1
|
Wu M, Hau PM, Li L, Tsang CM, Yang Y, Taghbalout A, Chung GTY, Hui SY, Tang WC, Jillette N, Zhu JJ, Lee HHY, Kong EL, Chan MSA, Chan JYK, Ma BBY, Chen MR, Lee C, To KF, Cheng AW, Lo KW. Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers. Nat Commun 2024; 15:3729. [PMID: 38702330 PMCID: PMC11068728 DOI: 10.1038/s41467-024-48031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
The unique virus-cell interaction in Epstein-Barr virus (EBV)-associated malignancies implies targeting the viral latent-lytic switch is a promising therapeutic strategy. However, the lack of specific and efficient therapeutic agents to induce lytic cycle in these cancers is a major challenge facing clinical implementation. We develop a synthetic transcriptional activator that specifically activates endogenous BZLF1 and efficiently induces lytic reactivation in EBV-positive cancer cells. A lipid nanoparticle encapsulating nucleoside-modified mRNA which encodes a BZLF1-specific transcriptional activator (mTZ3-LNP) is synthesized for EBV-targeted therapy. Compared with conventional chemical inducers, mTZ3-LNP more efficiently activates EBV lytic gene expression in EBV-associated epithelial cancers. Here we show the potency and safety of treatment with mTZ3-LNP to suppress tumor growth in EBV-positive cancer models. The combination of mTZ3-LNP and ganciclovir yields highly selective cytotoxic effects of mRNA-based lytic induction therapy against EBV-positive tumor cells, indicating the potential of mRNA nanomedicine in the treatment of EBV-associated epithelial cancers.
Collapse
Affiliation(s)
- Man Wu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pok Man Hau
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yike Yang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, China
| | - Aziz Taghbalout
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shin Yee Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Chung Tang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Jacqueline Jufen Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Horace Hok Yeung Lee
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Shatin, Hong Kong SAR, China
| | - Ee Ling Kong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Melissa Sue Ann Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Ying Kuen Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette Buig Yue Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Charlie Lee Precision Immuno-oncology program, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mei-Ru Chen
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Albert Wu Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, 04609, USA.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Hartman-Houstman H, Swenson S, Minea RO, Sinha UK, Chiang MF, Chen TC, Schönthal AH. Activation of Epstein-Barr Virus' Lytic Cycle in Nasopharyngeal Carcinoma Cells by NEO212, a Conjugate of Perillyl Alcohol and Temozolomide. Cancers (Basel) 2024; 16:936. [PMID: 38473298 DOI: 10.3390/cancers16050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr virus (EBV) is accepted as a primary risk factor for certain nasopharyngeal carcinoma (NPC) subtypes, where the virus persists in a latent stage which is thought to contribute to tumorigenesis. Current treatments are sub-optimal, and recurrence occurs in many cases. An alternative therapeutic concept is aimed at triggering the lytic cycle of EBV selectively in tumor cells as a means to add clinical benefit. While compounds able to stimulate the lytic cascade have been identified, their clinical application so far has been limited. We are developing a novel anticancer molecule, NEO212, that was generated by covalent conjugation of the alkylating agent temozolomide (TMZ) to the naturally occurring monoterpene perillyl alcohol (POH). In the current study, we investigated its potential to trigger the lytic cycle of EBV in NPC cells in vitro and in vivo. We used the established C666.1 cell line and primary patient cells derived from the brain metastasis of a patient with NPC, both of which harbored latent EBV. Upon treatment with NEO212, there was an increase in EBV proteins Zta and Ea-D, key markers of the lytic cycle, along with increased levels of CCAAT/enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum (ER) stress, followed by the activation of caspases. These effects could also be confirmed in tumor tissue from mice implanted with C666.1 cells. Towards a mechanistic understanding of these events, we used siRNA-mediated knockdown of CHOP and inclusion of anti-oxidant compounds. Both approaches blocked lytic cycle induction by NEO212. Therefore, we established a sequence of events, where NEO212 caused reactive oxygen species (ROS) production, which triggered ER stress and elevated the levels of CHOP, which was required to stimulate the lytic cascade of EBV. Inclusion of the antiviral agent ganciclovir synergistically enhanced the cytotoxic impact of NEO212, pointing to a potential combination treatment for EBV-positive cancers which should be explored further. Overall, our study establishes NEO212 as a novel agent able to stimulate EBV's lytic cycle in NPC tumors, with implications for other virus-associated cancers.
Collapse
Affiliation(s)
- Hannah Hartman-Houstman
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Steve Swenson
- Department of Neurosurgery, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Radu O Minea
- Department of Neurosurgery, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
- USC/Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Uttam K Sinha
- USC/Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
- Department of Otolaryngology, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Ming-Fu Chiang
- Department of Neurosurgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Thomas C Chen
- Department of Neurosurgery, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
- USC/Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
- NeOnc Technologies, Inc., Los Angeles, CA 90069, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Zhao MH, Liu W, Li P, Liu L, Zhang X, Luo B. Sequence analysis of Epstein-Barr virus RPMS1 gene in malignant hematopathy of Northern China. J Med Virol 2023; 95:e28238. [PMID: 36258294 DOI: 10.1002/jmv.28238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 01/11/2023]
Abstract
The RPMS1 gene is the only member of the BamHI-A rightward transcripts (BARTs) family for which a full-length complementary DNA has been identified, and RPMS1 transcript has been confirmed in many Epstein-Barr virus (EBV)-positive malignancies. However, the effects of sequence variations of RPMS1 in hematological malignancies and their biological significance are unclear. To explore the association between RPMS1 gene variations and hematological malignancy, the RPMS1 gene of 391 EBV-positive samples from patients with EBV-positive leukemia, myelodysplastic syndromes and lymphoma in northern China were sequenced. On the basis of phylogenetic tree and mutation characteristics of RPMS1, all the sequences were divided into five major types: RPMS1-A, RPMS1-B, RPMS1-C, RPMS1-E, and RPMS1-F. RPMS1-A type, similar to the prototype B95-8, was identified in 71.87% (281/391) of samples and was the major type in all subpopulations. The frequency of RPMS1-F type was significantly higher in all malignant hematopathy groups than in healthy donors. The Hodgkin lymphoma group contained more RPMS1-F than other malignant hematopathy groups, and acute myeloid leukemia contained more RPMS1-C type than other malignant hematopathy groups. Therefore, RPMS1-A is the main type of RPMS1 gene in northern China, and RPMS1-F may be associated with hematologic malignancies.
Collapse
Affiliation(s)
- Meng-He Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ping Li
- Department of Blood Transfusion, Affliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Lei Liu
- Department of Laboratory, Qingdao Commercial Staff Hospital, Qingdao, Shandong, China
| | - Xing Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Do Epstein–Barr Virus Mutations and Natural Genome Sequence Variations Contribute to Disease? Biomolecules 2021; 12:biom12010017. [PMID: 35053165 PMCID: PMC8774192 DOI: 10.3390/biom12010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Most of the world’s population is infected by the Epstein–Barr virus (EBV), but the incidence of the diseases associated with EBV infection differs greatly in different parts of the world. Many factors may determine those differences, but variation in the virus genome is likely to be a contributing factor for some of the diseases. Here, we describe the main forms of EBV genome sequence variation, and the mechanisms by which variations in the virus genome are likely to contribute to disease. EBV genome deletions or polymorphisms can also provide useful markers for monitoring disease. If some EBV strains prove to be more pathogenic than others, this suggests the possible value of immunising people against infection by those pathogenic strains.
Collapse
|
6
|
Simultaneously Both Expression of LMP-1 and Methylation of E-cadherin: Molecular Biomarker in Stage IV of Nasopharyngeal Carcinoma Patients. Balkan J Med Genet 2021; 24:57-66. [PMID: 34447660 PMCID: PMC8366468 DOI: 10.2478/bjmg-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenome of E-cadherin gene methylation and the expression of latent membrane protein 1 (LMP-1) gene are associated with nasopharyngeal carcinoma (NPC). In order to determine whether cooperative LMP-1 expression or methylation of E-cadherin could serve as the potential molecule biomarker target for diagnosis and therapy of NPC, a case-control study including 93 NPC biopsy samples and 100 non cancerous nasopharyngeal swab samples were examined, as well as the strength of association among them by the quantitative polymerase chain reaction (qPCR) and nested-methylation-specific PCR methods. The significantly higher frequency of LMP-1 expression and E-cadherin methylation in NPC biopsy samples, accounting for 76.34 and 73.12%, respectively, compared to non cancerous samples, accounting for 0.00 and 30.00%, respectively, were observed. The significant correlation between the LMP-1 expression and E-cadherin methylation in NPC samples was reported. In detail, in the stage IV of NPC, in case of LMP-1-positive samples, 35 of 37 samples (accounting for 94.60%) were positive for methylation of E-cadherin. It was demonstrated that cooperative LMP-1 expression and E-cadherin gene methylation could serve as a molecular biomarker in NPC.
Collapse
|
7
|
Liu Y, Hu Z, Zhang Y, Wang C. Long non-coding RNAs in Epstein-Barr virus-related cancer. Cancer Cell Int 2021; 21:278. [PMID: 34034760 PMCID: PMC8144696 DOI: 10.1186/s12935-021-01986-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein Barr-virus (EBV) is related to several cancers. Long non-coding RNAs (lncRNAs) act by regulating target genes and are involved in tumourigenesis. However, the role of lncRNAs in EBV-associated cancers is rarely reported. Understanding the role and mechanism of lncRNAs in EBV-associated cancers may contribute to diagnosis, prognosis and clinical therapy in the future. EBV encodes not only miRNAs, but also BART lncRNAs during latency and the BHLF1 lncRNA during both the latent and lytic phases. These lncRNAs can be targeted regulate inflammation, invasion, and migration and thus tumourigenesis. The products of EBV also directly and indirectly regulate host lncRNAs, including LINC00312, NORAD CYTOR, SHNG8, SHNG5, MINCR, lncRNA-BC200, LINC00672, MALATI1, LINC00982, LINC02067, IGFBP7-AS1, LOC100505716, LOC100128494, NAG7 and RP4-794H19.1, to facilitate tumourigenesis using different mechanisms. Additionally, lncRNAs have been previously validated to interact with microRNAs (miRNAs), and lncRNAs and miRNAs mutually suppress each other. The EBV-miR-BART6-3p/LOC553103/STMN1 axis inhibits EBV-associated tumour cell proliferation. Additionally, H. pylori-EBV co-infection promotes inflammatory lesions and results in EMT. HPV-EBV co-infection inhibits the transition from latency to lytic replication. KSHV-EBV co-infection aggravates tumourigenesis in huNSG mice. COVID-19-EBV co-infection may activate the immune system to destroy a tumour, although this situation is rare and the mechanism requires further confirmation. Hopefully, this information will shed some light on tumour therapy strategies tumourigenesis. Additionally, this strategy benefits for infected patients by preventing latency to lytic replication. Understanding the role and expression of lnRNAs in these two phases of EBV is critical to control the transition from latency to the lytic replication phase. This review presents differential expressed lncRNAs in EBV-associated cancers and provides resources to aid in developing superior strategies for clinical therapy.
Collapse
Affiliation(s)
- Yitong Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhizhong Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Pathogenic Role of Epstein-Barr Virus in Lung Cancers. Viruses 2021; 13:v13050877. [PMID: 34064727 PMCID: PMC8151745 DOI: 10.3390/v13050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 01/02/2023] Open
Abstract
Human oncogenic viruses account for at least 12% of total cancer cases worldwide. Epstein–Barr virus (EBV) is the first identified human oncogenic virus and it alone causes ~200,000 cancer cases and ~1.8% of total cancer-related death annually. Over the past 40 years, increasing lines of evidence have supported a causal link between EBV infection and a subgroup of lung cancers (LCs). In this article, we review the current understanding of the EBV-LC association and the etiological role of EBV in lung carcinogenesis. We also discuss the clinical impact of the knowledge gained from previous research, challenges, and future directions in this field. Given the high clinical relevance of EBV-LC association, there is an urgent need for further investigation on this topic.
Collapse
|
9
|
Bayda N, Tilloy V, Chaunavel A, Bahri R, Halabi MA, Feuillard J, Jaccard A, Ranger-Rogez S. Comprehensive Epstein-Barr Virus Transcriptome by RNA-Sequencing in Angioimmunoblastic T Cell Lymphoma (AITL) and Other Lymphomas. Cancers (Basel) 2021; 13:610. [PMID: 33557089 PMCID: PMC7913808 DOI: 10.3390/cancers13040610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma (AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus, BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to immune escape and survival of infected cells. Considering these results, it can be assumed that EBV plays a pathogenic role in AITLs.
Collapse
Affiliation(s)
- Nader Bayda
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Department of Infectious Disease Control, Faculty of Public Health, Jinan University, Tripoli 1300, Lebanon
| | - Valentin Tilloy
- National Reference Center for Herpesviruses, Bioinformatics, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Alain Chaunavel
- Pathology Department, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Racha Bahri
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Mohamad Adnan Halabi
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Jean Feuillard
- Biological Hematology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Arnaud Jaccard
- Clinical Hematology Department, UMR CNRS 7276, INSERM U1262, University Hospital Dupuytren, 87042 Limoges, France;
| | - Sylvie Ranger-Rogez
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Virology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France
| |
Collapse
|
10
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
11
|
Verhoeven RJA, Tong S, Mok BWY, Liu J, He S, Zong J, Chen Y, Tsao SW, Lung ML, Chen H. Epstein-Barr Virus BART Long Non-coding RNAs Function as Epigenetic Modulators in Nasopharyngeal Carcinoma. Front Oncol 2019; 9:1120. [PMID: 31696060 PMCID: PMC6817499 DOI: 10.3389/fonc.2019.01120] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong latent infection in humans and is associated with several lymphoid and epithelial cancers. In nasopharyngeal carcinoma (NPC), EBV expresses few viral proteins but elevated levels of Bam-HI A rightward transcripts (BARTs) RNA, which includes viral microRNAs and long non-coding RNAs (lncRNAs). BART lncRNAs localize within the nucleus of EBV-infected cells and knockdown of BART lncRNAs significantly affects the expression of genes associated with cell adhesion, oxidoreductase activity, inflammation, and immunity. Notably, downregulation of IKAROS family zinc finger 3 (IKZF3/Aiolos), which plays a role in lymphocyte development and cell attachment, occurred in NPC C666-1 cells following BART lncRNA-knockdown. Since Aiolos expression is normally restricted to lymphoid cells and rarely observed in epithelial cells, induction of Aiolos by BART lncRNA was confirmed by expressing the major BART lncRNA isoform, RPMS1, in EBV-positive and -negative cells. BART lncRNA associated with the CBP/p300 complex and RNA polymerase II (Pol II) in the nucleus, suggesting that BART lncRNAs may mediate epigenetic regulation of gene expression through interaction with the chromatin remodeling machinery. This contention is further supported by evidence that BART lncRNA appears to stall Pol II at the promoter region and may regulate IFNB1 and CXCL8 expression by inhibiting transcription by Pol II in NPC. We hypothesize that EBV BART lncRNA expression modulates host gene expression and maintains EBV latency by interfering with histone methylation and acetylation processes. Aberrant expression of affected host genes mediated by BART lncRNA may lead to immune evasion, progression, and metastasis of NPC.
Collapse
Affiliation(s)
- Rob J A Verhoeven
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuang Tong
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiayan Liu
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Songtao He
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Yixin Chen
- School of Life Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
| | - Sai-Wah Tsao
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology and the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Bencun M, Klinke O, Hotz-Wagenblatt A, Klaus S, Tsai MH, Poirey R, Delecluse HJ. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames. Nucleic Acids Res 2019. [PMID: 29529302 PMCID: PMC5887285 DOI: 10.1093/nar/gky129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5′ leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.
Collapse
Affiliation(s)
- Maja Bencun
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Olaf Klinke
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center (DKFZ), Core Facility Genomics & Proteomics, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Severina Klaus
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Remy Poirey
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), F100, Pathogenesis of Virus Associated Tumors, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Detection of Epstein-Barr Virus Infection in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11060759. [PMID: 31159203 PMCID: PMC6627930 DOI: 10.3390/cancers11060759] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung cancer (LC), but the results are highly controversial largely due to the insufficient sample size and the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all exogenous agents within a cancer sample with high sensitivity and specificity. In our current study, we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics approaches in conjunction with traditional molecular methods to investigate the role of EBV in a total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts, indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the notion that EBV likely plays a pathological role in a subset of LC.
Collapse
|
14
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
15
|
Abstract
Epstein–Barr virus (EBV) contributes to about 1.5% of all cases of human cancer worldwide, and viral genes are expressed in the malignant cells. EBV also very efficiently causes the proliferation of infected human B lymphocytes. The functions of the viral proteins and small RNAs that may contribute to EBV-associated cancers are becoming increasingly clear, and a broader understanding of the sequence variation of the virus genome has helped to interpret their roles. The improved understanding of the mechanisms of these cancers means that there are great opportunities for the early diagnosis of treatable stages of EBV-associated cancers and the use of immunotherapy to target EBV-infected cells or overcome immune evasion. There is also scope for preventing disease by immunization and for developing therapeutic agents that target the EBV gene products expressed in the cancers.
Collapse
Affiliation(s)
- Paul J. Farrell
- Section of Virology, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom
| |
Collapse
|
16
|
Sequence Variation of Epstein-Barr Virus: Viral Types, Geography, Codon Usage, and Diseases. J Virol 2018; 92:JVI.01132-18. [PMID: 30111570 PMCID: PMC6206488 DOI: 10.1128/jvi.01132-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus causes most cases of infectious mononucleosis and posttransplant lymphoproliferative disease. It contributes to several types of cancer, including Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. EBV genome variation is important because some of the diseases associated with EBV have very different incidences in different populations and geographic regions, and differences in the EBV genome might contribute to these diseases. Some specific EBV genome alterations that appear to be significant in EBV-associated cancers are already known, and current efforts to make an EBV vaccine and antiviral drugs should also take account of sequence differences in the proteins used as targets. One hundred thirty-eight new Epstein-Barr virus (EBV) genome sequences have been determined. One hundred twenty-five of these and 116 from previous reports were combined to produce a multiple-sequence alignment of 241 EBV genomes, which we have used to analyze variation within the viral genome. The type 1/type 2 classification of EBV remains the major form of variation and is defined mostly by EBNA2 and EBNA3, but the type 2 single-nucleotide polymorphisms (SNPs) at the EBNA3 locus extend into the adjacent gp350 and gp42 genes, whose products mediate infection of B cells by EBV. A small insertion within the BART microRNA region of the genome was present in 21 EBV strains. EBV from saliva of U.S. patients with chronic active EBV infection aligned with the wild-type EBV genome with no evidence of WZhet rearrangements. The V3 polymorphism in the Zp promoter for BZLF1 was found to be frequent in nasopharyngeal carcinoma cases from both Hong Kong and Indonesia. Codon usage was found to differ between latent and lytic cycle EBV genes, and the main forms of variation of the EBNA1 protein have been identified. IMPORTANCE Epstein-Barr virus causes most cases of infectious mononucleosis and posttransplant lymphoproliferative disease. It contributes to several types of cancer, including Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. EBV genome variation is important because some of the diseases associated with EBV have very different incidences in different populations and geographic regions, and differences in the EBV genome might contribute to these diseases. Some specific EBV genome alterations that appear to be significant in EBV-associated cancers are already known, and current efforts to make an EBV vaccine and antiviral drugs should also take account of sequence differences in the proteins used as targets.
Collapse
|
17
|
Bullard WL, Flemington EK, Renne R, Tibbetts SA. Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends Cancer 2018; 4:729-740. [PMID: 30352676 DOI: 10.1016/j.trecan.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.
Collapse
Affiliation(s)
- Whitney L Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Fernandes Q, Merhi M, Raza A, Inchakalody VP, Abdelouahab N, Zar Gul AR, Uddin S, Dermime S. Role of Epstein-Barr Virus in the Pathogenesis of Head and Neck Cancers and Its Potential as an Immunotherapeutic Target. Front Oncol 2018; 8:257. [PMID: 30035101 PMCID: PMC6043647 DOI: 10.3389/fonc.2018.00257] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The role of Epstein-Barr virus (EBV) infection in the development and progression of tumor cells has been described in various cancers. Etiologically, EBV is a causative agent in certain variants of head and neck cancers such as nasopharyngeal cancer. Proteins expressed by the EVB genome are involved in invoking and perpetuating the oncogenic properties of the virus. However, these protein products were also identified as important targets for therapeutic research in the past decades, particularly within the context of immunotherapy. The adoptive transfer of EBV-targeted T-cells as well as the development of EBV vaccines has opened newer lines of research to conceptualize novel therapeutic approaches toward the disease. This review addresses the most important aspects of the association of EBV with head and neck cancers from an immunological perspective. It also aims to highlight the current and future prospects of enhanced EBV-targeted immunotherapies.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassima Abdelouahab
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
19
|
Wu S, Liu W, Li H, Zhao Z, Yang Y, Xiao H, Song Y, Luo B. Conservation and polymorphism of EBV RPMS1 gene in EBV-associated tumors and healthy individuals from endemic and non-endemic nasopharyngeal carcinoma areas in China. Virus Res 2018; 250:75-80. [PMID: 29665370 DOI: 10.1016/j.virusres.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
As a member of the BamHI-A rightward transcripts family of the Epstein-Barr virus (EBV), RPMS1 expression has been confirmed in all EBV-associated tumors. However, few studies have investigated the single-nucleotide polymorphisms (SNPs) of RPMS1, and only one SNP site (g155391a) has been reported to be associated with nasopharyngeal carcinoma occurrence. The objective of this study was to investigate the polymorphism of RPMS1 in EBV-associated tumors (gastric carcinoma, nasopharyngeal carcinoma, and lymphoma). In this research, nested-PCR was performed to analyze DNA sequences of 420 EBV-associated samples. Phylogenetic analysis revealed four RPMS1 genotypes (RPMS1-A, RPMS1-B, RPMS1-C, and RPMS1-D). A significant difference (p < 0.05) among northern and southern China samples was observed. Furthermore, there was a significant difference between EBV-associated tumors and healthy controls for RPMS1 (p < 0.05). These findings demonstrated that RPMS1 variation was not only tumor-specific but also geographically restricted in EBV-associated samples.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Wen Liu
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hong Li
- Department of Pathology of Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zhenzhen Zhao
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yang Yang
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Hua Xiao
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yingying Song
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | - Bing Luo
- Department of Pathogeny Biology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
20
|
Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic Roles of Epstein-Barr Virus-Encoded MicroRNAs in Human Lymphomas. Int J Mol Sci 2018; 19:E1168. [PMID: 29649101 PMCID: PMC5979337 DOI: 10.3390/ijms19041168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human γ-herpesvirus implicated in several human malignancies, including a wide range of lymphomas. Several molecules encoded by EBV in its latent state are believed to be related to EBV-induced lymphomagenesis, among which microRNAs-small RNAs with a posttranscriptional regulating role-are of great importance. The genome of EBV encodes 44 mature microRNAs belonging to two different classes, including BamHI-A rightward transcript (BART) and Bam HI fragment H rightward open reading frame 1 (BHRF1), with different expression levels in different EBV latency types. These microRNAs might contribute to the pathogenetic effects exerted by EBV through targeting self mRNAs and host mRNAs and interfering with several important cellular mechanisms such as immunosurveillance, cell proliferation, and apoptosis. In addition, EBV microRNAs can regulate the surrounding microenvironment of the infected cells through exosomal transportation. Moreover, these small molecules could be potentially used as molecular markers. In this review, we try to present an updated and extensive view of the role of EBV-encoded miRNAs in human lymphomas.
Collapse
Affiliation(s)
- Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Maryam Etebari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 9516915169, Iran.
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
| | - Mostafa Ibrahimi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy.
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, 40126 Bologna, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| |
Collapse
|
21
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
22
|
Characterization of the subcellular localization of Epstein-Barr virus encoded proteins in live cells. Oncotarget 2017; 8:70006-70034. [PMID: 29050259 PMCID: PMC5642534 DOI: 10.18632/oncotarget.19549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is the pathogenic factor of numerous human tumors, yet certain of its encoded proteins have not been studied. As a first step for functional identification, we presented the construction of a library of expression constructs for most of the EBV encoded proteins and an explicit subcellular localization map of 81 proteins encoded by EBV in mammalian cells. Viral open reading frames were fused with enhanced yellow fluorescent protein (EYFP) tag in eukaryotic expression plasmid then expressed in COS-7 live cells, and protein localizations were observed by fluorescence microscopy. As results, 34.57% (28 proteins) of all proteins showed pan-nuclear or subnuclear localization, 39.51% (32 proteins) exhibitted pan-cytoplasmic or subcytoplasmic localization, and 25.93% (21 proteins) were found in both the nucleus and cytoplasm. Interestingly, most envelope proteins presented pan-cytoplasmic or membranous localization, and most capsid proteins displayed enriched or complete localization in the nucleus, indicating that the subcellular localization of specific proteins are associated with their roles during viral replication. Taken together, the subcellular localization map of EBV proteins in live cells may lay the foundation for further illustrating the functions of EBV-encoded genes in human diseases especially in its relevant tumors.
Collapse
|
23
|
Sakamoto K, Sekizuka T, Uehara T, Hishima T, Mine S, Fukumoto H, Sato Y, Hasegawa H, Kuroda M, Katano H. Next-generation sequencing of miRNAs in clinical samples of Epstein-Barr virus-associated B-cell lymphomas. Cancer Med 2017; 6:605-618. [PMID: 28181423 PMCID: PMC5345668 DOI: 10.1002/cam4.1006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/17/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes 49 microRNAs (miRNAs) in the BART and BHRF1 regions of its genome. Although expression profiles of EBV-encoded miRNAs have been reported for EBV-positive cell lines and nasopharyngeal carcinoma, to date there is little information about total miRNA expression, including cellular and viral miRNAs, in the primary tumors of EBV-associated B-lymphoproliferative disorders. In this study, next-generation sequencing and quantitative real-time reverse transcription-PCR were used to determine the expression profiles of miRNAs in EBV-infected cell lines and EBV-associated B-cell lymphomas, including AIDS-related diffuse large B-cell lymphoma (DLBCL), pyothorax-associated lymphoma, methotrexate-associated lymphoproliferative disorder, EBV-positive DLBCL of the elderly, and Hodgkin lymphoma. Next-generation sequencing revealed that EBV-encoded miRNAs accounted for up to 34% of total annotated miRNAs in these cases. Expression of three miR-BHRF1s was significantly higher in AIDS-related DLBCL and pyothorax-associated lymphoma compared with methotrexate-associated lymphoproliferative disorder and EBV-positive DLBCL of the elderly, suggesting the association of miR-BHRF1s expression with latency III EBV infection. Heat map/clustering analysis of expression of all miRNAs, including cellular and EBV miRNAs, by next-generation sequencing demonstrated that each EBV tumor, except methotrexate-associated lymphoproliferative disorder, formed an isolated cluster. Principal component analysis based on the EBV-encoded miRNA expression showed that each EBV tumor formed a distinguished cluster, but AIDS-related DLBCL and pyothorax-associated lymphoma formed larger clusters than other tumors. These data suggest that expression of miRNAs, including EBV-encoded miRNAs, is associated with the tumor type and status of virus infection in these tumors.
Collapse
Affiliation(s)
- Kouta Sakamoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taeko Uehara
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8613, Japan
| | - Sohtaro Mine
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hitomi Fukumoto
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
24
|
Peng H, Gong PG, Li JB, Cai LM, Yang L, Liu YY, Yao KT, Li X. The important role of the receptor for activated C kinase 1 (RACK1) in nasopharyngeal carcinoma progression. J Transl Med 2016; 14:131. [PMID: 27170279 PMCID: PMC4864934 DOI: 10.1186/s12967-016-0885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) is involved in various cancers, but its roles in nasopharyngeal carcinoma (NPC) have not yet been fully elucidated. Methods Initially, RACK1 expression was analyzed by immunohistochemistry in NPC and normal nasopharyngeal (NP) tissues. It was also detected by qPCR and Western blot in NPC cells. Confocal microscope and immunofluorescence were performed to detect the subcellular compartmentalization of RACK1. Subsequently, after up- or down-regulating RACK1 in NPC cells, cell proliferation and migration/invasion were tested using in vitro assays including MTT, EdU, colony formation, Transwell and Boyden assays. Furthermore, several key molecules were detected by Western blot to explore underlying mechanism. Finally, clinical samples were analyzed to confirm the relationship between RACK1 expression and clinical features. Results Receptor for activated C kinase 1 expression was much higher in NPC than NP tissues. And RACK1 was mainly located in the cytoplasm. Overexpression of RACK1 promoted NPC cell proliferation and metastasis/invasion, whereas depletion of this protein suppressed NPC cell proliferation and metastasis/invasion. Mechanistically, RACK1 deprivation obviously suppressed the activation of Akt and FAK, suggesting the PI3K/Akt/FAK pathway as one of functional mechanisms of RACK1 in NPC. Furthermore, clinical sample analysis indicated a positive correlation between in vivo expression of RACK1 with lymph node invasion and clinical stage of NPC. Conclusion Our results demonstrate that RACK1 protein plays an important role in NPC development and progression. The upregulation of RACK1 can promote the proliferation and invasion of NPC by regulating the PI3K/Akt/FAK signal pathway. Thus, this study contributes to the discovery of a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, 510317, China.
| | - Ping-Gui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jin-Bang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Long-Mei Cai
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun-Yi Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai-Tai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
25
|
MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol Hematol 2016; 103:1-9. [PMID: 27179594 DOI: 10.1016/j.critrevonc.2016.04.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/09/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.
Collapse
|
26
|
Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing. Front Med 2016; 10:61-75. [DOI: 10.1007/s11684-016-0436-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
|
27
|
Epstein-Barr virus infection and nasopharyngeal carcinoma: the other side of the coin. Anticancer Drugs 2015; 26:1017-25. [PMID: 26241803 DOI: 10.1097/cad.0000000000000276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic viruses may have a significant impact on the therapeutic management of several malignancies besides their well-known role in tumor pathogenesis. Epstein-Barr virus (EBV) induces neoplastic transformation of epithelial cells of the nasopharynx by various molecular mechanisms mostly involving activation of oncogenes and inactivation of tumor-suppressor genes. EBV infection can also induce the expression of several immunogenic peptides on the plasma membrane of the infected cells. Importantly, these virus-related antigens may be used as targets for antitumor immunotherapy-based treatment strategies. Two different immunotherapy strategies, namely adoptive and active immunotherapy, have been developed and strongly improved in the recent years. Furthermore, EBV infection may influence the use of targeted therapies for nasopharyngeal carcinoma (NPC) considering that the presence of EBV can induce important modifications in cell signaling. As an example, latent membrane protein type 1 is a viral transmembrane protein mainly involved in the cancerogenesis process, which can also mediate overexpression of the epidermal growth factor receptor (EGFR) in NPC cells, rendering them more sensitive to anti-EGFR therapy. Finally, EBV may induce epigenetic changes in the infected cells, such as DNA hypermethylation and histone deacetylation, that can sustain tumor growth and can thus be considered potential targets for novel therapies. In conclusion, EBV infection can modify important biological features of NPC cells, rendering them more vulnerable to both immunotherapy and targeted therapy.
Collapse
|
28
|
Abstract
EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis.
Collapse
|
29
|
Feng FT, Cui Q, Liu WS, Guo YM, Feng QS, Chen LZ, Xu M, Luo B, Li DJ, Hu LF, Middeldorp JM, Ramayanti O, Tao Q, Cao SM, Jia WH, Bei JX, Zeng YX. A single nucleotide polymorphism in the Epstein-Barr virus genome is strongly associated with a high risk of nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2015; 34:563-72. [PMID: 26675171 PMCID: PMC4699395 DOI: 10.1186/s40880-015-0073-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
Abstract
Background Epstein-Barr virus (EBV) commonly infects the general population and has been associated with nasopharyngeal carcinoma (NPC), which has a high incidence in certain regions. This study aimed to address how EBV variations contribute to the risk of NPC. Methods Using logistic regression analysis and based on the sequence variations at EBV-encoded RPMS1, a multi-stage association study was conducted to identify EBV variations associated with NPC risk. A protein degradation assay was performed to characterize the functional relevance of the RPMS1 variations. Results Based on EBV-encoded RPMS1 variations, a single nucleotide polymorphism (SNP) in the EBV genome (locus 155391: G>A, named G155391A) was associated with NPC in 157 cases and 319 healthy controls from an NPC endemic region in South China [P < 0.001, odds ratio (OR) = 4.47, 95% confidence interval (CI) 2.71–7.37]. The results were further validated in three independent cohorts from the NPC endemic region (P < 0.001, OR = 5.20, 95% CI 3.18–8.50 in 168 cases vs. 241 controls, and P < 0.001, OR = 5.27, 95% CI 4.06–6.85 in 726 cases vs. 880 controls) and a non-endemic region (P < 0.001, OR = 7.52, 95% CI 3.69–15.32 in 58 cases vs. 612 controls). The combined analysis in 1109 cases and 2052 controls revealed that the SNP G155391A was strongly associated with NPC (Pcombined < 0.001, OR = 5.27, 95% CI 4.31–6.44). Moreover, the frequency of the SNP G155391A was associated with NPC incidence but was not associated with the incidences of other EBV-related malignancies. Furthermore, the protein degradation assay showed that this SNP decreased the degradation of the oncogenic RPMS1 protein. Conclusions Our study identified an EBV variation specifically and significantly associated with a high risk of NPC. These findings provide insights into the pathogenesis of NPC and strategies for prevention.
Collapse
Affiliation(s)
- Fu-Tuo Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Qian Cui
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Wen-Sheng Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yun-Miao Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Qi-Sheng Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Li-Zhen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Miao Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, 266021, Shandong, P. R. China.
| | - Da-Jiang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Li-Fu Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177, Stockholm, Sweden.
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, 1007 MB, The Netherlands.
| | - Octavia Ramayanti
- Department of Pathology, VU University Medical Center, Amsterdam, 1007 MB, The Netherlands.
| | - Qian Tao
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China.
| | - Su-Mei Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Epidemiology, Cancer Prevention Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Wei-Hua Jia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yi-Xin Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China. .,Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
30
|
Host Gene Expression Is Regulated by Two Types of Noncoding RNAs Transcribed from the Epstein-Barr Virus BamHI A Rightward Transcript Region. J Virol 2015; 89:11256-68. [PMID: 26311882 DOI: 10.1128/jvi.01492-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED In Epstein-Barr virus-infected epithelial cancers, the alternatively spliced BamHI A rightward transcripts (BARTs) are the most abundant viral polyadenylated RNA. The BART introns form the template for the production of 44 microRNAs (miRNAs), and the spliced and polyadenylated exons form nuclear non-protein-coding RNAs. Analysis of host cell transcription by RNA-seq during latency in AGS cells identified a large number of reproducibly changed genes. Genes that were downregulated were enriched for BART miRNA targets. Bioinformatics analysis predicted activation of the myc pathway and downregulation of XBP1 as likely mediators of the host transcriptional changes. Effects on XBP1 activity were not detected in these cells; however, myc activation was confirmed through use of a myc-responsive luciferase reporter. To identify potential regulatory properties of the spliced, polyadenylated BART RNAs, a full-length cDNA clone of one of the BART isoforms was obtained and expressed in the Epstein-Barr virus (EBV)-negative AGS cells. The BART cDNA transcript remained primarily nuclear yet induced considerable and consistent changes in cellular transcription, as profiled by RNA-seq. These transcriptional changes significantly overlapped the transcriptional changes induced during latent EBV infection of these same cells, where the BARTs are exclusively nuclear and do not encode proteins. These data suggest that the nuclear BART RNAs are functional long noncoding RNAs (lncRNAs). The abundant expression of multiple forms of noncoding RNAs that contribute to growth regulation without expression of immunogenic proteins would be an important mechanism for viral oncogenesis in the presence of a functional immune system. IMPORTANCE Infection with Epstein-Barr virus (EBV) is nearly ubiquitous in the human population; however, it does contribute to the formation of multiple types of cancer. In immunocompromised patients, EBV causes multiple types of lymphomas by expressing viral oncogenes that promote growth and survival of infected B lymphocytes. EBV-positive gastric carcinoma does not require immune suppression, and the viral oncoproteins that are frequent targets for an immunological response are not expressed. This study demonstrates using transcriptional analysis that the expression of various classes of viral non-protein-coding RNAs likely contribute to the considerable changes in the host transcriptional profile in the AGS gastric cancer cell line. This is the first report to show that the highly expressed polyadenylated BamHI A rightward transcripts (BART) viral transcript in gastric carcinoma is in fact a functional viral long noncoding RNA. These studies provide new insight into how EBV can promote transformation in the absence of viral protein expression.
Collapse
|
31
|
Tsang CM, Tsao SW. The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 2015; 30:107-21. [PMID: 25910483 DOI: 10.1007/s12250-015-3592-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. EBV episomes are detected in almost all NPC cells. The role of EBV in NPC pathogenesis has long been postulated but remains enigmatic. In contrast to infection of B lymphocytes, EBV infection does not directly transform nasopharyngeal epithelial cells into proliferative clones with malignant potential. EBV infection of normal pharyngeal epithelial cells is predominantly lytic in nature. Genetic alterations in premalignant nasopharyngeal epithelium, in combination with inflammatory stimulation in the nasopharyngeal mucosa, presumably play essential roles in the establishment of a latent EBV infection in infected nasopharyngeal epithelial cells during the early development of NPC. Establishment of latent EBV infection in premalignant nasopharyngeal epithelial cells and expression of latent viral genes, including the BART transcripts and BART-encoded microRNAs, are crucial features of NPC. Expression of EBV genes may drive further malignant transformation of premalignant nasopharyngeal epithelial cells into cancer cells. The difficulties involved in the establishment of NPC cell lines and the progressive loss of EBV epsiomes in NPC cells propagated in culture strongly implicate the contribution of host stromal components to the growth of NPC cells in vivo and maintenance of EBV in infected NPC cells. Defining the growth advantages of EBV-infected NPC cells in vivo will lead to a better understanding of the contribution of EBV infection in NPC pathogenesis, and may lead to the identification of novel therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
32
|
Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol 2015; 235:323-33. [PMID: 25251730 PMCID: PMC4280676 DOI: 10.1002/path.4448] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
The close association of Epstein–Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event. Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs) and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during carcinogenesis.
Collapse
Affiliation(s)
- Sai-Wah Tsao
- Department of Anatomy and Centre for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
33
|
Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar Albà M, Navarro A. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol 2015; 6:846-60. [PMID: 24682154 PMCID: PMC4104767 DOI: 10.1093/gbe/evu054] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most people in the world (∼90%) are infected by the Epstein–Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host–parasite coevolution.
Collapse
Affiliation(s)
- Gabriel Santpere
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - CSIC), Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 2015; 46:1421-34. [PMID: 25633561 DOI: 10.3892/ijo.2015.2856] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is a distinct subtype that accounts for nearly 10% of gastric carcinomas. EBVaGC is defined by monoclonal proliferation of carcinoma cells with latent EBV infection, as demonstrated by EBV-encoded small RNA (EBER) in situ hybridization. EBVaGC has characteristic clinicopathological features, including predominance among males, a proximal location in the stomach, lymphoepithelioma-like histology and a favorable prognosis. EBVaGC belongs to latency type I or II, in which EBERs, EBNA-1, BARTs, LMP-2A and BART miRNAs are expressed. Previous studies have shown that some EBV latent genes have oncogenic properties. Recent advances in genome-wide and comprehensive molecular analyses have demonstrated that both genetic and epigenetic changes contribute to EBVaGC carcinogenesis. Genetic changes that are characteristic of EBVaGC include frequent mutations in PIK3CA and ARID1A and amplification of JAK2 and PD-L1/L2. Global CpG island hypermethylation, which induces epigenetic silencing of tumor suppressor genes, is also a unique feature of EBVaGC and is considered to be crucial for its carcinogenesis. Furthermore, post-transcriptional gene expression regulation by cellular and/or EBV-derived microRNAs has attracted considerable attention. These abnormalities result in significant alterations in gene expression related to cell proliferation, apoptosis, migration and immune signaling pathways. In the present review we highlight the latest findings on EBVaGC from clinicopathological and molecular perspectives to provide a better understanding of EBV involvement in gastric carcinogenesis.
Collapse
Affiliation(s)
- Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Shen JJ, Niu WN, Zhou M, Zhou F, Zhang HY, Wang L. Association of Epstein Barr virus A73 gene polymorphism with nasopharyngeal carcinoma. Genet Test Mol Biomarkers 2014; 19:187-90. [PMID: 25275219 DOI: 10.1089/gtmb.2014.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To study the association between Epstein Barr (EB) virus A73 gene polymorphism and nasopharyngeal carcinoma (NPC) in a Chinese Han population. METHODS A case-control study was designed, including 510 nasopharyngeal cancer patients and 520 healthy controls, A157154C genotypes of the A73 gene in EB virus were detected, genotype and allele frequency distribution between the two groups were compared. RESULTS The C allele frequency in the NPC group was significantly higher than that in the control group (68.4% vs. 61.2%; p<0.001). The CC genotype frequency in the NPC group was significantly higher than that in the control group, the difference was significant (47.4% vs. 41.2%; p<0.001). The CC genotype frequency in male patients was significantly higher than that in female patients in the NPC group, the difference was significant (50.3% vs. 34.7%; p<0.001). CONCLUSION A157154C polymorphism of the A73 gene in EB virus was associated with NPC susceptibility.
Collapse
Affiliation(s)
- Jian-Jun Shen
- 1 Department of Radiation Oncology, Anhui Provincial Hospital , Hefei, China
| | | | | | | | | | | |
Collapse
|
36
|
Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013; 14:17378-409. [PMID: 23979421 PMCID: PMC3794732 DOI: 10.3390/ijms140917378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is an etiological factor in the progression of several human epithelial malignancies such as nasopharyngeal carcinoma (NPC) and a subset of gastric carcinoma. Reports have shown that EBV produces several viral oncoproteins, yet their pathological roles in carcinogenesis are not fully elucidated. Studies on the recently discovered of EBV-encoded microRNAs (ebv-miRNAs) showed that these small molecules function as post-transcriptional gene regulators and may play a role in the carcinogenesis process. In NPC and EBV positive gastric carcinoma (EBVaGC), 22 viral miRNAs which are located in the long alternative splicing EBV transcripts, named BamH1 A rightward transcripts (BARTs), are abundantly expressed. The importance of several miR-BARTs in carcinogenesis has recently been demonstrated. These novel findings enhance our understanding of the oncogenic properties of EBV and may lead to a more effective design of therapeutic regimens to combat EBV-associated malignancies. This article will review the pathological roles of miR-BARTs in modulating the expression of cancer-related genes in both host and viral genomes. The expression of other small non-coding RNAs in NPC and the expression pattern of miR-BARTs in rare EBV-associated epithelial cancers will also be discussed.
Collapse
|
37
|
Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, Strong AL, Lehman TA, Seddon MB, Lin Z, Concha M, Baddoo M, Ferris M, Swan KF, Sullivan DE, Burow ME, Taylor CM, Flemington EK. Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 2013; 9:e1003341. [PMID: 23671415 PMCID: PMC3649992 DOI: 10.1371/journal.ppat.1003341] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 03/20/2013] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with roughly 10% of gastric carcinomas worldwide (EBVaGC). Although previous investigations provide a strong link between EBV and gastric carcinomas, these studies were performed using selected EBV gene probes. Using a cohort of gastric carcinoma RNA-seq data sets from The Cancer Genome Atlas (TCGA), we performed a quantitative and global assessment of EBV gene expression in gastric carcinomas and assessed EBV associated cellular pathway alterations. EBV transcripts were detected in 17% of samples but these samples varied significantly in EBV coverage depth. In four samples with the highest EBV coverage (hiEBVaGC – high EBV associated gastric carcinoma), transcripts from the BamHI A region comprised the majority of EBV reads. Expression of LMP2, and to a lesser extent, LMP1 were also observed as was evidence of abortive lytic replication. Analysis of cellular gene expression indicated significant immune cell infiltration and a predominant IFNG response in samples expressing high levels of EBV transcripts relative to samples expressing low or no EBV transcripts. Despite the apparent immune cell infiltration, high levels of the cytotoxic T-cell (CTL) and natural killer (NK) cell inhibitor, IDO1, was observed in the hiEBVaGCs samples suggesting an active tolerance inducing pathway in this subgroup. These results were confirmed in a separate cohort of 21 Vietnamese gastric carcinoma samples using qRT-PCR and on tissue samples using in situ hybridization and immunohistochemistry. Lastly, a panel of tumor suppressors and candidate oncogenes were expressed at lower levels in hiEBVaGC versus EBV-low and EBV-negative gastric cancers suggesting the direct regulation of tumor pathways by EBV. Epstein-Barr virus (EBV) is detected in roughly 10% of gastric carcinoma (GC) cases worldwide. Despite a strong link between EBV and gastric carcinoma, the contribution of EBV to the tumor environment in EBV associated gastric carcinoma is unclear. We performed a global assessment of EBV and host cell gene expression in gastric carcinoma tumors from 71 patients to link EBV genes (and expression intensities) to cell and microenvironmental changes. In addition to the finding that EBV is associated with down-regulated tumor regulatory genes, this study revealed that samples with high levels of EBV gene expression (hiEBVaGCs) displayed elevated immune cell infiltration with high interferon-gamma (IFNG) expression compared to samples with low or no EBV gene expression. Despite this evidence of increased immune posturing, hiEBVaGC samples also showed elevated expression of the potent immune cell inhibitor, IDO1. This finding may partly explain the persistence of these virus associated tumors in the face of local immune cell concentration. Importantly, the small molecule IDO inhibitor, 1MT (1-methyl Tryptophan), has been shown to reverse the tolerance inducing effects of IDO1 in other tumors. We propose that stratification of gastric carcinomas into EBV-negative, EBV-low and EBV-high may provide indicator value for the use of IDO1 inhibitors as adjuvant therapies against hiEBVaGCs.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Databases, Nucleic Acid
- Epstein-Barr Virus Infections/epidemiology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/therapy
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/immunology
- Gene Expression Regulation, Viral/genetics
- Gene Expression Regulation, Viral/immunology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Humans
- Immunotherapy
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/immunology
- Stomach Neoplasms/epidemiology
- Stomach Neoplasms/genetics
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Stomach Neoplasms/therapy
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Guorong Xu
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Joseph Coco
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Carl Baribault
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Dass S. Vinay
- Department of Medicine, Section of Clinical Immunology, Allergy, and Rheumatology, Tulane University, New Orleans, Louisiana, United States of America
| | - Michelle R. Lacey
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Amy L. Strong
- Tulane Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana, United States of America
| | - Teresa A. Lehman
- BioServe Biotechnologies, Ltd., Beltsville, Maryland, United States of America
| | - Michael B. Seddon
- BioServe Biotechnologies, Ltd., Beltsville, Maryland, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Monica Concha
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - Melody Baddoo
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
| | - MaryBeth Ferris
- Department of Microbiology & Immunology, Tulane University, New Orleans, Louisiana, United States of America
| | - Kenneth F. Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States of America
| | - Deborah E. Sullivan
- Department of Microbiology & Immunology, Tulane University, New Orleans, Louisiana, United States of America
| | - Matthew E. Burow
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher M. Taylor
- Department of Computer Science, University of New Orleans, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology & Parasitology, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- * E-mail: (CMT); (EKF)
| | - Erik K. Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, New Orleans, Louisiana, United States of America
- * E-mail: (CMT); (EKF)
| |
Collapse
|
38
|
Abstract
EBV-associated human malignancies may originate from B cells and epithelial cells. EBV readily infects B cells in vitro and transforms them into proliferative lymphoblastoid cell lines. In contrast, infection of human epithelial cells in vitro with EBV has been difficult to achieve. The lack of experimental human epithelial cell systems for EBV infection has hampered the understanding of biology of EBV infection in epithelial cells. The recent success to infect human epithelial cells with EBV in vitro has allowed systematic investigations into routes of EBV entry, regulation of latent and lytic EBV infection, and persistence of EBV infection in infected epithelial cells. Understanding the biology of EBV infection in human epithelial cells will provide important insights to the role of EBV infection in the pathogenesis of EBV-associated epithelial malignancies including nasopharyngeal carcinoma and gastric carcinoma.
Collapse
|
39
|
Lo AKF, Dawson CW, Jin DY, Lo KW. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol 2012; 227:392-403. [PMID: 22431062 DOI: 10.1002/path.4025] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer prevalent in south-east Asia and southern China, where it constitutes a significant health burden. Although the close association of NPC with Epstein-Barr virus (EBV) infection has been known for more than four decades, the exact role that EBV plays in the pathogenesis of this malignancy is still unclear. While NPC tumours are known to express a number of EBV-encoded proteins, they also express a large number of virus-encoded microRNAs (miRNAs), the most abundant of which are those encoded from the BamHI-A region of the viral genome: the so-called BART miRNAs. miRNAs are small non-coding mRNAs that negatively regulate the expression of various genes at the post-transcriptional level. Accumulating evidence suggests that miRNAs play important roles in tumourigenesis. Here, we review the role of EBV-encoded BART miRNAs in modulating apoptosis and host innate defence mechanisms and their contribution to NPC pathogenesis. The rationale and strategies for therapeutic targeting of BART miRNAs in EBV-infected NPC are also discussed.
Collapse
Affiliation(s)
- Angela K-F Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Chinese University of Hong Kong, SAR
| | | | | | | |
Collapse
|
40
|
EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012; 31:2207-21. [PMID: 22473208 DOI: 10.1038/emboj.2012.63] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/16/2012] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) controls gene expression to transform human B cells and maintain viral latency. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) identified mRNA targets of 44 EBV and 310 human microRNAs (miRNAs) in Jijoye (Latency III) EBV-transformed B cells. While 25% of total cellular miRNAs are viral, only three viral mRNAs, all latent transcripts, are targeted. Thus, miRNAs do not control the latent/lytic switch by targeting EBV lytic genes. Unexpectedly, 90% of the 1664 human 3'-untranslated regions targeted by the 12 most abundant EBV miRNAs are also targeted by human miRNAs via distinct binding sites. Half of these are targets of the oncogenic miR-17∼92 miRNA cluster and associated families, including mRNAs that regulate transcription, apoptosis, Wnt signalling, and the cell cycle. Reporter assays confirmed the functionality of several EBV and miR-17 family miRNA-binding sites in EBV latent membrane protein 1 (LMP1), EBV BHRF1, and host CAPRIN2 mRNAs. Our extensive list of EBV and human miRNA targets implicates miRNAs in the control of EBV latency and illuminates viral miRNA function in general.
Collapse
|
41
|
Hui KF, Ho DN, Tsang CM, Middeldorp JM, Tsao GSW, Chiang AKS. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma. Int J Cancer 2012; 131:1930-40. [PMID: 22261816 DOI: 10.1002/ijc.27439] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/03/2012] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV). We reported that suberoylanilide hydroxamic acid (SAHA) induced EBV lytic cycle in EBV-positive gastric carcinoma cells and mediated enhanced cell death. However, expression of EBV lytic proteins was thought to exert antiapoptotic effect in EBV-infected cells. Here, we examined the in vitro and in vivo effects of SAHA on EBV lytic cycle induction in NPC cells and investigated the cellular consequences. Micromolar concentrations of SAHA significantly induced EBV lytic cycle in EBV-positive NPC cells. Increased apoptosis and proteolytic cleavage of poly(ADP-ribose) polymerase and caspase-3, -7 and -9 in EBV-positive versus EBV-negative NPC cells were observed. More than 85% of NPC cells expressing immediate-early (Zta), early (BMRF1) or late (gp350/220) lytic proteins coexpressed cleaved caspase-3. Tracking of expression of EBV lytic proteins and cleaved caspase-3 over time demonstrated that NPC cells proceeded to apoptosis following EBV lytic cycle induction. Inhibition of EBV DNA replication and late lytic protein expression by phosphonoformic acid did not impact on SAHA's induced cell death in NPC, indicating that early rather than late phase of EBV lytic cycle contributed to the apoptotic effect. In vivo effects of SAHA on EBV lytic cycle induction and tumor growth suppression were also observed in NPC xenografts in nude mice. Taken together, our data indicated that activation of lytic cycle from latent cycle of EBV by SAHA leads to apoptosis and tumor growth suppression of NPC thereby providing experimental evidence for virus-targeted therapy against EBV-positive cancer.
Collapse
Affiliation(s)
- K F Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
42
|
Jang BG, Jung EJ, Kim WH. Expression of BamHI-A Rightward Transcripts in Epstein-Barr Virus-Associated Gastric Cancers. Cancer Res Treat 2011; 43:250-4. [PMID: 22247711 PMCID: PMC3253868 DOI: 10.4143/crt.2011.43.4.250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/28/2011] [Indexed: 11/22/2022] Open
Abstract
Purpose About 10% of all gastric cancers (GCs) are Epstein-Barr virus (EBV)-associated. However, the oncogene of EBV in gastric carcinogenesis has not yet been established. In the present study, we investigated the virus-derived transcripts in the EBV-infected GC cell line to explore the viral oncogene of EBV-positive GCs. Materials and Methods We used the SNU719 cell line, a naturally derived EBV-infected GC cell line. The individual expressed sequence tags from the cDNA libraries of SNU719 were searched against the mRNA subset extracted from the GenBank data base. Sequence reaction was carried out for the EBV-associated clones. Reverse transcription-polymerase chain reaction was performed after cells were partitioned into nuclear and cytoplasmic fractions. Results Using bioinformatic tools, we selected 13 EBV-associated clones from cDNA libraries of SNU719. By sequencing analysis, we revealed that they were all associated with RPMS1, one of the BamHI-A rightward transcripts (BART) of EBV. Some BART cDNAs such as RPMS1 and A73 are known to be translated into protein in vitro, and have been shown to have some biochemical functions relevant to tumorigenesis. But, presently, the BART transcripts were expressed only in the nucleus and not in the cytoplasm, arguing against their role as messenger RNAs. Some other BART transcripts expressed in GCs (BARF0, CST, vIL, BARF1, BLLF1, and BcLF1) were also extensively detected in the nucleus. Conclusion BART transcripts are the predominant viral transcripts expressed in EBV-associated GCs, and they are located only in the nucleus. Therefore, it seems less likely that BART transcripts produce functional proteins to play a role in carcinogenesis of EBV-associated GCs.
Collapse
Affiliation(s)
- Bo-Gun Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
43
|
Kim DN, Song YJ, Lee SK. The role of promoter methylation in Epstein-Barr virus (EBV) microRNA expression in EBV-infected B cell lines. Exp Mol Med 2011; 43:401-10. [PMID: 21628990 DOI: 10.3858/emm.2011.43.7.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) microRNAs (miRNAs) are expressed in EBV-associated tumors and cell lines, but the regulation mechanism of their expression is unclear yet. We investigated whether the expression of EBV miRNAs is epigenetically regulated in EBV-infected B cell lines. The expression of BART miRNAs was inversely related with the methylation level of the BART promoter at both steady-state and following 5-aza-2'-deoxycytidine treatment of the cells. The expression of BHRF1 miRNAs also became detectable with the demethylation of Cp/Wp in latency I EBV-infected cell lines. Furthermore, in vitro methylation of the BART and Cp promoters reduced the promoter-driven transactivation. In contrast, tricostatin A had little effect on the expression of EBV miRNA expression as well as on the BART and Cp/Wp promoters. Our results suggest that promoter methylation, but not histone acetylation, plays a role in regulation of the EBV miRNA expression in EBV-infected B cell lines.
Collapse
Affiliation(s)
- Do Nyun Kim
- Research Institute of Immunobiology Department of Medical Lifescience College of Medicine The Catholic University of Korea Seoul
| | | | | |
Collapse
|
44
|
Marquitz AR, Raab-Traub N. The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol 2011; 22:166-72. [PMID: 22178394 DOI: 10.1016/j.semcancer.2011.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 01/07/2023]
Abstract
The BamHI A rightward transcripts are a set of alternatively splicing transcripts produced by Epstein-Barr Virus that are highly expressed in nasopharyngeal carcinoma. These transcripts contain several open reading frames as well as precursors for twenty-two miRNAs. Although the putative proteins corresponding to these open reading frames have not been detected, several studies have identified properties that are interesting and potentially significant with respect to cellular transformation. The miRNAs, however, are very abundant in all nasopharyngeal carcinomas and several potentially significant functions have been identified for some of the miRNAs. This article will focus on the nature of this complicated set of transcripts and the evidence that they contribute to the development of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Aron R Marquitz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
45
|
Qiu J, Cosmopoulos K, Pegtel M, Hopmans E, Murray P, Middeldorp J, Shapiro M, Thorley-Lawson DA. A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 2011; 7:e1002193. [PMID: 21901094 PMCID: PMC3161978 DOI: 10.1371/journal.ppat.1002193] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/21/2011] [Indexed: 12/13/2022] Open
Abstract
We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between the miRNAs. miRNAs are small (∼22 bp) RNAs. They play central roles in many cellular processes. Epstein-Barr virus (EBV) is an important human pathogen that establishes persistent infection in nearly all humans and is associated with several common forms of cancer. To achieve persistent infection, the virus infects B cells and uses a series of discrete transcription programs to drive these B cells to become memory B cells – the site of long term persistent infection. It was the first human virus found to express miRNAs of which there are at least 40. The functions of a few of these miRNAs are known but their expression in latently infected normal and neoplastic tissues in vivo have not been described. Here we have profiled EBV miRNAs in a wide range of infected normal and neoplastic tissue. We demonstrate that there are indeed latency program specific patterns of viral miRNA expression and that these patterns are disrupted in EBV associated tumors implicating EBV miRNAs both in long term persistence and in oncogenesis.
Collapse
Affiliation(s)
- Jin Qiu
- Dept of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Katherine Cosmopoulos
- Dept of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Michiel Pegtel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik Hopmans
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Murray
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, United Kingdom
| | - Jaap Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michael Shapiro
- Dept of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - David A. Thorley-Lawson
- Dept of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Niller HH, Wolf H, Ay E, Minarovits J. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:82-102. [PMID: 21627044 DOI: 10.1007/978-1-4419-8216-2_7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epstein-Barr virus (EBV) is ahumanherpesvirus thatpersists in the memory B-cells of the majority of the world population in a latent form. Primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis. Virus latency is associated with a wide variety of neoplasms whereof some occur in immune suppressed individuals. Virus production does not occur in strict latency. The expression of latent viral oncoproteins and nontranslated RNAs is under epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of a couple of latency promoters in tumor cells, germinal center B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent and lytic EBV proteins elicit a strong immune response. In immune suppressed and infectious mononucleosis patients, an increased viral load can be detected in the blood. Enhanced lytic replication may result in new infection- and transformation-events and thus is a risk factor both for malignant transformation and the development of autoimmune diseases. An increased viral load or a changed presentation of a subset of lytic or latent EBV proteins that cross-react with cellular antigens may trigger pathogenic processes through molecular mimicry that result in multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
47
|
Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol 2010; 85:996-1010. [PMID: 21068248 DOI: 10.1128/jvi.01528-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) has been shown to encode at least 40 microRNAs (miRNAs), an important class of molecules that negatively regulate the expression of many genes through posttranscriptional mechanisms. Here, we have used real-time PCR assays to quantify the levels of EBV-encoded BHRF1 and BART miRNAs in latently infected cells and in cells induced into the lytic cycle. During latency, BHRF1 miRNAs were seen only in cells with detectable Cp- and/or Wp-initiated EBNA transcripts, while the BART miRNAs were expressed in all forms of latent infection. Surprisingly, levels of different BART miRNAs were found to vary up to 50-fold within a cell line. However, this variation could not be explained by differential miRNA turnover, as all EBV miRNAs appeared to be remarkably stable. Following entry into the virus lytic cycle, miR-BHRF1-2 and -1-3 were rapidly induced, coincident with the onset of lytic BHRF1 transcripts, while miR-BHRF1-1 expression was delayed until 48 h and correlated with the appearance of Cp/Wp-initiated EBNA transcripts. In contrast, levels of BART miRNAs were relatively unchanged during virus replication, despite dramatic increases in BART transcription. Finally, we show that BHRF1 and BART miRNAs were delayed relative to the induction of BHRF1 and BART transcripts in freshly infected primary B cell cultures. In summary, our data show that changes in BHRF1 and BART transcription are not necessarily reflected in altered miRNA levels, suggesting that miRNA maturation is a key step in regulating steady-state levels of EBV miRNAs.
Collapse
|
48
|
Lin Z, Flemington EK. miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett 2010; 305:186-99. [PMID: 20943311 DOI: 10.1016/j.canlet.2010.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/21/2022]
Abstract
Tumor viruses are a class of pathogens with well established roles in the development of malignant diseases. Numerous bodies of work have highlighted miRNAs (microRNAs) as critical regulators of tumor pathways and it is clear that the dysregulation of cellular miRNA expression can promote tumor formation. Tumor viruses encode their own miRNAs and/or manipulate the expression of cellular miRNAs to modulate their host cell environment, thereby facilitating their respective infection cycles. The modulation of these miRNA responsive pathways, however, often influences certain signal transduction cascades in ways that favor tumorigenesis. In this review, we discuss the roles of virally-encoded and virally-regulated cellular miRNAs in the respective viral life cycles and in virus associated pathogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pathology, SL-79, Tulane Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | |
Collapse
|
49
|
Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt's lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 2009; 19:377-88. [PMID: 19619657 PMCID: PMC3764430 DOI: 10.1016/j.semcancer.2009.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus was originally identified in the tumour cells of a Burkitt's lymphoma, and was the first virus to be associated with the pathogenesis of a human cancer. Studies on the relationship of EBV with Burkitt's lymphoma have revealed important general principles that are relevant to other virus-associated cancers. In addition, the impact of such studies on the knowledge of EBV biology has been enormous. Here, we review some of the key historical observations arising from studies on Burkitt's lymphoma that have informed our understanding of EBV, and we summarise the current hypotheses regarding the role of EBV in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- Institute for Cancer Studies, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|