1
|
Gómez Á, Lacasta D, Teresa Tejedor M, Ruiz de Arcaute M, Ramos JJ, Ruiz H, Ortín A, Villanueva-Saz S, Reina R, Quílez P, Navarro T, Verde M, Borobia M, Windsor PA. Use of a local anaesthetic and antiseptic wound formulation for the treatment of lambs naturally infected with Orf virus. Vet Microbiol 2024; 292:110037. [PMID: 38479302 DOI: 10.1016/j.vetmic.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
Contagious ecthyma (CE) is a worldwide highly contagious zoonotic viral skin disease of sheep and goats. Treatment for Orf virus (ORFV) infection usually involves topical and oral antibiotics. An anaesthetic and antiseptic topical gel (Multisolfen® or Tri-Solfen®; MS®, Medical Ethics, Australia) has been documented as an efficacious therapy for lesions from mucosal and epithelial viral infections in ruminants. The present study tested a new treatment protocol of MS® for CE therapy on-farm in 150 lambs naturally infected with ORFV. Lambs were divided into three cohorts of 50 lambs each (C, D and E). Cohort C was treated with MS® 3 times with an interval of 3 days between treatments, cohort D was treated daily with hypochlorous acid, whilst cohort E served as untreated controls. The lambs were examined clinically every two days, weight measured weekly, with whole blood and sterile swabs from ORFV lesions collected for haematological analysis and specific ORFV PCR. Cohort C presented fewer lambs displaying ORFV-associated lesions than other cohorts at different times of the experiment. Further, lesions treated with MS® were milder compared with other cohorts. However, following cessation of therapy, most of the lambs again developed ORFV-associated lesions. No differences between cohorts were observed in weight, haematological and PCR results. These findings suggest that topical treatment with MS® is effective for CE in field conditions, especially in the first stages of the clinical course, although treatment with MS® may need to be extended a minimum of 4 weeks.
Collapse
Affiliation(s)
- Álex Gómez
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain.
| | - Delia Lacasta
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain.
| | - María Teresa Tejedor
- Anatomy, Embryology and Animal Genetics Department, CIBER CV (Universidad de Zaragoza-IIS), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain.
| | - Marta Ruiz de Arcaute
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Juan José Ramos
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Héctor Ruiz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Aurora Ortín
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Sergio Villanueva-Saz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva 31192, Spain.
| | - Pablo Quílez
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Teresa Navarro
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Maite Verde
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Marta Borobia
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, C/Miguel Servet 177, Zaragoza 50013, Spain
| | - Peter Andrew Windsor
- University of Sydney, Sydney School of. Veterinary Science, Camden, NSW 2570, Australia
| |
Collapse
|
2
|
Sehgal ANA, Safran J, Kratzer B, Gattinger P, Stieger RB, Musiejovsky L, Trapin D, Ettel P, Körmöczi U, Rottal A, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier-Pfistershammer K, Perkmann T, Wiedermann U, Valenta R, Pickl WF. Flow Cytometry-Based Measurement of Antibodies Specific for Cell Surface-Expressed Folded SARS-CoV-2 Receptor-Binding Domains. Vaccines (Basel) 2024; 12:377. [PMID: 38675759 PMCID: PMC11053794 DOI: 10.3390/vaccines12040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.
Collapse
Affiliation(s)
- Al Nasar Ahmed Sehgal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Jera Safran
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert B. Stieger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Laszlo Musiejovsky
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Paul Ettel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Ulrike Körmöczi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Arno Rottal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Kristina Borochova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yulia Dorofeeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Inna Tulaeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Milena Weber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
3
|
Deletion of gene OV132 attenuates Orf virus more effectively than gene OV112. Appl Microbiol Biotechnol 2023; 107:835-851. [PMID: 36484827 PMCID: PMC9734686 DOI: 10.1007/s00253-022-12323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Orf virus (ORFV), a Parapoxvirus in Poxviridae, infects sheep and goats resulting in contagious pustular dermatitis. ORFV is regarded as a promising viral vector candidate for vaccine development and oncolytic virotherapy. Owing to their potential clinical application, safety concerns have become increasingly important. Deletion of either the OV132 (encoding vascular endothelial growth factor, VEGF) or OV112 (encoding the chemokine binding protein, CBP) genes reduced ORFV infectivity, which has been independently demonstrated in the NZ2 and NZ7 strains, respectively. This study revealed that the VEGF and CBP gene sequences of the local strain (TW/Hoping) shared a similarity of 47.01% with NZ2 and 90.56% with NZ7. Due to the high sequence divergence of these two immunoregulatory genes among orf viral strains, their contribution to the pathogenicity of Taiwanese ORFV isolates was comparatively characterized. Initially, two ORFV recombinants were generated, in which either the VEGF or CBP gene was deleted and replaced with the reporter gene EGFP. In vitro assays indicated that both the VEGF-deletion mutant ORFV-VEGFΔ-EGFP and the CBP deletion mutant ORFV-CBPΔ-EGFP were attenuated in cells. In particular, ORFV-VEGFΔ-EGFP significantly reduced plaque size and virus yield compared to ORFV-CBPΔ-EGFP and the wild-type control. Similarly, in vivo analysis revealed no virus yield in the goat skin biopsy infected by ORFV-VEGFΔ-EGFP, and significantly reduced the virus yield of ORFV-CBPΔ-EGFP relative to the wild-type control. These results confirmed the loss of virulence of both deletion mutants in the Hoping strain, whereas the VEGF-deletion mutant was more attenuated than the CBP deletion strain in both cell and goat models. KEY POINTS: • VEGF and CBP genes are crucial in ORFV pathogenesis in the TW/Hoping strain • The VEGF-deletion mutant virus was severely attenuated in both cell culture and animal models • Deletion mutant viruses are advantageous vectors for the development of vaccines and therapeutic regimens.
Collapse
|
4
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
5
|
Lothert K, Pagallies F, Feger T, Amann R, Wolff MW. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J Biotechnol 2020; 323:62-72. [PMID: 32763261 PMCID: PMC7403136 DOI: 10.1016/j.jbiotec.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022]
Abstract
Estimation of the isoelectric point and size of Vero cell-derived Orf virus. Limited dynamic binding capacity of tested Orf virus to sulfated cellulose. Purification of Orf virus by steric exclusion chromatography lead to 84 % recovery. Hydrophobic interaction chromatography suitable for Orf virus purification. Promising unit operations for a scalable DSP to produce Orf virus viral vectors.
In recent years, the Orf virus has become a promising tool for protective recombinant vaccines and oncolytic therapy. However, suitable methods for an Orf virus production, including up- and downstream, are very limited. The presented study focuses on downstream processing, describing the evaluation of different chromatographic unit operations. In this context, ion exchange-, pseudo-affinity- and steric exclusion chromatography were employed for the purification of the cell culture-derived Orf virus, aiming at a maximum in virus recovery and contaminant depletion. The most promising chromatographic methods for capturing the virus particles were the steric exclusion- or salt-tolerant anion exchange membrane chromatography, recovering 84 % and 86 % of the infectious virus. Combining the steric exclusion chromatography with a subsequent Capto™ Core 700 resin or hydrophobic interaction membrane chromatography as a secondary chromatographic step, overall virus recoveries of up to 76 % were achieved. Furthermore, a complete cellular protein removal and a host cell DNA depletion of up to 82 % was possible for the steric exclusion membranes and the Capto™ Core 700 combination. The study reveals a range of possible unit operations suited for the chromatographic purification of the cell culture-derived Orf virus, depending on the intended application, i.e. a human or veterinary use, and the required purity.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Feger
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
6
|
Krapchev VB, Rychłowska M, Chmielewska A, Zimmer K, Patel AH, Bieńkowska-Szewczyk K. Recombinant Flag-tagged E1E2 glycoproteins from three hepatitis C virus genotypes are biologically functional and elicit cross-reactive neutralizing antibodies in mice. Virology 2018; 519:33-41. [PMID: 29631174 PMCID: PMC5998380 DOI: 10.1016/j.virol.2018.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV) is a globally disseminated human pathogen for which no vaccine is currently available. HCV is highly diverse genetically and can be classified into 7 genotypes and multiple sub-types. Due to this antigenic variation, the induction of cross-reactive and at the same time neutralizing antibodies is a challenge in vaccine production. Here we report the analysis of immunogenicity of recombinant HCV envelope glycoproteins from genotypes 1a, 1b and 2a, with a Flag tag inserted in the hypervariable region 1 of E2. This modification did not affect protein expression or conformation or its capacity to bind the crucial virus entry factor, CD81. Importantly, in immunogenicity studies on mice, the purified E2-Flag mutants elicited high-titer, cross-reactive antibodies that were able to neutralize HCV infectious particles from two genotypes tested (1a and 2a). These findings indicate that E1E2-Flag envelope glycoproteins could be important immunogen candidates for vaccine aiming to induce broad HCV-neutralizing responses.
Collapse
Affiliation(s)
- Vasil B Krapchev
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Malgorzata Rychłowska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Alicja Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland (UK)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland.
| |
Collapse
|
7
|
Fleming SB, McCaughan C, Lateef Z, Dunn A, Wise LM, Real NC, Mercer AA. Deletion of the Chemokine Binding Protein Gene from the Parapoxvirus Orf Virus Reduces Virulence and Pathogenesis in Sheep. Front Microbiol 2017; 8:46. [PMID: 28174562 PMCID: PMC5258736 DOI: 10.3389/fmicb.2017.00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus of the family Poxviridae and infects sheep and goats, often around the mouth, resulting in acute pustular skin lesions. ORFV encodes several secreted immunomodulators including a broad-spectrum chemokine binding protein (CBP). Chemokines are a large family of secreted chemotactic proteins that activate and regulate inflammation induced leukocyte recruitment to sites of infection. In this study we investigated the role of CBP in vivo in the context of ORFV infection of sheep. The CBP gene was deleted from ORFV strain NZ7 and infections of sheep used to investigate the effect of CBP on pathogenesis. Animals were either infected with the wild type (wt) virus, CBP-knockout virus or revertant strains. Sheep were infected by scarification on the wool-less area of the hind legs at various doses of virus. The deletion of the CBP gene severely attenuated the virus, as only few papules formed when animals were infected with the CBP-knock-out virus at the highest dose (107 p.f.u). In contrast, large pustular lesions formed on almost all animals infected with the wt and revertant strains at 107 p.f.u. The lesions for the CBP-knock-out virus resolved approximately 5–6 days p.i, at a dose of 107 pfu whereas in animals infected with the wt and revertants at this dose, lesions began to resolve at approximately 10 days p.i. Few pustules developed at the lowest dose of 103 p.f.u. for all viruses. Immunohistochemistry of biopsy skin-tissue from pustules showed that the CBP-knockout virus replicated in all animals at the highest dose and was localized to the skin epithelium while haematoxylin and eosin staining showed histological features of the CBP-knockout virus typical of the parent virus with acanthosis, elongated rete ridges and orthokeratotic hyperkeratosis. MHC-II immunohistochemistry analysis for monocytes and dendritic cells showed greater staining within the papillary dermis of the CBP-knock-out virus compared with the revertant viruses, however this was not the case with the wt where staining was similar. Our results show that the CBP gene encodes a secreted immunodulator that has a critical role in virulence and pathogenesis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Catherine McCaughan
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Zabeen Lateef
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Amy Dunn
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Lyn M Wise
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Nicola C Real
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| | - Andrew A Mercer
- Department of Microbiology and Immunology, University of Otago Dunedin, New Zealand
| |
Collapse
|
8
|
Wang X, Zhang J, Hao W, Peng Y, Li H, Li W, Li M, Luo S. Isolation and Characterization of Monoclonal Antibodies Against a Virion Core Protein of Orf Virus Strain NA1/11 As Potential Diagnostic Tool for Orf Viruses. Monoclon Antib Immunodiagn Immunother 2016; 34:233-45. [PMID: 26301926 DOI: 10.1089/mab.2014.0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orf is caused by the orf virus (ORFV) and is a non-systemic, widespread disease afflicting sheep, goats, wild ruminants, and humans. Recent outbreaks in sheep and goats in Jilin and other northern Chinese provinces raise concerns about orf control in China. Thirty-five hybridoma clones were constructed from splenocytes of BALB/c mice immunized with natural orf virus protein. These hybridomas were used to produce antibodies targeting ORFV proteins. Immunological characterization of these monoclonal antibodies (MAb) showed that the 5F2D8 hybridoma line produced MAb that can recognize the 100, 70, and 20 kDa bands from total viral lysate. This hybridoma was further characterized by immunoprecipitation and peptide sequencing. The results indicate that 5F2D8 specifically recognizes orf virus encoded protein ORFV086, a late expression virion core protein that plays important roles in progeny virus particle assembly, morphogenesis, and maturity. Further experiments demonstrate that this MAb did not react with other viral proteins of ORFV orthopoxviruses, but reacted strongly to different field isolates of orf viruses from China. Additionally, this anti-ORFV086 MAb possesses ORFV neutralizing capability. Sequence alignments and phylogenetic analysis determined that ORFV086 of NA1/11, clustered together with NZ2 and IA82, is highly conserved and has structural similarities with the Vaccinia virus core protein P4a. As such, this MAb has great potential as a diagnostic tool for orf viruses, in the further exploration of orf pathogenesis, and in disease control and prevention.
Collapse
Affiliation(s)
- Xiaoping Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Jiafeng Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Yongzheng Peng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Hong Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Wang X, Xiao B, Zhang J, Chen D, Li W, Li M, Hao W, Luo S. Identification and Characterization of a Cleavage Site in the Proteolysis of Orf Virus 086 Protein. Front Microbiol 2016; 7:538. [PMID: 27148226 PMCID: PMC4837287 DOI: 10.3389/fmicb.2016.00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/01/2016] [Indexed: 11/26/2022] Open
Abstract
The orf virus (ORFV) is among the parapoxvirus genus of the poxviridae family, but little is known about the proteolytic pathways of ORFV encoding proteins. By contrast, the proteolysis mechanism of the vaccinia virus (VV) has been extensively explored. Vaccinia virus core protein P4a undergoes a proteolytic process that takes place at a conserved cleavage site Ala-Gly-X (where X is any amino acid) and participates in virus assembly. Bioinformatics analysis revealed that an ORFV encoding protein, ORFV086, has a similar structure to the vaccinia virus P4a core protein. In this study, we focus on the kinetic analysis and proteolysis mechanism of ORFV086. We found, via kinetic analysis, that ORFV086 is a late gene that starts to express at 8 h post infection at mRNA level and 12–24 h post infection at the protein level. The ORFV086 precursor and a 21 kDa fragment can be observed in mature ORFV virions. The same bands were detected at only 3 h post infection, suggesting that both the ORFV086 precursor and the 21 kDa fragment are viral structural proteins. ORFV086 was cleaved from 12 to 24 h post infection. The cleavage took place at different sites, resulting in seven bands with differing molecular weights. Sequence alignment revealed that five putative cleavage sites were predicted at C-terminal and internal regions of ORFV086. To investigate whether those cleavage sites are involved in proteolytic processing, full length and several deletion mutant ORFV086 recombinant proteins were expressed and probed. The GGS site that produced a 21 kDa cleavage fragment was confirmed by identification of N/C-terminal FLAG epitope recombinant proteins, site-directed mutagenesis and pulse-chase analysis. Interestingly, chase results demonstrated that, at late times, ORFV086 is partially cleaved. Taken together, we concluded that GGS is a cleavage site in ORFV086 and produces a 21 kDa fragment post infection. Both ORFV086 precursor and the 21 kDa fragment are structural proteins of mature ORFV virions. ORFV086 and its cleaved products are indispensable for correct assembly of mature viral particles and this proteolytic processing of ORFV086 may play an essential role in viral morphogenic transition.
Collapse
Affiliation(s)
- Xiaoping Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Department of Laboratory, Medicine Nongken Centre, Hospital of GuangdongZhanjiang, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Department of Laboratory Medicine, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Jiafeng Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Daxiang Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
10
|
Wang Q, Bosch BJ, Vlak JM, van Oers MM, Rottier PJ, van Lent JWM. Budded baculovirus particle structure revisited. J Invertebr Pathol 2015; 134:15-22. [PMID: 26743500 PMCID: PMC7127228 DOI: 10.1016/j.jip.2015.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023]
Abstract
Baculovirus budded virion ultrastructure has been revisited using cryo-electron microscopy. The now well-preserved virions have a remarkable elongated, ovoid shape and large lateral space between nucleocapsid and the intact envelope. Consistent with previous findings using classical electron microscopy the nucleocapsid has a distinctive cap and base structure interacting tightly with the envelope. Most spikes are densely clustered at the two apical ends of the virion. Using cryo-electron microscopy the viral envelope appeared to contain two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm). The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new structural model of baculovirus budded virions.
Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈6–7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs.
Collapse
Affiliation(s)
- Qiushi Wang
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands; Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Peter J Rottier
- Virology Division, Department of Infectious Disease and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Abstract
Orf virus, a member of the genus Parapoxvirus, is the causative agent of contagious ecthyma ('Orf'). It is a pathogen with worldwide distribution, causing significant financial losses in livestock production. The disease mainly affects sheep and goats, but various other ruminants and mammals have been reported to be infected as well. It is also a zoonotic disease, affecting mainly people who come in direct or indirect contact with infected animals (e.g. farmers, veterinarians). The disease is usually benign and self-limiting, although in many cases, especially in young animals, it can be persistent and even fatal. Production losses caused by Orf virus are believed to be underestimated, as it is not a notifiable disease. This review of literature presents all latest information regarding the virus; considerations regarding treatment and prevention will be also discussed.
Collapse
Affiliation(s)
- V Spyrou
- Technological Education Institute of Thessaly, Larissa, Greece.
| | - G Valiakos
- Veterinary Faculty, University of Thessaly, Karditsa, Greece
| |
Collapse
|
12
|
Fleming SB, Wise LM, Mercer AA. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin. Viruses 2015; 7:1505-39. [PMID: 25807056 PMCID: PMC4379583 DOI: 10.3390/v7031505] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been "captured" from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Lyn M Wise
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Andrew A Mercer
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
13
|
Lawrence P, Pacheco JM, Uddowla S, Hollister J, Kotecha A, Fry E, Rieder E. Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis. Virology 2013; 436:150-61. [DOI: 10.1016/j.virol.2012.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/04/2012] [Indexed: 11/30/2022]
|
14
|
Li P, Bai X, Cao Y, Han C, Lu Z, Sun P, Yin H, Liu Z. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus. PLoS One 2012; 7:e41486. [PMID: 22848509 PMCID: PMC3407237 DOI: 10.1371/journal.pone.0041486] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.
Collapse
Affiliation(s)
- Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Chenghao Han
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (HY); (ZXL)
| |
Collapse
|
15
|
Rohde J, Emschermann F, Knittler MR, Rziha HJ. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi. BMC Vet Res 2012; 8:114. [PMID: 22809544 PMCID: PMC3439706 DOI: 10.1186/1746-6148-8-114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Orf virus (ORFV), a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep). Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. RESULTS Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I) as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. CONCLUSIONS The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.
Collapse
Affiliation(s)
- Jörg Rohde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
16
|
Identification and characterization of monoclonal antibodies against the ORFV059 protein encoded by Orf virus. Virus Genes 2012; 44:429-40. [PMID: 22237464 DOI: 10.1007/s11262-011-0710-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/24/2022]
Abstract
Recent outbreaks of orf in China have been attributed to a novel strain of Orf virus (ORFV) designated ORFV-Jilin. Currently, monoclonal antibodies (Mabs) have not yet been developed against this specific pathogen even though such entities could have potential applications regarding the diagnosis and characterization of ORFV-Jilin. Therefore, the current study was undertaken to generate Mab against the immunodominant ORFV059 protein of this virus. For this purpose, the ORFV-Jilin ORFV059 protein was expressed in Escherichia coli and subsequently used as an antigen to immunize mice and for the initial screening of hybridomas prepared from the mice for their ability to produce anti-ORFV059 protein Mabs via an indirect ELISA. Ten, positive hybridomas were identified in this manner and verified based on the ability of their released Mab to react specifically with both naturally and artificially expressed ORFV059 protein in Western blots. The two hybridomas with the greatest propensity to secrete Mab were subcloned three times before being introduced intraperitoneally into mice. Afterwards, both Mab were separately purified from the mice's ascetic fluids and found to successfully recognize the ORFV-Jilin ORFV059 protein in a variety of immunological assays. Thus, the widespread utility of these Mab as a diagnostic core reagent should prove invaluable for further investigations regarding the mechanisms of orf pathogenesis and the control of this disease. In this regard, it should be noted that Mab A3 was used to confirm the predicted late expression of the ORFV-Jilin ORFV059 protein during virus replication.
Collapse
|
17
|
Tan JL, Ueda N, Heath D, Mercer AA, Fleming SB. Development of orf virus as a bifunctional recombinant vaccine: Surface display of Echinococcus granulosus antigen EG95 by fusion to membrane structural proteins. Vaccine 2012; 30:398-406. [DOI: 10.1016/j.vaccine.2011.10.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 09/01/2011] [Accepted: 10/28/2011] [Indexed: 01/24/2023]
|
18
|
Hautaniemi M, Ueda N, Tuimala J, Mercer AA, Lahdenperä J, McInnes CJ. The genome of pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain. J Gen Virol 2010; 91:1560-76. [PMID: 20107016 DOI: 10.1099/vir.0.018374-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parapoxviruses (PPV), of the family Poxviridae, cause a pustular cutaneous disease in sheep and goats (orf virus, ORFV) and cattle (pseudocowpoxvirus, PCPV and bovine papular stomatitis virus, BPSV). Here, we present the first genomic sequence of a reference strain of PCPV (VR634) along with the genomic sequence of a PPV (F00.120R) isolated in Finland from reindeer (Rangifer tarandus tarandus). The F00.120R and VR634 genomes are 135 and 145 kb in length and contain 131 and 134 putative genes, respectively, with their genome organization being similar to that of other PPVs. The predicted proteins of F00.120R and VR634 have an average amino acid sequence identity of over 95%, whereas they share only 88 and 73% amino acid identity with the ORFV and BPSV proteomes, respectively. The most notable differences were found near the genome termini. F00.120R lacks six and VR634 lacks three genes seen near the right terminus of other PPVs. Four genes at the left end of F00.120R and one in the middle of both genomes appear to be fragmented paralogues of other genes within the genome. VR634 has larger than expected inverted terminal repeats possibly as a result of genomic rearrangements. The high G+C content (64%) of these two viruses along with amino acid sequence comparisons and whole genome phylogenetic analyses confirm the classification of PCPV as a separate species within the genus Parapoxvirus and verify that the virus responsible for an outbreak of contagious stomatitis in reindeer over the winter of 1999-2000 can be classified as PCPV.
Collapse
Affiliation(s)
- Maria Hautaniemi
- Finnish Food Safety Authority Evira, Research Department/Veterinary Virology, Mustialankatu 3, FI-00790, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
19
|
Virtanen JO, Jääskeläinen KM, Djupsjöbacka J, Vaheri A, Plyusnin A. Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells. Arch Virol 2009; 155:117-21. [PMID: 19956987 DOI: 10.1007/s00705-009-0546-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
The small RNA segment of some hantaviruses (family Bunyaviridae) encodes two proteins: the nucleocapsid protein and, in an overlapping reading frame, a non-structural (NSs) protein. The hantavirus NSs protein, like those of orthobunya- and phleboviruses, counteracts host innate immunity. Here, for the first time, the NSs protein of a hantavirus (Tula virus) has been observed in infected cells and shown to localize in the perinuclear area. Transiently expressed NSs protein showed similar localization, although the kinetics was slightly different, suggesting that to reach its proper location in the infected cell, the NSs protein does not have to cooperate with other viral proteins.
Collapse
Affiliation(s)
- Jussi Oskari Virtanen
- Infection Biology Research Program, Department of Virology, Haartman Institute, University of Helsinki, PO Box 21, Haartmaninkatu 3, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|