 33 isolates, all of which released inorganic phosphate quantitatively.
Collapse
Affiliation(s)
| | | | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
42
|
Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology (Reading) 2005; 151:737-747. [PMID: 15758220 DOI: 10.1099/mic.0.27548-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paracoccus pantotrophusNKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)−1. The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3-sulfopyruvate. The latter was reduced to 3-sulfolactate by an NAD-linked sulfolactate dehydrogenase [3·3 mkat (kg protein)−1]. The inducible desulfonation reaction was not detected initially in cell extracts. However, a strongly induced protein with subunits of 8 kDa (α) and 42 kDa (β) was found and purified. The corresponding genes had similarities to those encoding altronate dehydratases, which often require iron for activity. The purified enzyme could then be shown to convert 3-sulfolactate to sulfite and pyruvate and it was termed sulfolactate sulfo-lyase (Suy). A high level of sulfite dehydrogenase was also induced during growth with cysteate, and the organism excreted sulfate. A putative regulator, OrfR, was encoded upstream ofsuyABon the reverse strand. Downstream ofsuyABwassuyZ, which was cotranscribed withsuyB. The gene, an allele oftauZ, encoded a putative membrane protein with transmembrane helices (COG2855), and is a candidate to encode the sulfate exporter needed to maintain homeostasis during desulfonation.suyAB-like genes are widespread in sequenced genomes and environmental samples where, in contrast to the current annotation, several presumably encode the desulfonation of 3-sulfolactate, a component of bacterial spores.
Collapse
Affiliation(s)
- Ulrike Rein
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Ronnie Gueta
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Karin Denger
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany
| | - Klaus Hollemeyer
- Institute of Biochemical Engineering, Saarland University, Box 50 11 50, D-66041 Saarbrücken, Germany
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
43
|
Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook A. A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 2004; 383:91-9. [PMID: 15176949 PMCID: PMC1134047 DOI: 10.1042/bj20040652] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/01/2004] [Accepted: 06/04/2004] [Indexed: 11/17/2022]
Abstract
Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an outer-membrane porin, formed an anion-selective channel that works in co-operation with the putative secondary transporter, TsaS, located in the inner membrane. tsaT was identified as a 1017-bp ORF (open reading frame) on plasmid pTSA upstream of the TSA-catabolic genes in the tsa operon. Expression of tsaT was regulated by TsaR, the transcriptional activator of the tsa regulon. The presence of tsaT was concomitant with the presence of the tsa operon in different TSA-degrading isolates. tsaT was expressed in Escherichia coli and was detected in the outer membrane. A 22-amino-acid leader peptide was identified. Purified protein reconstituted in lipid bilayer membranes formed anion-selective channels with a single-channel conductance of 3.5 nS in 1 M KCl. Downstream of tsaT, a constitutively expressed 720-bp ORF (tsaS) was identified. tsaS coded for a hydrophobic protein predicted to have six transmembrane helices and which is most likely localized in the cytoplasmic membrane. tsaS is adjacent to tsaT, but showed a different transcriptional profile.
Collapse
Affiliation(s)
- Jörg Mampel
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Elke Maier
- †Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut der Universität Würzburg, D-97074 Würzburg, Germany
| | - Tewes Tralau
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Roland Benz
- †Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut der Universität Würzburg, D-97074 Würzburg, Germany
| | - Alasdair M. Cook
- *Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
44
|
Denger K, Ruff J, Schleheck D, Cook AM. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. MICROBIOLOGY-SGM 2004; 150:1859-1867. [PMID: 15184572 DOI: 10.1099/mic.0.27077-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive bacteria Rhodococcus opacus ISO-5 and Rhodococcus sp. RHA1 utilized taurine (2-aminoethanesulfonate) as the sole source of carbon or of nitrogen or of sulfur for growth. Different gene clusters and enzymes were active under these different metabolic situations. Under carbon- or nitrogen-limited conditions three enzymes were induced, though to different levels: taurine-pyruvate aminotransferase (Tpa), alanine dehydrogenase (Ald) and sulfoacetaldehyde acetyltransferase (Xsc). The specific activities of these enzymes in R. opacus ISO-5 were sufficient to explain the growth rates under the different conditions. These three enzymes were purified and characterized, and the nature of each reaction was confirmed. Analyses of the genome of Rhodococcus sp. RHA1 revealed a gene cluster, tauR-ald-tpa, putatively encoding regulation and oxidation of taurine, located 20 kbp from the xsc gene and separate from two candidate phosphotransacetylase (pta) genes, as well as many candidate ABC transporters (tauBC). PCR primers allowed the amplification and sequencing of the tauR-ald-tpa gene cluster and the xsc gene in R. opacus ISO-5. The N-terminal sequences of the three tested proteins matched the derived amino acid sequences of the corresponding genes. The sequences of the four genes found in each Rhodococcus strain shared high degrees of identity (>95 % identical positions). RT-PCR studies proved transcription of the xsc gene when taurine was the source of carbon or of nitrogen. Under sulfur-limited conditions no xsc mRNA was generated and no Xsc was detected. Taurine dioxygenase (TauD), the enzyme catalysing the anticipated desulfonative reaction when taurine sulfur is assimilated, was presumed to be present because oxygen-dependent taurine disappearance was demonstrated with taurine-grown cells only. A putative tauD gene (with three other candidates) was detected in strain ISO-5. Regulation of the different forms of metabolism of taurine remains to be elucidated.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany
| | - David Schleheck
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biological Sciences, The University, D-78457 Konstanz, Germany
| |
Collapse
|