1
|
Kincaid AE, Denkers ND, McNulty EE, Kraft CN, Bartz JC, Mathiason CK. Expression of the cellular prion protein by mast cells in white-tailed deer carotid body, cervical lymph nodes and ganglia. Prion 2024; 18:94-102. [PMID: 39285618 PMCID: PMC11409499 DOI: 10.1080/19336896.2024.2402225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic wasting disease (CWD) is a transmissible and fatal prion disease that affects cervids. While both oral and nasal routes of exposure to prions cause disease, the spatial and temporal details of how prions enter the central nervous system (CNS) are unknown. Carotid bodies (CBs) are structures that are exposed to blood-borne prions and are densely innervated by nerves that are directly connected to brainstem nuclei, known to be early sites of prion neuroinvasion. All CBs examined contained mast cells expressing the prion protein which is consistent with these cells playing a role in neuroinvasion following prionemia.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Nathaniel D Denkers
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Caitlyn N Kraft
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Sun JL, Telling GC. New developments in prion disease research using genetically modified mouse models. Cell Tissue Res 2023; 392:33-46. [PMID: 36929219 DOI: 10.1007/s00441-023-03761-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
While much of what we know about the general principles of protein-based information transfer derives from studies of experimentally adapted rodent prions, these laboratory strains are limited in their ability to recapitulate features of human and animal prions and the diseases they produce. Here, we review how recent approaches using genetically modified mice have informed our understanding of naturally occurring prion diseases, their strain properties, and the factors controlling their transmission and evolution. In light of the increasing importance of chronic wasting disease, the application of mouse transgenesis to study this burgeoning and highly contagious prion disorder, in particular recent insights derived from gene-targeting approaches, will be a major focus of this review.
Collapse
Affiliation(s)
- Julianna L Sun
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA.
| |
Collapse
|
3
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
4
|
Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses 2022; 14:v14071390. [PMID: 35891371 PMCID: PMC9316268 DOI: 10.3390/v14071390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting several species of captive and free-ranging cervids. In the past few decades, CWD has been spreading uncontrollably, mostly in North America, resulting in a high increase of CWD incidence but also a substantially higher number of geographical regions affected. The massive increase in CWD poses risks at several levels, including contamination of the environment, transmission to animals cohabiting with cervids, and more importantly, a putative transmission to humans. In this review, I will describe the mechanisms and routes responsible for the efficient transmission of CWD, the strain diversity of natural CWD, its spillover and zoonotic potential and strategies to minimize the CWD threat.
Collapse
|
5
|
Islam MR, Bulut U, Feria-Arroyo TP, Tyshenko MG, Oraby T. Modeling the Impact of Climate Change on Cervid Chronic Wasting Disease in Semi-Arid South Texas. FRONTIERS IN EPIDEMIOLOGY 2022; 2:889280. [PMID: 38455276 PMCID: PMC10910938 DOI: 10.3389/fepid.2022.889280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 03/09/2024]
Abstract
Chronic wasting disease (CWD) is a spongiform encephalopathy disease caused by the transmission of infectious prion agents. CWD is a fatal disease that affects wild and farmed cervids in North America with few cases reported overseas. Social interaction of cervids, feeding practices by wildlife keepers and climate effects on the environmental carrying capacity all can affect CWD transmission in deer. Wildlife deer game hunting is economically important to the semi-arid South Texas region and is affected by climate change. In this paper, we model and investigate the effect of climate change on the spread of CWD using typical climate scenarios. We use a system of impulsive differential equations to depict the transmission of CWD between different age groups and gender of cervids. The carrying capacity and contact rates are assumed to depend on climate. Due to the polygamy of bucks, we use mating rates that depend on the number of bucks and does. We analyze the stability of the model and use simulations to study the effect of harvesting (culling) on eradicating the disease, given the climate of South Texas. We use typical climate change scenarios based on published data and our assumptions. For the climate indicator, we calculated and utilized the Standard Precipitation Evapotranspiration Index (SPEI). We found that climate change might hinder the efforts to reduce and effectively manage CWD as it becomes endemic to South Texas. The model shows the extinction of the deer population from this region is a likely outcome.
Collapse
Affiliation(s)
- Md Rafiul Islam
- Department of Mathematics, Iowa State University, Ames, IA, United States
| | - Ummugul Bulut
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX, United States
| | | | | | - Tamer Oraby
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
6
|
Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021; 13:v13112287. [PMID: 34835094 PMCID: PMC8621399 DOI: 10.3390/v13112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a class of fatal neurodegenerative diseases caused by the entry and spread of infectious prion proteins (PrPSc) in the central nervous system (CNS). These diseases are endemic to certain mammalian animal species that use their sense of smell for a variety of purposes and therefore expose their nasal cavity (NC) to PrPSc in the environment. Prion diseases that affect humans are either inherited due to a mutation of the gene that encodes the prion protein, acquired by exposure to contaminated tissues or medical devices, or develop without a known cause (referred to as sporadic). The purpose of this review is to identify components of the NC that are involved in prion transport and to summarize the evidence that the NC serves as a route of entry (centripetal spread) and/or a source of shedding (centrifugal spread) of PrPSc, and thus plays a role in the pathogenesis of the TSEs.
Collapse
Affiliation(s)
- Anthony E Kincaid
- Departments of Pharmacy Sciences and Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
7
|
Parkinson's Disease: A Prionopathy? Int J Mol Sci 2021; 22:ijms22158022. [PMID: 34360787 PMCID: PMC8347681 DOI: 10.3390/ijms22158022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
The principal pathogenic event in Parkinson's disease is characterized by the conformational change of α-synuclein, which form pathological aggregates of misfolded proteins, and then accumulate in intraneuronal inclusions causing dopaminergic neuronal loss in specific brain regions. Over the last few years, a revolutionary theory has correlated Parkinson's disease and other neurological disorders with a shared mechanism, which determines α-synuclein aggregates and progresses in the host in a prion-like manner. In this review, the main characteristics shared between α-synuclein and prion protein are compared and the cofactors that influence the remodeling of native protein structures and pathogenetic mechanisms underlying neurodegeneration are discussed.
Collapse
|
8
|
Kim MH, Park SJ, Yang WM. Inhalation of Essential Oil from Mentha piperita Ameliorates PM10-Exposed Asthma by Targeting IL-6/JAK2/STAT3 Pathway Based on a Network Pharmacological Analysis. Pharmaceuticals (Basel) 2020; 14:ph14010002. [PMID: 33374928 PMCID: PMC7821947 DOI: 10.3390/ph14010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Fine particulate matter (PM) exposure exhibits a crucial risk factor to exacerbate airway epithelial remodeling, fibrosis, and pulmonary destruction in asthma. Based on the use of essential oils from aromatic plants on pain relief and anti-inflammatory properties, we investigated the inhibitory effects of essential oil derived from the Mentha species (MEO) against asthma exposed to PM10. The MEO (0.1 v/v %) was aerosolized by a nebulizer to ovalbumin and PM10-induced asthmatic mice. Histological changes were confirmed in the lung tissues. To define the mode of action of the MEO on asthma, a protein–protein interaction network was constructed using menthol and menthone as the major components of the MEO. Cytokine expression and the JAK2/STAT3 signaling pathway were analyzed in lung epithelial A549 cells co-treated with MEO and PM10. Inhalation of MEO by nebulization inhibited respiratory epithelium hyperplasia, collagen deposition, and goblet cell activation in asthmatic mice. Through a network pharmacological analysis, cytokine–cytokine receptor interaction and JAK/STAT was expected to be underlying mechanisms of MEO on asthma. Treatment with MEO significantly reduced the IL-6 levels with a decrease in pro-inflammatory and T helper 2-specific cytokines. PM10-induced phosphorylation of JAK2 and STAT3 was significantly decreased by MEO. Collectively, MEO may have an inhibitory effect on asthma under the condition of PM10 exposure through the IL-6/JAK2/STAT3 signaling pathway.
Collapse
|
9
|
Kaur R, Kaushik A, Singh KK, Katare OP, Singh B. An Efficient and Cost-Effective Nose-Only Inhalational Chamber for Rodents: Design, Optimization and Validation. AAPS PharmSciTech 2020; 21:82. [PMID: 31989357 DOI: 10.1208/s12249-019-1608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
The mainstay treatment of pulmonary disorders lies around the direct drug targeting to the lungs using a nebulizer, metered-dose inhaler, or dry powder inhaler. Only few inhalers are available in the market that could be used for inhalational drug delivery in rodents. However, the available rodent inhalers invariably require high cost and maintenance, which limits their use at laboratory scale. The present work, therefore, was undertaken to develop a simple, reliable, and cost-effective nose-only inhalation chamber with holding capacity of three mice at a time. The nebulized air passes directly and continuously from the central chamber to mouthpiece and maintains an aerosol cloud for rodents to inhale. Laser diffraction analysis indicated volume mean diameter of 4.02 ± 0.30 μm, and the next-generation impactor studies, however, revealed mean mass aerodynamic diameter of 3.40 ± 0.27 μm, respectively. An amount of 2.05 ± 0.20 mg of voriconazole (VRC) was available for inhalation at each delivery port of the inhaler. In vivo studies indicated the deposition of 76.12 ± 19.50 μg of VRC in the mice lungs when nebulized for a period of 20 min. Overall, the developed nose-only inhalation chamber offers a reliable means of generating aerosols and successfully exposing mice to nebulization.
Collapse
|
10
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
11
|
Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:431-452. [PMID: 31604561 DOI: 10.1016/b978-0-444-63855-7.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olfactory dysfunction seems to occur earlier than classic motor and cognitive symptoms in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Thus, the use of the olfactory system as a clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and, potentially, prediction of treatment success. The use of genetic and neurotoxin animal models has contributed to the understanding of the mechanisms underlying olfactory dysfunction in a number of neurodegenerative diseases. In this chapter, we provide an overview of behavioral and neurochemical alterations observed in animal models of different neurodegenerative diseases (such as genetic and Aβ infusion models for AD and neurotoxins and genetic models of PD), in which olfactory dysfunction has been described.
Collapse
Affiliation(s)
- Rui D Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marissa G Schamne
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuane B Sampaio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Center of Biological Sciences¸ Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Rial
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Oral Prion Neuroinvasion Occurs Independently of PrP C Expression in the Gut Epithelium. J Virol 2018; 92:JVI.01010-18. [PMID: 30021891 PMCID: PMC6146811 DOI: 10.1128/jvi.01010-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
The accumulation of orally acquired prions within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within Peyer's patches. Some gastrointestinal pathogens utilize molecules, such as the cellular prion protein PrPC, expressed on gut epithelial cells to enter Peyer's patches. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer's patches was dependent upon PrPC expression in the gut epithelium. We show that orally acquired prions can establish infection in Peyer's patches independently of PrPC expression in gut epithelial cells. Our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility. The early replication of certain prion strains within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain after oral exposure. Our data show that orally acquired prions utilize specialized gut epithelial cells known as M cells to enter Peyer's patches. M cells express the cellular isoform of the prion protein, PrPC, and this may be exploited by some pathogens as an uptake receptor to enter Peyer's patches. This suggested that PrPC might also mediate the uptake and transfer of prions across the gut epithelium into Peyer's patches in order to establish infection. Furthermore, the expression level of PrPC in the gut epithelium could influence the uptake of prions from the lumen of the small intestine. To test this hypothesis, transgenic mice were created in which deficiency in PrPC was specifically restricted to epithelial cells throughout the lining of the small intestine. Our data clearly show that efficient prion neuroinvasion after oral exposure occurred independently of PrPC expression in small intestinal epithelial cells. The specific absence of PrPC in the gut epithelium did not influence the early replication of prions in Peyer's patches or disease susceptibility. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease pathogenesis and susceptibility. However, our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences the risk of oral prion disease susceptibility. IMPORTANCE The accumulation of orally acquired prions within Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within Peyer's patches. Some gastrointestinal pathogens utilize molecules, such as the cellular prion protein PrPC, expressed on gut epithelial cells to enter Peyer's patches. Acute mucosal inflammation can enhance PrPC expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer's patches was dependent upon PrPC expression in the gut epithelium. We show that orally acquired prions can establish infection in Peyer's patches independently of PrPC expression in gut epithelial cells. Our data suggest that the magnitude of PrPC expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility.
Collapse
|
13
|
Rehbein P, Schwalbe H. Improved high-yield expression, purification and refolding of recombinant mammalian prion proteins under aerosol-free elevated biological safety conditions. Protein Expr Purif 2018; 150:53-60. [PMID: 29751084 DOI: 10.1016/j.pep.2018.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
Production of recombinant prion proteins is of crucial relevance in food technology (analytical standards, assay development) but also in basic research, most importantly structural biology (NMR, X-ray diffraction). Structural approaches conveniently allow for sophisticated investigation of prion disease pathogenesis, but usually require large amounts of sample material. Recently, working with recombinant prion proteins has been recategorized to biosafety levels > S1 as infectious prions may readily be generated de novo and become airborne via aerosols. Heterologous expression should therefore be established with appropriately adjusted safety precautions. We have developed a protocol for high-yield expression, purification and refolding of recombinant mammalian prion proteins at elevated biological safety levels by introducing means of abolishing aerosol formation and propagation.
Collapse
Affiliation(s)
- Peter Rehbein
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Assessment of Chronic Wasting Disease Prion Shedding in Deer Saliva with Occupancy Modeling. J Clin Microbiol 2017; 56:JCM.01243-17. [PMID: 29118163 DOI: 10.1128/jcm.01243-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
The detection of prions is difficult due to the peculiarity of the pathogen, which is a misfolded form of a normal protein. The specificity and sensitivity of detection methods are imperfect in complex samples, including in excreta. Here, we combined optimized prion amplification procedures with a statistical method that accounts for false-positive and false-negative errors to test deer saliva for chronic wasting disease (CWD) prions. This approach enabled us to discriminate the shedding of prions in saliva and the detection of prions in saliva-a distinction crucial to understanding the role of prion shedding in disease transmission and for diagnosis. We found that assay sensitivity and specificity were indeed imperfect, and we were able to draw several conclusions pertinent to CWD biology from our analyses: (i) the shedding of prions in saliva increases with time postinoculation, but is common throughout the preclinical phase of disease; (ii) the shedding propensity is influenced neither by sex nor by prion protein genotype at codon 96; and (iii) the source of prion-containing inoculum used to infect deer affects the likelihood of prion shedding in saliva; oral inoculation of deer with CWD-positive saliva resulted in 2.77 times the likelihood of prion shedding in saliva compared to that from inoculation with CWD-positive brain. These results are pertinent to horizontal CWD transmission in wild cervids. Moreover, the approach described is applicable to other diagnostic assays with imperfect detection.
Collapse
|
15
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
16
|
Falconer JL, Grainger DW. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. J Control Release 2017; 269:1-9. [PMID: 29061510 DOI: 10.1016/j.jconrel.2017.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022]
Abstract
Silver nanoparticles (AgNPs) are widely available as consumer goods, and over-the-counter or nutraceutical products used for alleged therapeutic and antibacterial properties. Among these products, AgNP topical therapy is proposed for treating patients with upper airway bacterial rhinosinusitis. While silver ion release from AgNPs in biological systems is well known, limited investigations actually characterize this silver ion release and their subsequent biological effects distinct from delivered particulate metallic silver. This is in part due to the analytical complexity and difficulty involved in distinguishing silver ion release from metallic AgNPs in biological media. Therefore, this study compared intranasal administration of AgNPs versus soluble silver ion (AgNO3) control to examine their transport and biological differences in tissues. First, we compared bactericidal activities of AgNPs and AgNO3 in those bacteria commonly associated with clinical rhinosinusitis in vitro. Next, we evaluated silver residence time in the sinus cavity after intranasal delivery of AgNPs and AgNO3 to mice, and characterized tissue distribution of silver in the sinonasal mucosal epithelium. We found that AgNPs show reduced bactericidal activity compared to AgNO3 (i.e., MBC of 15ppm compared to 5ppm), and significantly lower residence times in the sinus cavity (AgNP concentrations of 3.76ppm after 3h compared to 9ppm for AgNO3). AgNPs were not readily taken up into or through respiratory epithelium, with very low silver levels found in blood and no detectable silver measured in the olfactory bulb and brain. Results indicate that limited tissue distribution of silver detected from AgNPs is due to AgNP dissolution to silver ion. AgNPs therefore demonstrate adequate safety through limited penetration and absorption, but limited potential therapeutic efficacy as antimicrobials in nasal applications, as concentrations of silver in the sinus cavity drop below the minimum bactericidal concentration within 3h.
Collapse
Affiliation(s)
- Jonathan L Falconer
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Bistaffa E, Rossi M, De Luca CMG, Moda F. Biosafety of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:455-485. [PMID: 28838674 DOI: 10.1016/bs.pmbts.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martina Rossi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara M G De Luca
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Università degli Studi di Pavia, Pavia, Italy
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
18
|
Legname G, Moda F. The Prion Concept and Synthetic Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:147-156. [PMID: 28838659 DOI: 10.1016/bs.pmbts.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrPSc). Prions derive from a conformational conversion of the normally folded prion protein (PrPC), which acquires pathological and infectious features. Moreover, PrPSc is able to transmit the pathological conformation to PrPC through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrPC conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents.
Collapse
Affiliation(s)
- Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
19
|
Annus Á, Csáti A, Vécsei L. Prion diseases: New considerations. Clin Neurol Neurosurg 2016; 150:125-132. [PMID: 27656779 DOI: 10.1016/j.clineuro.2016.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/30/2016] [Accepted: 09/11/2016] [Indexed: 12/30/2022]
Abstract
The transmissible spongiform encephalopathies, which include Creutzfeldt-Jakob disease, are fatal neurodegenerative disorders caused by the pathological accumulation of abnormal prion protein. The diagnosis of Creutzfeldt-Jakob disease is complex. The electroencephalogram, magnetic resonance imaging, lumbar puncture and genetic testing findings can help in the differential diagnosis of rapidly progressive dementia. There has recently been considerable debate as to whether proteins involved in the development of neurodegenerative diseases should be regarded as prions or only share prion-like mechanisms. Two recent reports described the detection of abnormal prion protein in the nasal mucosa and urine of patients with Creutzfeldt-Jakob disease. These findings raise major health concerns regarding the transmissibility of human prion diseases. We set out to address this neurological hot topic and to draw conclusions on the basis of what is known in the literature thus far.
Collapse
Affiliation(s)
- Ádám Annus
- Department of Neurology, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - Anett Csáti
- Department of Neurology, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| |
Collapse
|
20
|
Specificity, Size, and Frequency of Spaces That Characterize the Mechanism of Bulk Transepithelial Transport of Prions in the Nasal Cavities of Hamsters and Mice. J Virol 2016; 90:8293-301. [PMID: 27384659 DOI: 10.1128/jvi.01103-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731-12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation. These bulk transepithelial transport events were relatively rare but present in >90% of animals 5 to 60 min following inhalation. This novel mechanism of bulk transepithelial transport was seen in experimental and control hamsters and mice, indicating that it was not species specific or in response to prion exposure. The indiscriminate bulk intercellular transport of inhaled pathogens across the nasal mucosa followed by entry into the lymphatic system may be a mechanism that underlies the entry and spread of other toxins and pathogens in olfactory system-driven animals.
Collapse
|
21
|
Carrillo Robles D, García Maldonado G. [Psychiatric manifestations by prions. A narrative review]. ACTA ACUST UNITED AC 2016; 45:124-32. [PMID: 27132762 DOI: 10.1016/j.rcp.2015.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/08/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022]
Abstract
Prion diseases are a group of rare and rapidly progressive neurodegenerative conditions that may cause neuropsychiatric symptoms. This group of diseases has been described since the 18(th) century, but they were recognized decades later, when it became clear that the humans were affected by infected animals. There was controversy when the problem was attributed to a single protein with infective capacity. The common pathological process is characterized by the conversion of the normal cellular prion protein into an abnormal form. In humans, the illness has been classified as idiopathic, inherited and acquired through exposure to exogenous material containing abnormal prions. The most prominent neurological manifestation of prion diseases is the emergence of a rapidly progressive dementia, mioclonus associated with cerebellar ataxia and also extra pyramidal symptoms. Psychiatric symptoms occur in early stages of the illness and can contribute to timely diagnosis of this syndrome. Psychiatric symptoms have traditionally been grouped in three categories: affective symptoms, impaired motor function and psychotic symptoms. Such events usually occur during the prodromal period prior to the neurological manifestations and consists in the presence of social isolation, onset of delusions, irritability/aggression, visual hallucinations, anxiety and depression, and less frequent first-rank symptoms among others. Definite diagnosis requires post mortem examination. The possibility that a large number of cases may occur in the next years or that many cases have not been considered with this diagnosis is a fact. In our opinion, psychiatrists should be aware of symptoms of this disease. The main objective of this research consisted of assessing the correlation between this disturbance and neuro-psychiatric symptoms and particularly if this psychiatric manifestations integrate a clinical picture suggestive for the diagnosis of these diseases, but firstly reviewed taxonomic, pathogenic and pathological aspects. The authors of this project also added an element in relation to some diagnostic considerations based on scientific evidence. For the search controlled descriptors applied to the research for indexing scientific articles in databases were used. The electronic data bases used were PubMed, EMBASE and also PsycInfo. The descriptors were prion diseases, psychotic disorders, depression, mood disorders, pathology, classification, prion protein, history, neurological manifestations, and psychiatric manifestations. The selection criteria for the material were qualitative. To conclude, and based on the extensive literature review, the authors propose that the period where the evidence is more robust for mental impaired is named "psychiatric symptoms phase, which can be extended for a few months, being the psychiatric affective symptoms the most characteristic of this phase. In conclusion, we considered that the identification of these symptoms in a patient with risk factors for developing the disease will contribute to the early identification, and would regulate the guidelines in suspected diagnosis of this group of disorders. The intention is provide a better quality of life to the sick people.
Collapse
Affiliation(s)
| | - Gerardo García Maldonado
- Hospital Psiquiátrico de Tampico, Secretaria de Salud, Tampico, Tamaulipas, México; Universidad del Noreste, Tampico, Tamaulipas, México
| |
Collapse
|
22
|
Oraby T, Tyshenko MG, Westphal M, Darshan S, Croteau MC, Aspinall W, Elsaadany S, Cashman N, Krewski D. Using expert judgments to improve chronic wasting disease risk management in Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:713-728. [PMID: 27556565 DOI: 10.1080/15287394.2016.1174005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ABSTARCT Chronic wasting disease (CWD) is a neurodegenerative, protein misfolding disease affecting cervids in North America in epidemic proportions. While the existence of CWD has been known for more than 40 years, risk management efforts to date have not been able to curtail the spread of this condition. An expert elicitation exercise was carried out in May 2011 to obtain the views of international experts on both the etiology of CWD and possible CWD risk management strategies. This study presents the results of the following three components of the elicitation exercise: (1) expert views of the most likely scenarios for the evolution of the CWD among cervid populations in Canada, (2) ranking analyses of the importance of direct and indirect transmission routes, and (3) rating analyses of CWD control measures in farmed and wild cervids. The implications of these findings for the development of CWD risk management strategies are described in a Canadian context.
Collapse
Affiliation(s)
- Tamer Oraby
- a Department of Mathematics , University of Texas Rio Grande Valley , Edinburg , Texas , USA
| | - Michael G Tyshenko
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Shalu Darshan
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- h Risk Sciences International , Ottawa , Ontario , Canada
| | - Susie Elsaadany
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Neil Cashman
- e Blood Safety Surveillance and Health Care Acquired Infections Division , Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
- f Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
- g Department of Epidemiology and Community Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
23
|
Gough KC, Baker CA, Simmons HA, Hawkins SA, Maddison BC. Circulation of prions within dust on a scrapie affected farm. Vet Res 2015; 46:40. [PMID: 25889731 PMCID: PMC4397813 DOI: 10.1186/s13567-015-0176-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/30/2015] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Claire A Baker
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Hugh A Simmons
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Steve A Hawkins
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
24
|
Goñi F, Mathiason CK, Yim L, Wong K, Hayes-Klug J, Nalls A, Peyser D, Estevez V, Denkers N, Xu J, Osborn DA, Miller KV, Warren RJ, Brown DR, Chabalgoity JA, Hoover EA, Wisniewski T. Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. Vaccine 2014; 33:726-33. [PMID: 25539804 DOI: 10.1016/j.vaccine.2014.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.
Collapse
Affiliation(s)
- Fernando Goñi
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Candace K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lucia Yim
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kinlung Wong
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Jeanette Hayes-Klug
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Amy Nalls
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel Peyser
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Veronica Estevez
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nathaniel Denkers
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jinfeng Xu
- Department of Population Health, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - David A Osborn
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - Karl V Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - Robert J Warren
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, UK
| | - Jose A Chabalgoity
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Edward A Hoover
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
25
|
Abstract
The first steps in tissue culture are dating back to the beginning of the nineteenth century when biosafety measures did not yet exist. Later on, animal cell culture became essential for scientific research, diagnosis and biotechnological activities. Along with this development, biosafety concerns have emerged pointing to the risks for human health and in a lesser extent for the environment associated to the handling of animal cell cultures. The management of these risks requires a thorough risk assessment of both the cell cultures and the type of manipulation prior the start of any activity. It involves a case-by-case evaluation of both the intrinsic properties of the cell culture genetically modified or not and the probability that it may inadvertently or intentionally become infected with pathogenic micro-organisms. The latter hazard is predominant when adventitious contaminants are pathogenic or have a better capacity to persist in unfavourable conditions. Consequently, most of the containment measures primarily aim at protecting cells from adventitious contamination. Cell cultures known to harbour an infectious etiologic agent should be manipulated in compliance with containment measures recommended for the etiologic agent itself. The manipulation of cell cultures from human or primate origin necessitates the use of a type II biosafety cabinet. The scope of this chapter is to highlight aspects relevant for the risk assessment and to summarize the main biosafety recommendations and the recent technological advances allowing a mitigation of the risk for the handling of animal cell cultures.
Collapse
|
26
|
Hawkins SAC, Simmons HA, Gough KC, Maddison BC. Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination. Vet Rec 2014; 176:99. [PMID: 25362003 DOI: 10.1136/vr.102743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.
Collapse
Affiliation(s)
- Steve A C Hawkins
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Hugh A Simmons
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK
| | - Ben C Maddison
- ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|
27
|
Orrú CD, Bongianni M, Tonoli G, Ferrari S, Hughson AG, Groveman BR, Fiorini M, Pocchiari M, Monaco S, Caughey B, Zanusso G. A test for Creutzfeldt-Jakob disease using nasal brushings. N Engl J Med 2014; 371:519-29. [PMID: 25099576 PMCID: PMC4186748 DOI: 10.1056/nejmoa1315200] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Definite diagnosis of sporadic Creutzfeldt-Jakob disease in living patients remains a challenge. A test that detects the specific marker for Creutzfeldt-Jakob disease, the prion protein (PrP(CJD)), by means of real-time quaking-induced conversion (RT-QuIC) testing of cerebrospinal fluid has a sensitivity of 80 to 90% for the diagnosis of sporadic Creutzfeldt-Jakob disease. We have assessed the accuracy of RT-QuIC analysis of nasal brushings from olfactory epithelium in diagnosing sporadic Creutzfeldt-Jakob disease in living patients. METHODS We collected olfactory epithelium brushings and cerebrospinal fluid samples from patients with and patients without sporadic Creutzfeldt-Jakob disease and tested them using RT-QuIC, an ultrasensitive, multiwell plate-based fluorescence assay involving PrP(CJD)-seeded polymerization of recombinant PrP into amyloid fibrils. RESULTS The RT-QuIC assays seeded with nasal brushings were positive in 30 of 31 patients with Creutzfeldt-Jakob disease (15 of 15 with definite sporadic Creutzfeldt-Jakob disease, 13 of 14 with probable sporadic Creutzfeldt-Jakob disease, and 2 of 2 with inherited Creutzfeldt-Jakob disease) but were negative in 43 of 43 patients without Creutzfeldt-Jakob disease, indicating a sensitivity of 97% (95% confidence interval [CI], 82 to 100) and specificity of 100% (95% CI, 90 to 100) for the detection of Creutzfeldt-Jakob disease. By comparison, testing of cerebrospinal fluid samples from the same group of patients had a sensitivity of 77% (95% CI, 57 to 89) and a specificity of 100% (95% CI, 90 to 100). Nasal brushings elicited stronger and faster RT-QuIC responses than cerebrospinal fluid (P<0.001 for the between-group comparison of strength of response). Individual brushings contained approximately 10(5) to 10(7) prion seeds, at concentrations several logs10 greater than in cerebrospinal fluid. CONCLUSIONS In this preliminary study, RT-QuIC testing of olfactory epithelium samples obtained from nasal brushings was accurate in diagnosing Creutzfeldt-Jakob disease and indicated substantial prion seeding activity lining the nasal vault. (Funded by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and others.).
Collapse
Affiliation(s)
- Christina D Orrú
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, MT (C.D.O., M.B., A.G.H., B.R.G., B.C.); and the Department of Biomedical Sciences, University of Cagliari, Cagliari (C.D.O.), the Department of Neurologic and Movement Sciences, University of Verona, Verona (M.B., S.F., M.F., S.M., G.Z.), Clinica Otorinolaringoiatrica, Policlinico G.B. Rossi, Azienda Ospedaliera Universitaria Integrata, Verona (G.T.), and the Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome (M.P.) - all in Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee J, Kim SY, Hwang KJ, Ju YR, Woo HJ. Prion diseases as transmissible zoonotic diseases. Osong Public Health Res Perspect 2014; 4:57-66. [PMID: 24159531 PMCID: PMC3747681 DOI: 10.1016/j.phrp.2012.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt-Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea.
Collapse
Affiliation(s)
- Jeongmin Lee
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul,
Korea
- Division of Zoonoses, Korea National Institute of Health, Osong,
Korea
| | - Su Yeon Kim
- Division of Zoonoses, Korea National Institute of Health, Osong,
Korea
| | - Kyu Jam Hwang
- Division of Zoonoses, Korea National Institute of Health, Osong,
Korea
| | - Young Ran Ju
- Division of Zoonoses, Korea National Institute of Health, Osong,
Korea
| | - Hee-Jong Woo
- Laboratory of Immunology, College of Veterinary Medicine, Seoul National University, Seoul,
Korea
- Corresponding author. E-mail:
| |
Collapse
|
29
|
Rehbein P, Saxena K, Schlepckow K, Schwalbe H. Protocol for aerosol-free recombinant production and NMR analysis of prion proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 59:111-117. [PMID: 24771297 DOI: 10.1007/s10858-014-9831-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
The central hallmark of prion diseases is the misfolding of cellular prion protein (PrP(C)) into a disease-associated aggregated isoform known as scrapie prion protein (PrP(Sc)). NMR spectroscopy has made many essential contributions to the characterization of recombinant PrP in its folded, unfolded and aggregated states. Recent studies reporting on de novo generation of prions from recombinant PrP and infection of animals using prion aerosols suggest that adjustment of current biosafety measures may be necessary, particularly given the relatively high protein concentrations required for NMR applications that favor aggregation. We here present a protocol for the production of recombinant PrP under biosafety level 2 conditions that avoids entirely exposure of the experimenter to aerosols that might contain harmful PrP aggregates. In addition, we introduce an NMR sample tube setup that allows for safe handling of PrP samples at the spectrometer that usually is not part of a dedicated biosafety level 2 laboratory.
Collapse
Affiliation(s)
- Peter Rehbein
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
30
|
Assessing the susceptibility of transgenic mice overexpressing deer prion protein to bovine spongiform encephalopathy. J Virol 2013; 88:1830-3. [PMID: 24257620 DOI: 10.1128/jvi.02762-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer.
Collapse
|
31
|
Leunda A, Van Vaerenbergh B, Baldo A, Roels S, Herman P. Laboratory activities involving transmissible spongiform encephalopathy causing agents: risk assessment and biosafety recommendations in Belgium. Prion 2013; 7:420-33. [PMID: 24055928 PMCID: PMC3904386 DOI: 10.4161/pri.26533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Since the appearance in 1986 of epidemic of bovine spongiform encephalopathy (BSE), a new form of neurological disease in cattle which also affected human beings, many diagnostic and research activities have been performed to develop detection and therapeutic tools. A lot of progress was made in better identifying, understanding and controlling the spread of the disease by appropriate monitoring and control programs in European countries. This paper reviews the recent knowledge on pathogenesis, transmission and persistence outside the host of prion, the causative agent of transmissible spongiform encephalopathies (TSE) in mammals with a particular focus on risk (re)assessment and management of biosafety measures to be implemented in diagnostic and research laboratories in Belgium. Also, in response to the need of an increasing number of European diagnostic laboratories stopping TSE diagnosis due to a decreasing number of TSE cases reported in the last years, decontamination procedures and a protocol for decommissioning TSE diagnostic laboratories is proposed.
Collapse
Affiliation(s)
- Amaya Leunda
- Biosafety and Biotechnology Unit; Institut Scientifique de Santé Publique; Brussels, Belgium
| | | | - Aline Baldo
- Biosafety and Biotechnology Unit; Institut Scientifique de Santé Publique; Brussels, Belgium
| | - Stefan Roels
- Orientation and Veterinary Support; National Reference Laboratory for TSE (Belgium & Luxemburg); Veterinary and Agrochemical Research Center; Brussels, Belgium
| | - Philippe Herman
- Biosafety and Biotechnology Unit; Institut Scientifique de Santé Publique; Brussels, Belgium
| |
Collapse
|
32
|
Abstract
While the facile transmission of chronic wasting disease (CWD) remains incompletely elucidated, studies in rodents suggest that exposure of the respiratory mucosa may be an efficient pathway. The present study was designed to address this question in the native cervid host. Here, we demonstrate aerosol transmission of CWD to deer with a prion dose >20-fold lower than that used in previous oral inoculations. Inhalation of prions may facilitate transmission of CWD and, perhaps, other prion infections.
Collapse
|
33
|
Perrott MR, Sigurdson CJ, Mason GL, Hoover EA. Mucosal transmission and pathogenesis of chronic wasting disease in ferrets. J Gen Virol 2012; 94:432-442. [PMID: 23100363 DOI: 10.1099/vir.0.046110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrP(CWD)) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrP(CWD) accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrP(CWD) accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyer's patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection.
Collapse
Affiliation(s)
- Matthew R Perrott
- Pathobiology, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Christina J Sigurdson
- Department of Pathology, School of Medicine University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gary L Mason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| | - Edward A Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins CO 80523, USA
| |
Collapse
|
34
|
Abstract
Prion infection and pathogenesis are dependent on the agent crossing an epithelial barrier to gain access to the recipient nervous system. Several routes of infection have been identified, but the mechanism(s) and timing of in vivo prion transport across an epithelium have not been determined. The hamster model of nasal cavity infection was used to determine the temporal and spatial parameters of prion-infected brain homogenate uptake following inhalation and to test the hypothesis that prions cross the nasal mucosa via M cells. A small drop of infected or uninfected brain homogenate was placed below each nostril, where it was immediately inhaled into the nasal cavity. Regularly spaced tissue sections through the entire extent of the nasal cavity were processed immunohistochemically to identify brain homogenate and the disease-associated isoform of the prion protein (PrP(d)). Infected or uninfected brain homogenate was identified adhering to M cells, passing between cells of the nasal mucosa, and within lymphatic vessels of the nasal cavity at all time points examined. PrP(d) was identified within a limited number of M cells 15 to 180 min following inoculation, but not in the adjacent nasal mucosa-associated lymphoid tissue (NALT). While these results support M cell transport of prions, larger amounts of infected brain homogenate were transported paracellularly across the respiratory, olfactory, and follicle-associated epithelia of the nasal cavity. These results indicate that prions can immediately cross the nasal mucosa via multiple routes and quickly enter lymphatics, where they can spread systemically via lymph draining the nasal cavity.
Collapse
|
35
|
Mabbott NA. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain. Prion 2012; 6:322-33. [PMID: 22895090 PMCID: PMC3609058 DOI: 10.4161/pri.20676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Midlothian, UK.
| |
Collapse
|
36
|
Tamgüney G, Richt JA, Hamir AN, Greenlee JJ, Miller MW, Wolfe LL, Sirochman TM, Young AJ, Glidden DV, Johnson NL, Giles K, DeArmond SJ, Prusiner SB. Salivary prions in sheep and deer. Prion 2012; 6:52-61. [PMID: 22453179 DOI: 10.4161/pri.6.1.16984] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID₅₀ U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID₅₀ U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID₅₀ units for sheep and 7.0 log ID₅₀ units for deer. These estimates are similar to 7.9 log ID₅₀ units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Institute for Neurodegenerative Diseases, Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saunders SE, Bartelt-Hunt SL, Bartz JC. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg Infect Dis 2012; 18:369-76. [PMID: 22377159 PMCID: PMC3309570 DOI: 10.3201/eid1803.110685] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, transmissible prion disease that affects captive and free-ranging deer, elk, and moose. Although the zoonotic potential of CWD is considered low, identification of multiple CWD strains and the potential for agent evolution upon serial passage hinders a definitive conclusion. Surveillance for CWD in free-ranging populations has documented a continual geographic spread of the disease throughout North America. CWD prions are shed from clinically and preclinically affected hosts, and CWD transmission is mediated at least in part by the environment, perhaps by soil. Much remains unknown, including the sites and mechanisms of prion uptake in the naive host. There are no therapeutics or effective eradication measures for CWD-endemic populations. Continued surveillance and research of CWD and its effects on cervid ecosystems is vital for controlling the long-term consequences of this emerging disease.
Collapse
|
38
|
Wisniewski T, Goñi F. Could immunomodulation be used to prevent prion diseases? Expert Rev Anti Infect Ther 2012; 10:307-17. [PMID: 22397565 DOI: 10.1586/eri.11.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All prion diseases are currently without effective treatment and are universally fatal. The underlying pathogenesis of prion diseases (prionoses) is related to an autocatalytic conformational conversion of PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie) or PrP(Res) (Res for proteinase K resistant). The past experience with variant Creutzfeldt-Jakob disease, which originated from bovine spongiform encephalopathy, as well as the ongoing epidemic of chronic wasting disease has highlighted the necessity for effective prophylactic and/or therapeutic approaches. Human prionoses are most commonly sporadic, and hence therapy is primarily directed to stop progression; however, in animals the majority of prionoses are infectious and, as a result, the emphasis is on prevention of transmission. These infectious prionoses are most commonly acquired via the alimentary tract as a major portal of infectious agent entry, making mucosal immunization a potentially attractive method to produce a local immune response that can partially or completely prevent prion entry across the gut barrier, while at the same time producing a modulated systemic immunity that is unlikely to be associated with toxicity. A critical factor in any immunomodulatory methodology that targets a self-antigen is the need to delicately balance an effective humoral immune response with potential autoimmune inflammatory toxicity. The ongoing epidemic of chronic wasting disease affecting the USA and Korea, with the potential to spread to human populations, highlights the need for such immunomodulatory approaches.
Collapse
Affiliation(s)
- Thomas Wisniewski
- New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Switzerland.
| | | |
Collapse
|
40
|
Wilson R, Plinston C, Hunter N, Casalone C, Corona C, Tagliavini F, Suardi S, Ruggerone M, Moda F, Graziano S, Sbriccoli M, Cardone F, Pocchiari M, Ingrosso L, Baron T, Richt J, Andreoletti O, Simmons M, Lockey R, Manson JC, Barron RM. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. J Gen Virol 2012; 93:1624-1629. [PMID: 22495232 DOI: 10.1099/vir.0.042507-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.
Collapse
Affiliation(s)
- Rona Wilson
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Chris Plinston
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Nora Hunter
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | - Silvia Suardi
- IRCCS Foundation, 'Carlo Besta' Neurological Institute, Milan, Italy
| | | | - Fabio Moda
- IRCCS Foundation, 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Silvia Graziano
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Franco Cardone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Pocchiari
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Loredana Ingrosso
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Thierry Baron
- Agence Nationale de Sécurité Sanitaire, Lyon, France
| | - Juergen Richt
- USDA, ARS, National Animal Disease Center, PO Box 70, Ames, IA 50010, USA
| | - Olivier Andreoletti
- UMR 1225 Interactions Hôtes-Agents Pathogènes, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 3, France
| | - Marion Simmons
- Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Richard Lockey
- Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK
| | - Jean C Manson
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| | - Rona M Barron
- Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, UK
| |
Collapse
|
41
|
Imran M, Mahmood S. An overview of animal prion diseases. Virol J 2011; 8:493. [PMID: 22044871 PMCID: PMC3228711 DOI: 10.1186/1743-422x-8-493] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases.
Collapse
Affiliation(s)
- Muhammad Imran
- 1Centre for Research in Endocrinology and Reproductive Sciences (CRERS), Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | |
Collapse
|
42
|
Stitz L, Aguzzi A. Aerosols: an underestimated vehicle for transmission of prion diseases? Prion 2011; 5:138-41. [PMID: 21778819 DOI: 10.4161/pri.5.3.16851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We and others have recently reported that prions can be transmitted to mice via aerosols. These reports spurred a lively public discussion on the possible public-health threats represented by prion-containing aerosols. Here we offer our view on the context in which these findings should be placed. On the one hand, the fact that nebulized prions can transmit disease cannot be taken to signify that prions are airborne under natural circumstances. On the other hand, it appears important to underscore the fact that aerosols can originate very easily in a broad variety of experimental and natural environmental conditions. Aerosols are a virtually unavoidable consequence of the handling of fluids; complete prevention of the generation of aerosols is very difficult. While prions have never been found to be transmissible via aerosols under natural conditions, it appears prudent to strive to minimize exposure to potentially prion-infected aerosols whenever the latter may arise - for example in scientific and diagnostic laboratories handling brain matter, cerebrospinal fluids, and other potentially contaminated materials, as well as abattoirs. Equally important is that prion biosafety training be focused on the control of, and protection from, prion-infected aerosols.
Collapse
Affiliation(s)
- Lothar Stitz
- Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany.
| | | |
Collapse
|
43
|
Wisniewski T, Goñi F. Immunomodulation for prion and prion-related diseases. Expert Rev Vaccines 2011; 9:1441-52. [PMID: 21105779 DOI: 10.1586/erv.10.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prion diseases are a unique category of illness, affecting both animals and humans, where the underlying pathogenesis is related to a conformational change of a normal self protein called cellular prion protein to a pathological and infectious conformer known as scrapie prion protein (PrP(Sc)). Currently, all prion diseases lack effective treatment and are universally fatal. Past experiences with bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease mainly in Europe, as well as the current epidemic of chronic wasting disease in North America, have highlighted the need to develop prophylactic and/or therapeutic approaches. In Alzheimer's disease that, like prion disease, is a conformational neurodegenerative disorder, both passive and active immunization has been shown to be highly effective in model animals at preventing disease and cognitive deficits, with emerging data from human trials suggesting that this approach is able to reduce amyloid-related pathology. However, any immunomodulatory approach aimed at a self-antigen has to finely balance an effective humoral immune response with potential autoimmune toxicity. The prion diseases most commonly acquired by infection typically have the alimentary tract as a portal of infectious agent entry. This makes mucosal immunization a potentially attractive method to produce a local immune response that partially or completely prevents prion entry across the gut barrier, while at the same time producing modulated systemic immunity that is unlikely to be associated with toxicity. Our results using an attenuated Salmonella vaccine strain expressing the prion protein showed that mucosal vaccination can protect against prion infection from a peripheral source, suggesting the feasibility of this approach. It is also possible to develop active and/or passive immunomodulatory approaches that more specifically target PrP(Sc) or target the shared pathological conformer found in numerous conformational disorders. Such approaches could have a significant impact on many of the common age-associated dementias.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Psychiatry, Millhauser Laboratories, Room HN419, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
44
|
Haybaeck J, Heikenwalder M, Klevenz B, Schwarz P, Margalith I, Bridel C, Mertz K, Zirdum E, Petsch B, Fuchs TJ, Stitz L, Aguzzi A. Aerosols transmit prions to immunocompetent and immunodeficient mice. PLoS Pathog 2011; 7:e1001257. [PMID: 21249178 PMCID: PMC3020930 DOI: 10.1371/journal.ppat.1001257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022] Open
Abstract
Prions, the agents causing transmissible spongiform encephalopathies, colonize the brain of hosts after oral, parenteral, intralingual, or even transdermal uptake. However, prions are not generally considered to be airborne. Here we report that inbred and crossbred wild-type mice, as well as tga20 transgenic mice overexpressing PrP(C), efficiently develop scrapie upon exposure to aerosolized prions. NSE-PrP transgenic mice, which express PrP(C) selectively in neurons, were also susceptible to airborne prions. Aerogenic infection occurred also in mice lacking B- and T-lymphocytes, NK-cells, follicular dendritic cells or complement components. Brains of diseased mice contained PrP(Sc) and transmitted scrapie when inoculated into further mice. We conclude that aerogenic exposure to prions is very efficacious and can lead to direct invasion of neural pathways without an obligatory replicative phase in lymphoid organs. This previously unappreciated risk for airborne prion transmission may warrant re-thinking on prion biosafety guidelines in research and diagnostic laboratories.
Collapse
Affiliation(s)
- Johannes Haybaeck
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Mathias Heikenwalder
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Britta Klevenz
- Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany
| | - Petra Schwarz
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Ilan Margalith
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Claire Bridel
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kirsten Mertz
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Pathology, Clinical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Elizabeta Zirdum
- Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany
| | - Benjamin Petsch
- Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany
| | - Thomas J. Fuchs
- Department of Computer Science, Machine Learning Laboratory, ETH Zurich, Zurich, Switzerland
| | - Lothar Stitz
- Institute of Immunology, Friedrich-Loeffler-Institut, Tübingen, Germany
| | - Adriano Aguzzi
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Abstract
While chronic wasting disease (CWD) prion transmission, entry, and trafficking remain incompletely elucidated, natural exposure of the oral and/or nasal mucous membranes seems certain. Cervids commonly sustain minor lesions on oral mucous membranes that could have an impact on susceptibility to prion infection. To explore this potential cofactor, we studied cohorts of cervid PrP transgenic mice with or without superficial abrasions on the lingual mucosa to determine whether minor oral mucosa lesions may enhance susceptibility to CWD infections. Results demonstrated that minor lingual abrasions substantially facilitate CWD transmission, revealing a cofactor that may be significant in cervids and perhaps other species.
Collapse
|
46
|
Scientific Opinion on the results of the EU survey for Chronic Wasting Disease (CWD) in cervids. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|