1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2023. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
Nagel AS, Andreeva-Kovalevskaya ZI, Siunov AV, Nagornykh MO, Zakharova MV, Solonin AS. Transcription of the hlyIIR Gene of Bacillus cereus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
4
|
Zamyatina AV, Rudenko NV, Karatovskaya AP, Shepelyakovskaya AO, Siunov AV, Andreeva-Kovalevskaya ZI, Nagel AS, Salyamov VI, Kolesnikov AS, Brovko FA, Solonin AS. Monoclonal Antibody HlyIIC‑15 to C-End Domain HlyII B. cereus Interacts with the Trombin Recognition Site. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:1214-1220. [PMID: 33390685 PMCID: PMC7768993 DOI: 10.1134/s1068162020060382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/23/2022]
Abstract
Among the panel of monoclonal antibodies to the recombinant protein HlyIICTD Bacillus cereus an antibody was found capable of forming an immune complex with a thrombin recognition region, the amino acid sequence of which is located inside the recombinant HlyIICTD. Localization of the epitope was carried out using peptide phage display methods, as well as enzyme immunoassay and immunoblotting for interaction with recombinant proteins, either containing or not containing individual components HlyIICTD. The identified epitope is located in the region of the thrombin site and retains the ability to interact with the antibody after the proteolyotic attack of the protein by thrombin.
Collapse
Affiliation(s)
- A. V. Zamyatina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
- Pushchino State Natural Science Institute, Pushchino, Moscow oblast 142290 Russia
| | - N. V. Rudenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - A. P. Karatovskaya
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - A. O. Shepelyakovskaya
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - A. V. Siunov
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - Zh. I. Andreeva-Kovalevskaya
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - A. S. Nagel
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - V. I. Salyamov
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - A. S. Kolesnikov
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
| | - F. A. Brovko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
- Pushchino State Natural Science Institute, Pushchino, Moscow oblast 142290 Russia
| | - A. S. Solonin
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow oblast 142290 Russia
- Pushchino State Natural Science Institute, Pushchino, Moscow oblast 142290 Russia
| |
Collapse
|
5
|
Zaide G, Elia U, Cohen-Gihon I, Israeli M, Rotem S, Israeli O, Ehrlich S, Cohen H, Lazar S, Beth-Din A, Shafferman A, Zvi A, Cohen O, Chitlaru T. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA-Disrupted and Parental Wild Type Strains. Microorganisms 2020; 8:microorganisms8121896. [PMID: 33265965 PMCID: PMC7760947 DOI: 10.3390/microorganisms8121896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
We previously demonstrated that the HtrA (High Temperature Requirement A) protease/chaperone active in the quality control of protein synthesis, represents an important virulence determinant of Bacillus anthracis. Virulence attenuation of htrA-disrupted Bacillus anthracis strains was attributed to susceptibility of ΔhtrA strains to stress insults, as evidenced by affected growth under various stress conditions. Here, we report a comparative RNA-seq transcriptomic study generating a database of differentially expressed genes in the B. anthracishtrA-disrupted and wild type parental strains under oxidative stress. The study demonstrates that, apart from protease and chaperone activities, HtrA exerts a regulatory role influencing expression of more than 1000 genes under stress. Functional analysis of groups or individual genes exhibiting strain-specific modulation, evidenced (i) massive downregulation in the ΔhtrA and upregulation in the WT strains of various transcriptional regulators, (ii) downregulation of translation processes in the WT strain, and (iii) downregulation of metal ion binding functions and upregulation of sporulation-associated functions in the ΔhtrA strain. These modulated functions are extensively discussed. Fifteen genes uniquely upregulated in the wild type strain were further interrogated for their modulation in response to other stress regimens. Overexpression of one of these genes, encoding for MazG (a nucleoside triphosphate pyrophosphohydrolase involved in various stress responses in other bacteria), in the ΔhtrA strain resulted in partial alleviation of the H2O2-sensitive phenotype.
Collapse
|
6
|
Cui Y, Märtlbauer E, Dietrich R, Luo H, Ding S, Zhu K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit Rev Toxicol 2019; 49:342-356. [PMID: 31116061 DOI: 10.1080/10408444.2019.1609410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of the Bacillus cereus group have been widely used as probiotics for human beings, food animals, plants, and environmental remediation. Paradoxically, B. cereus is responsible for both gastrointestinal and nongastrointestinal syndromes and represents an important opportunistic food-borne pathogen. Toxicity assessment is a fundamental issue to evaluate safety of probiotics. Here, we summarize the state of our current knowledge about the toxins of B. cereus sensu lato to be considered for safety assessment of probiotic candidates. Surfactin-like emetic toxin (cereulide) and various enterotoxins including nonhemolytic enterotoxin, hemolysin BL, and cytotoxin K are responsible for food poisoning outbreaks characterized by emesis and diarrhea. In addition, other factors, such as hemolysin II, Certhrax, immune inhibitor A1, and sphingomyelinase, contribute to toxicity and overall virulence of B. cereus.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| |
Collapse
|
7
|
Kaplan AR, Kaus K, De S, Olson R, Alexandrescu AT. NMR structure of the Bacillus cereus hemolysin II C-terminal domain reveals a novel fold. Sci Rep 2017; 7:3277. [PMID: 28607368 PMCID: PMC5468326 DOI: 10.1038/s41598-017-02917-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 11/09/2022] Open
Abstract
In addition to multiple virulence factors, Bacillus cereus a pathogen that causes food poisoning and life-threatening wound infections, secretes the pore-forming toxin hemolysin II (HlyII). The HlyII toxin has a unique 94 amino acid C-terminal domain (HlyIIC). HlyIIC exhibits splitting of NMR resonances due to cis/trans isomerization of a single proline near the C-terminus. To overcome heterogeneity, we solved the structure of P405M-HlyIIC, a mutant that exclusively stabilizes the trans state. The NMR structure of HlyIIC reveals a novel fold, consisting of two subdomains αA-β1-β2 and β3-β4-αB-β5, that come together in a barrel-like structure. The barrel core is fastened by three layers of hydrophobic residues. The barrel end opposite the HlyIIC-core has a positively charged surface, that by binding negatively charged moieties on cellular membranes, may play a role in target-cell surface recognition or stabilization of the heptameric pore complex. In the WT domain, dynamic flexibility occurs at the N-terminus and the first α-helix that connects the HlyIIC domain to the HlyII-core structure. In the destabilizing P405M mutant, increased flexibility is evident throughout the first subdomain, suggesting that the HlyIIC structure may have arisen through gene fusion.
Collapse
Affiliation(s)
- Anne R Kaplan
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA
| | - Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 224 Hall-Atwater, 52 Lawn Ave., Middletown, CT, 06459-0175, USA
| | - Swastik De
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 224 Hall-Atwater, 52 Lawn Ave., Middletown, CT, 06459-0175, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520-8114, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, 224 Hall-Atwater, 52 Lawn Ave., Middletown, CT, 06459-0175, USA.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd, Storrs, CT, 06269-3125, USA.
| |
Collapse
|
8
|
Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet Microbiol 2017. [PMID: 28622857 DOI: 10.1016/j.vetmic.2017.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Streptococcus suis (SS), an important pathogen for pigs, is not only considered as a zoonotic agent for humans, but is also recognized as a major reservoir of antimicrobial resistance contributing to the spread of resistance genes to other pathogenic Streptococcus species. In addition to serotype 2 (SS2), serotype 9 (SS9) is another prevalent serotype isolated from diseased pigs. Although many SS strains have been sequenced, the complete genome of a non-SS2 virulent strain has been unavailable to date. Here, we report the complete genome of GZ0565, a virulent strain of SS9, isolated from a pig with meningitis. Comparative genomic analysis revealed five new putative virulence or antimicrobial resistance-associated genes in strain GZ0565 but not in SS2 virulent strains. These five genes encode a putative triacylglycerol lipase, a TipAS antibiotic-recognition domain protein, a putative TetR family transcriptional repressor, a protein containing a LPXTG domain and a G5 domain, and a type VII secretion system (T7SS) putative substrate (EsxA), respectively. Western blot analysis showed that strain GZ0565 can secrete EsxA. We generated an esxA deletion mutant and showed that EsxA contributes to SS virulence in a mouse infection model. Additionally, the antibiotic resistance gene vanZSS was identified and expression of vanZSS conferred resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. We believe this is the first experimental demonstration of the existence of the T7SS putative substrate EsxA and its contribution to bacterial virulence in SS. Together, our results contribute to further understanding of the virulence and antimicrobial resistance characteristics of SS.
Collapse
|
9
|
van Nues RW, Castro-Roa D, Yuzenkova Y, Zenkin N. Ribonucleoprotein particles of bacterial small non-coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate. Nucleic Acids Res 2015; 44:2577-92. [PMID: 26609136 PMCID: PMC4824073 DOI: 10.1093/nar/gkv1302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 11/23/2022] Open
Abstract
Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins.
Collapse
Affiliation(s)
- Rob W van Nues
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
10
|
Kholodkov OA, Budarina ZI, Andreeva-Kovalevskaya ZI, Siunov AV, Solonin AS. Effect of Bacillus cereus hemolysin II on hepatocyte cells. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381502009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
12
|
The pore-forming haemolysins of bacillus cereus: a review. Toxins (Basel) 2013; 5:1119-39. [PMID: 23748204 PMCID: PMC3717773 DOI: 10.3390/toxins5061119] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/05/2022] Open
Abstract
The Bacillus cereus sensu lato group contains diverse Gram-positive spore-forming bacteria that can cause gastrointestinal diseases and severe eye infections in humans. They have also been incriminated in a multitude of other severe, and frequently fatal, clinical infections, such as osteomyelitis, septicaemia, pneumonia, liver abscess and meningitis, particularly in immuno-compromised patients and preterm neonates. The pathogenic properties of this organism are mediated by the synergistic effects of a number of virulence products that promote intestinal cell destruction and/or resistance to the host immune system. This review focuses on the pore-forming haemolysins produced by B. cereus: haemolysin I (cereolysin O), haemolysin II, haemolysin III and haemolysin IV (CytK). Haemolysin I belongs to the cholesterol-dependent cytolysin (CDC) family whose best known members are listeriolysin O and perfringolysin O, produced by L. monocytogenes and C. perfringens respectively. HlyII and CytK are oligomeric ß-barrel pore-forming toxins related to the α-toxin of S. aureus or the ß-toxin of C. perfringens. The structure of haemolysin III, the least characterized haemolytic toxin from the B. cereus, group has not yet been determined.
Collapse
|
13
|
Minnaard J, Rolny IS, Pérez PF. Interaction between Bacillus cereus and cultured human enterocytes: effect of calcium, cell differentiation, and bacterial extracellular factors. J Food Prot 2013; 76:820-6. [PMID: 23643123 DOI: 10.4315/0362-028x.jfp-12-294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus cereus interaction with cultured human enterocytes and the signaling pathways responsible for the biological effects of the infection were investigated. Results demonstrate that calcium depletion increases the ability of strains T1 and 2 to invade cells. Bacteria associated in greater extent to undifferentiated enterocytes and extracellular factors from strain 2 increased its own association and invasion. Inhibitors of signaling pathways related to phosphorylated lipids (U73122 and wortmannin) were able to significantly reduce cytoskeleton disruption induced by B. cereus infection. Adhesion of strain T1 decreased in the presence of U73122 and of wortmannin, as well as when those inhibitors were used together. In contrast, invasion values were diminished only by U73122. Results show that different factors are involved in the interaction between B. cereus and cultured human enterocytes. Following infection, disruption of the cytoskeleton could facilitate invasion of the eukaryotic cells.
Collapse
Affiliation(s)
- Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET], La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.
| | | | | |
Collapse
|
14
|
Iron regulates Bacillus thuringiensis haemolysin hlyII gene expression during insect infection. J Invertebr Pathol 2013; 113:205-8. [PMID: 23598183 DOI: 10.1016/j.jip.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
Abstract
Bacillus thuringiensis (Bt) is a spore-forming entomopathogen broadly used in agriculture crop. The haemolysin HlyII is an important Bt virulence factor responsible for insect death. In this work, we focused on the regulation of the hlyII gene throughout the bacterial growth in vitro and in vivo during insect infection. We show that hlyII regulation depends on the global regulator Fur. This regulation occurs independently of HlyIIR, the other known regulator of hlyII gene expression. Moreover, we show that hlyII is highly expressed when iron is depleted in vivo. As HlyII induces haemocyte and macrophage death, which are involved in the sequestration of iron upon infection, HlyII may induce host cell death to allow bacteria to gain access to iron.
Collapse
|
15
|
Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression. PLoS One 2013; 8:e55085. [PMID: 23405113 PMCID: PMC3566180 DOI: 10.1371/journal.pone.0055085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII) induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.
Collapse
|
16
|
RefZ facilitates the switch from medial to polar division during spore formation in Bacillus subtilis. J Bacteriol 2012; 194:4608-18. [PMID: 22730127 DOI: 10.1128/jb.00378-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.
Collapse
|
17
|
Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur. J Bacteriol 2012; 194:3327-35. [PMID: 22522892 DOI: 10.1128/jb.00199-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.
Collapse
|
18
|
Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646. GENETICS RESEARCH INTERNATIONAL 2012; 2012:543286. [PMID: 22567391 PMCID: PMC3335513 DOI: 10.1155/2012/543286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023]
Abstract
Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII) in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus β-haemolysin.
Collapse
|
19
|
Ceuppens S, Rajkovic A, Heyndrickx M, Tsilia V, Van De Wiele T, Boon N, Uyttendaele M. Regulation of toxin production by Bacillus cereus and its food safety implications. Crit Rev Microbiol 2011; 37:188-213. [PMID: 21417966 DOI: 10.3109/1040841x.2011.558832] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Toxin expression is of utmost importance for the food-borne pathogen B. cereus, both in food poisoning and non-gastrointestinal host infections as well as in interbacterial competition. Therefore it is no surprise that the toxin gene expression is tightly regulated by various internal and environmental signals. An overview of the current knowledge regarding emetic and diarrheal toxin transcription and expression is presented in this review. The food safety aspects and management tools such as temperature control, food preservatives and modified atmosphere packaging are discussed specifically for B. cereus emetic and diarrheal toxin production.
Collapse
Affiliation(s)
- Siele Ceuppens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR. A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 2010; 400:847-64. [PMID: 20595046 DOI: 10.1016/j.jmb.2010.05.062] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/17/2022]
Abstract
The tetracycline repressor family transcriptional regulators (TFRs) are homodimeric DNA-binding proteins that generally act as transcriptional repressors. Their DNA-binding activity is allosterically inactivated by the binding of small-molecule ligands. TFRs constitute the third most frequently occurring transcriptional regulator family found in bacteria with more than 10,000 representatives in the nonredundant protein database. In addition, more than 100 unique TFR structures have been solved by X-ray crystallography. In this study, we have used computational and experimental approaches to reveal the variations and conservation present within TFRs. Although TFR structures are very diverse, we were able to identify a conserved central triangle in their ligand-binding domains that forms the foundation of the structure and the framework for the ligand-binding cavity. While the sequences of DNA-binding domains of TFRs are highly conserved across the whole family, the sequences of their ligand-binding domains are so diverse that pairwise sequence similarity is often undetectable. Nevertheless, by analyzing subfamilies of TFRs, we were able to identify distinct regions of conservation in ligand-binding domains that may be important for allostery. To aid in large-scale analyses of TFR function, we have developed a simple and reliable computational approach to predict TFR operator sequences, a temperature melt-based assay to measure DNA binding, and a generic ligand-binding assay that will likely be applicable to most TFRs. Finally, our analysis of TFR structures highlights their flexibility and provides insight into a conserved allosteric mechanism for this family.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Molecular Genetics, University of Toronto, 4285 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Clair G, Roussi S, Armengaud J, Duport C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol Cell Proteomics 2010; 9:1486-98. [PMID: 20368289 DOI: 10.1074/mcp.m000027-mcp201] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pathogen Bacillus cereus causes diarrheal disease in humans. In the small intestine, B. cereus has to deal with anaerobiosis, low oxidoreduction potential, and carbohydrate limitation conditions. To gain insight into the virulence potential of low density B. cereus cells in such an environment, we cultured bacteria in low and high oxidoreduction potential anoxic conditions and in fully oxic conditions and compared their full secretomes. A unique pattern of proteins assigned to virulence factors was revealed. Among the 57 virulence-related factors, 31 were found for the first time in the B. cereus secretome. The putative fourth component of hemolysin BL (HblB'), enterotoxin FM, hemolysin II, and three new putative conserved enterotoxins were uncovered. Cross-comparison of the relative abundance of secreted proteins reveals that a restricted set comprising 19 proteins showed significant changes in response to redox condition changes. We complemented these results with transcriptomics data and confirmed the cytotoxicity of the B. cereus secretome toward Caco-2 human epithelial cells. Our data suggest that (i) the redox-dependent regulatory pathway may modulate the expression of a subset of virulence factors to ensure an appropriate response in a specific redox environment, and (ii) an early growth phase-dependent pathway could regulate the expression of several virulence factors, allowing B. cereus to infect a host whatever the redox conditions. This early growth phase-dependent pathway may function, at least partially, independently of the pleiotropic virulence gene regulator PlcR and may therefore be more specific to the B. cereus group.
Collapse
Affiliation(s)
- Gérémy Clair
- UMR408, Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| | | | | | | |
Collapse
|
22
|
Kovalevskiy OV, Solonin AS, Antson AA. Structural investigation of transcriptional regulator HlyIIR: Influence of a disordered region on protein fold and dimerization. Proteins 2010; 78:1870-7. [DOI: 10.1002/prot.22700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Kovalevskiy OV, Antson AA, Solonin AS. Truncation of the disordered loop located within the C-terminal domain of the transcriptional regulator HlyIIR remodels its structure. Mol Biol 2009. [DOI: 10.1134/s0026893309010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut:Bacillus cereusand its food poisoning toxins. FEMS Microbiol Rev 2008; 32:579-606. [DOI: 10.1111/j.1574-6976.2008.00112.x] [Citation(s) in RCA: 676] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175344] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Shadrin AM, Shapyrina EV, Siunov AV, Severinov KV, Solonin AS. Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: Polymorphism and distribution of genes among representatives of the cereus group. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Rodikova EA, Kovalevskiy OV, Mayorov SG, Budarina ZI, Marchenkov VV, Melnik BS, Leech AP, Nikitin DV, Shlyapnikov MG, Solonin AS. Two HlyIIR dimers bind to a long perfect inverted repeat in the operator of the hemolysin II gene from Bacillus cereus. FEBS Lett 2007; 581:1190-6. [PMID: 17346714 DOI: 10.1016/j.febslet.2007.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
HlyIIR is a negative transcriptional regulator of hemolysin II gene from B. cereus. It binds to a long DNA perfect inverted repeat (44bp) located upstream the hlyII gene. Here we show that HlyIIR is dimeric in solution and in bacterial cells. No protein-protein interactions between dimers and no significant modification of target DNA conformation upon complex formation were observed. Two HlyIIR dimers were found to bind to native operator independently with Kd level in the nanomolar range. The minimal HlyIIR binding site was identified as a half of the long DNA perfect inverted repeat.
Collapse
Affiliation(s)
- Ekaterina A Rodikova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospekt Nauki 5, Pushchino, Moscow Region 142290, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kovalevskiy OV, Lebedev AA, Surin AK, Solonin AS, Antson AA. Crystal structure of Bacillus cereus HlyIIR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II. J Mol Biol 2007; 365:825-34. [PMID: 17097673 PMCID: PMC1828608 DOI: 10.1016/j.jmb.2006.10.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/19/2006] [Accepted: 10/23/2006] [Indexed: 01/07/2023]
Abstract
Production of Bacillus cereus and Bacillus anthracis toxins is controlled by a number of transcriptional regulators. Here we report the crystal structure of B. cereus HlyIIR, a regulator of the gene encoding the pore-forming toxin hemolysin II. We show that HlyIIR forms a tight dimer with a fold and overall architecture similar to the TetR family of repressors. A remarkable feature of the structure is a large internal cavity with a volume of 550 A(3) suggesting that the activity of HlyIIR is modulated by binding of a ligand, which triggers the toxin production. Virtual ligand library screening shows that this pocket can accommodate compounds with molecular masses of up to 400-500 Da. Based on structural data and previous biochemical evidence, we propose a model for HlyIIR interaction with the DNA.
Collapse
Affiliation(s)
- Oleg V. Kovalevskiy
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Andrey A. Lebedev
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alexei K. Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexander S. Solonin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Corresponding authors. Alexander S. Solonin is to be contacted at Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. Alfred A. Antson, Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Alfred A. Antson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
- Corresponding authors. Alexander S. Solonin is to be contacted at Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. Alfred A. Antson, Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
29
|
Andreeva ZI, Nesterenko VF, Fomkina MG, Ternovsky VI, Suzina NE, Bakulina AY, Solonin AS, Sineva EV. The properties of Bacillus cereus hemolysin II pores depend on environmental conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:253-63. [PMID: 17173854 DOI: 10.1016/j.bbamem.2006.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/29/2022]
Abstract
Hemolysin II (HlyII), one of several cytolytic proteins encoded by the opportunistic human pathogen Bacillus cereus, is a member of the family of oligomeric beta-barrel pore-forming toxins. This work has studied the pore-forming properties of HlyII using a number of biochemical and biophysical approaches. According to electron microscopy, HlyII protein interacts with liposomes to form ordered heptamer-like macromolecular assemblies with an inner pore diameter of 1.5-2 nm and an outer diameter of 6-8 nm. This is consistent with inner pore diameter obtained from osmotic protection assay. According to the 3D model obtained, seven HlyII monomers might form a pore, the outer size of which has been estimated to be slightly larger than by the other method, with an inner diameter changing from 1 to 4 nm along the channel length. The hemolysis rate has been found to be temperature-dependent, with an explicit lag at lower temperatures. Temperature jump experiments have indicated the pore structures formed at 37 degrees C and 4 degrees C to be different. The channels formed by HlyII are anion-selective in lipid bilayers and show a rising conductance as the salt concentration increases. The results presented show for the first time that at high salt concentration HlyII pores demonstrate voltage-induced gating observed at low negative potentials. Taken together we have found that the membrane-binding properties of hemolysin II as well as the properties of its pores strongly depend on environmental conditions. The study of the properties together with structural modeling allows a better understanding of channel functioning.
Collapse
Affiliation(s)
- Zhanna I Andreeva
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 840] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|