1
|
Bialosuknia SM, Dupuis II AP, Zink SD, Koetzner CA, Maffei JG, Owen JC, Landwerlen H, Kramer LD, Ciota AT. Adaptive evolution of West Nile virus facilitated increased transmissibility and prevalence in New York State. Emerg Microbes Infect 2022; 11:988-999. [PMID: 35317702 PMCID: PMC8982463 DOI: 10.1080/22221751.2022.2056521] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/17/2022] [Indexed: 11/12/2022]
Abstract
West Nile virus (WNV; Flavivirus, Flaviviridae) was introduced to New York State (NYS) in 1999 and rapidly expanded its range through the continental United States (US). Apart from the displacement of the introductory NY99 genotype with the WN02 genotype, there has been little evidence of adaptive evolution of WNV in the US. WNV NY10, characterized by shared amino acid substitutions R1331K and I2513M, emerged in 2010 coincident with increased WNV cases in humans and prevalence in mosquitoes. Previous studies demonstrated an increase in frequency of NY10 strains in NYS and evidence of positive selection. Here, we present updated surveillance and sequencing data for WNV in NYS and investigate if NY10 genotype strains are associated with phenotypic change consistent with an adaptive advantage. Results confirm a significant increase in prevalence in mosquitoes though 2018, and updated sequencing demonstrates a continued dominance of NY10. We evaluated NY10 strains in Culex pipiens mosquitoes to assess vector competence and found that the NY10 genotype is associated with both increased infectivity and transmissibility. Experimental infection of American robins (Turdus migratorius) was additionally completed to assess viremia kinetics of NY10 relative to WN02. Modelling the increased infectivity and transmissibility of the NY10 strains together with strain-specific viremia demonstrates a mechanistic basis for selection that has likely contributed to the increased prevalence of WNV in NYS.
Collapse
Affiliation(s)
- Sean M. Bialosuknia
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alan P. Dupuis II
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Hannah Landwerlen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Laura D. Kramer
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
| | - Alexander T. Ciota
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, NY, USA
- Department of Biology, State University of New York at Albany, Albany, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| |
Collapse
|
2
|
Mendes PB, Boeger WA. Game dynamics as a driver for pathogen spillover pulses. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Chavhan Y, Malusare S, Dey S. Larger bacterial populations evolve heavier fitness trade-offs and undergo greater ecological specialization. Heredity (Edinb) 2020; 124:726-736. [PMID: 32203249 DOI: 10.1038/s41437-020-0308-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Evolutionary studies over the last several decades have invoked fitness trade-offs to explain why species prefer some environments to others. However, the effects of population size on trade-offs and ecological specialization remain largely unknown. To complicate matters, trade-offs themselves have been visualized in multiple ways in the literature. Thus, it is not clear how population size can affect the various aspects of trade-offs. To address these issues, we conducted experimental evolution with Escherichia coli populations of two different sizes in two nutritionally limited environments, and studied fitness trade-offs from three different perspectives. We found that larger populations evolved greater fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger populations adapted more to their selection conditions, they also became more maladapted to other environments, ultimately paying heavier costs of adaptation. To enhance the generalizability of our results, we further investigated the evolution of ecological specialization across six different environmental pairs, and found that larger populations specialized more frequently and evolved consistently steeper reaction norms of fitness. This is the first study to demonstrate a relationship between population size and fitness trade-offs, and the results are important in understanding the population genetics of ecological specialization and vulnerability to environmental changes.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Sarthak Malusare
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.,Gaia Doctoral School, Institut des Sciences de l'Evolution (ISEM), 1093-1317 Route de Mende, 34090, Montpellier, France
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India.
| |
Collapse
|
4
|
Das S, Smith K, Sarker S, Peters A, Adriaanse K, Eden P, Ghorashi SA, Forwood JK, Raidal SR. Assessing circovirus gene flow in multiple spill-over events. Virus Genes 2019; 55:802-814. [PMID: 31463770 DOI: 10.1007/s11262-019-01702-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022]
Abstract
The establishment of viral pathogens in new host environments following spillover events probably requires adaptive changes within both the new host and pathogen. After many generations, signals for ancient cross-species transmission may become lost and a strictly host-adapted phylogeny may mimic true co-divergence while the virus may retain an inherent ability to jump host species. The mechanistic basis for such processes remains poorly understood. To study the dynamics of virus-host co-divergence and the arbitrary chances of spillover in various reservoir hosts with equal ecological opportunity, we examined structural constraints of capsid protein in extant populations of Beak and feather disease virus (BFDV) during known spillover events. By assessing reservoir-based genotype stratification, we identified co-divergence defying signatures in the evolution BFDV which highlighted primordial processes of cryptic host adaptation and competing forces of host co-divergence and cross-species transmission. We demonstrate that, despite extensive surface plasticity gathered over a longer span of evolution, structural constraints of the capsid protein allow opportunistic host switching in host-adapted populations. This study provides new insights into how small populations of endangered psittacine species may face multidirectional forces of infection from reservoirs with apparently co-diverging genotypes.
Collapse
Affiliation(s)
- Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia
| | - Kate Smith
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, 3086, Australia
| | - Andrew Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia
| | - Katherine Adriaanse
- Healesville Sanctuary, Zoos Victoria, Badger Creek Road, Healesville, VIC, 3777, Australia
| | - Paul Eden
- Healesville Sanctuary, Zoos Victoria, Badger Creek Road, Healesville, VIC, 3777, Australia
| | - Seyed A Ghorashi
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
5
|
Chisholm PJ, Busch JW, Crowder DW. Effects of life history and ecology on virus evolutionary potential. Virus Res 2019; 265:1-9. [PMID: 30831177 DOI: 10.1016/j.virusres.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/28/2022]
Abstract
The life history traits of viruses pose many consequences for viral population structure. In turn, population structure may influence the evolutionary trajectory of a virus. Here we review factors that affect the evolutionary potential of viruses, including rates of mutation and recombination, bottlenecks, selection pressure, and ecological factors such as the requirement for hosts and vectors. Mutation, while supplying a pool of raw genetic material, also results in the generation of numerous unfit mutants. The infection of multiple host species may expand a virus' ecological niche, although it may come at a cost to genetic diversity. Vector-borne viruses often experience a diminished frequency of positive selection and exhibit little diversity, and resistance against vector-borne viruses may thus be more durable than against non-vectored viruses. Evidence indicates that adaptation to a vector is more evolutionarily difficult than adaptation to a host. Overall, a better understanding of how various factors influence viral dynamics in both plant and animal pathosystems will lead to more effective anti-viral treatments and countermeasures.
Collapse
Affiliation(s)
- Paul J Chisholm
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA.
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Dolan PT, Whitfield ZJ, Andino R. Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annu Rev Virol 2018; 5:69-92. [PMID: 30048219 DOI: 10.1146/annurev-virology-101416-041718] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA viruses are unique in their evolutionary capacity, exhibiting high mutation rates and frequent recombination. They rapidly adapt to environmental changes, such as shifts in immune pressure or pharmacological challenge. The evolution of RNA viruses has been brought into new focus with the recent developments of genetic and experimental tools to explore and manipulate the evolutionary dynamics of viral populations. These studies have uncovered new mechanisms that enable viruses to overcome evolutionary challenges in the environment and have emphasized the intimate relationship of viral populations with evolution. Here, we review some of the emerging viral and host mechanisms that underlie the evolution of RNA viruses. We also discuss new studies that demonstrate that the relationship between evolutionary dynamics and virus biology spans many spatial and temporal scales, affecting transmission dynamics within and between hosts as well as pathogenesis.
Collapse
Affiliation(s)
- Patrick T Dolan
- Department of Biology, Stanford University, Stanford, California 94305, USA.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
7
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
8
|
Zee PC, Liu J, Velicer GJ. Pervasive, yet idiosyncratic, epistatic pleiotropy during adaptation in a behaviourally complex microbe. J Evol Biol 2016; 30:257-269. [PMID: 27862537 DOI: 10.1111/jeb.12999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 01/14/2023]
Abstract
Understanding how multiple mutations interact to jointly impact multiple ecologically important traits is critical for creating a robust picture of organismal fitness and the process of adaptation. However, this is complicated by both environmental heterogeneity and the complexity of genotype-to-phenotype relationships generated by pleiotropy and epistasis. Moreover, little is known about how pleiotropic and epistatic relationships themselves change over evolutionary time. The soil bacterium Myxococcus xanthus employs several distinct social traits across a range of environments. Here, we use an experimental lineage of M. xanthus that evolved a novel form of social motility to address how interactions between epistasis and pleiotropy evolve. Specifically, we test how mutations accumulated during selection on soft agar pleiotropically affect several other social traits (hard agar motility, predation and spore production). Relationships between changes in swarming rate in the selective environment and the four other traits varied greatly over time in both direction and magnitude, both across timescales of the entire evolutionary lineage and individual evolutionary time steps. We also tested how a previously defined epistatic interaction is pleiotropically expressed across these traits. We found that phenotypic effects of this epistatic interaction were highly correlated between soft and hard agar motility, but were uncorrelated between soft agar motility and predation, and inversely correlated between soft agar motility and spore production. Our results show that 'epistatic pleiotropy' varied greatly in magnitude, and often even in sign, across traits and over time, highlighting the necessity of simultaneously considering the interacting complexities of pleiotropy and epistasis when studying the process of adaptation.
Collapse
Affiliation(s)
- P C Zee
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - J Liu
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - G J Velicer
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
9
|
Effect of Host Species on Topography of the Fitness Landscape for a Plant RNA Virus. J Virol 2016; 90:10160-10169. [PMID: 27581976 DOI: 10.1128/jvi.01243-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptive fitness landscapes are a fundamental concept in evolutionary biology that relate the genotypes of individuals to their fitness. In the end, the evolutionary fate of evolving populations depends on the topography of the landscape, that is, the numbers of accessible mutational pathways and possible fitness peaks (i.e., adaptive solutions). For a long time, fitness landscapes were only theoretical constructions due to a lack of precise information on the mapping between genotypes and phenotypes. In recent years, however, efforts have been devoted to characterizing the properties of empirical fitness landscapes for individual proteins or for microbes adapting to artificial environments. In a previous study, we characterized the properties of the empirical fitness landscape defined by the first five mutations fixed during adaptation of tobacco etch potyvirus (TEV) to a new experimental host, Arabidopsis thaliana Here we evaluate the topography of this landscape in the ancestral host Nicotiana tabacum By comparing the topographies of the landscapes for the two hosts, we found that some features remained similar, such as the existence of fitness holes and the prevalence of epistasis, including cases of sign and reciprocal sign epistasis that created rugged, uncorrelated, and highly random topographies. However, we also observed significant differences in the fine-grained details between the two landscapes due to changes in the fitness and epistatic interactions of some genotypes. Our results support the idea that not only fitness tradeoffs between hosts but also topographical incongruences among fitness landscapes in alternative hosts may contribute to virus specialization. IMPORTANCE Despite its importance for understanding virus evolutionary dynamics, very little is known about the topography of virus adaptive fitness landscapes, and even less is known about the effects that different host species and environmental conditions may have on this topography. To bridge this gap, we evaluated the topography of a small fitness landscape formed by all genotypes that result from every possible combination of the first five mutations fixed during adaptation of TEV to the novel host A. thaliana To assess the effect that host species may have on this topography, we evaluated the fitness of every genotype in both the ancestral and novel hosts. We found that both landscapes share some macroscopic properties, such as the existence of holes and being highly rugged and uncorrelated, yet they differ in microscopic details due to changes in the magnitude and sign of fitness and epistatic effects.
Collapse
|
10
|
Presloid JB, Mohammad TF, Lauring AS, Novella IS. Antigenic diversification is correlated with increased thermostability in a mammalian virus. Virology 2016; 496:203-214. [PMID: 27344137 DOI: 10.1016/j.virol.2016.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
The theory of plastogenetic congruence posits that ultimately, the pressure to maintain function in the face of biomolecular destabilization produces robustness. As temperature goes up so does destabilization. Thus, genetic robustness, defined as phenotypic constancy despite mutation, should correlate with survival during thermal challenge. We tested this hypothesis using vesicular stomatitis virus (VSV). We produced two sets of evolved strains after selection for higher thermostability by either preincubation at 37°C or by incubation at 40°C during infection. These VSV populations became more thermostable and also more fit in the absence of thermal selection, demonstrating an absence of tradeoffs. Eleven out of 12 evolved populations had a fixed, nonsynonymous substitution in the nucleocapsid (N) open reading frame. There was a partial correlation between thermostability and mutational robustness that was observed when the former was measured at 42°C, but not at 37°C. These results are consistent with our earlier work and suggest that the relationship between robustness and thermostability is complex. Surprisingly, many of the thermostable strains also showed increased resistance to monoclonal antibody and polyclonal sera, including sera from natural hosts. These data suggest that evolved thermostability may lead to antigenic diversification and an increased ability to escape immune surveillance in febrile hosts, and potentially to an improved robustness. These relationships have important implications not only in terms of viral pathogenesis, but also for the development of vaccine vectors and oncolytic agents.
Collapse
Affiliation(s)
- John B Presloid
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, 3055 Arlington Avenue, Toledo OH 43614, USA
| | - Tasneem F Mohammad
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, 3055 Arlington Avenue, Toledo OH 43614, USA
| | - Adam S Lauring
- Department of Internal Medicine, Division of Infectious Diseases and Department of Microbiology & Immunology. University of Michigan, Ann Arbor, MI 41809, USA.
| | - Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, 3055 Arlington Avenue, Toledo OH 43614, USA.
| |
Collapse
|
11
|
Morley VJ, Sistrom M, Usme-Ciro JA, Remold SK, Turner PE. Evolution in spatially mixed host environments increases divergence for evolved fitness and intrapopulation genetic diversity in RNA viruses. Virus Evol 2016; 2:vev022. [PMID: 27774292 PMCID: PMC4989875 DOI: 10.1093/ve/vev022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Virus populations may be challenged to evolve in spatially heterogeneous environments, such as mixtures of host cells that pose differing selection pressures. Spatial heterogeneity may select for evolved polymorphisms, where multiple virus subpopulations coexist by specializing on a narrow subset of the available hosts. Alternatively, spatial heterogeneity may select for evolved generalism, where a single genotype dominates the virus population by occupying a relatively broader host niche. In addition, the extent of spatial heterogeneity should influence the degree of divergence among virus populations encountering identical environmental challenges. Spatial heterogeneity creates environmental complexity that should increase the probability of differing adaptive phenotypic solutions, thus producing greater divergence among replicate virus populations, relative to counterparts evolving in strictly homogeneous host environments. Here, we tested these ideas using experimental evolution of RNA virus populations grown in laboratory tissue culture. We allowed vesicular stomatitis virus (VSV) lineages to evolve in replicated environments containing BHK-21 (baby hamster kidney) cells, HeLa (human epithelial) cells, or spatially heterogeneous host cell mixtures. Results showed that generalist phenotypes dominated in evolved virus populations across all treatments. Also, we observed greater variance in host-use performance (fitness) among VSV lineages evolved under spatial heterogeneity, relative to lineages evolved in homogeneous environments. Despite measurable differences in fitness, consensus Sanger sequencing revealed no fixed genetic differences separating the evolved lineages from their common ancestor. In contrast, deep sequencing of evolved VSV populations confirmed that the degree of divergence among replicate lineages was correlated with a larger number of minority variants. This correlation between divergence and the number of minority variants was significant only when we considered variants with a frequency of at least 10 per cent in the population. The number of lower-frequency minority variants per population did not significantly correlate with divergence.
Collapse
Affiliation(s)
- Valerie J Morley
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA 06511
| | - Mark Sistrom
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA 06511,; School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, CA, USA 95343
| | - Jose A Usme-Ciro
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA 06511,; Department of Basic Sciences, Universidad de La Salle, Cra. 2 No. 10-70, Bogotá, Colombia and
| | - Susanna K Remold
- Department of Biology, Life Sciences Building, University of Louisville, Louisville, KY, USA 40292
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA 06511
| |
Collapse
|
12
|
Ciota AT, Payne AF, Ngo KA, Kramer LD. Consequences of in vitro host shift for St. Louis encephalitis virus. J Gen Virol 2014; 95:1281-1288. [PMID: 24643879 DOI: 10.1099/vir.0.063545-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Understanding the potential for host range shifts and expansions of RNA viruses is critical to predicting the evolutionary and epidemiological paths of these pathogens. As arthropod-borne viruses (arboviruses) experience frequent spillover from their amplification cycles and are generalists by nature, they are likely to experience a relatively high frequency of success in a range of host environments. Despite this, the potential for host expansion, the genetic correlates of adaptation to novel environments and the costs of such adaptations in originally competent hosts are still not characterized fully for arboviruses. In the studies presented here, we utilized experimental evolution of St. Louis encephalitis virus (SLEV; family Flaviviridae, genus Flavivirus) in vitro in the Dermacentor andersoni line of tick cells to model adaptation to a novel invertebrate host. Our results demonstrated that levels of adaptation and costs in alternate hosts are highly variable among lineages, but also that significant fitness increases in tick cells are achievable with only modest change in consensus genetic sequence. In addition, although accumulation of diversity may at times buffer against phenotypic costs within the SLEV swarm, an increased proportion of variants with an impaired capacity to infect and spread on vertebrate cell culture accumulated with tick cell passage. Isolation and characterization of a subset of these variants implicates the NS3 gene as an important host range determinant for SLEV.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Anne F Payne
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| |
Collapse
|
13
|
Smith-Tsurkan SD, Herr RA, Khuder S, Wilke CO, Novella IS. The role of environmental factors on the evolution of phenotypic diversity in vesicular stomatitis virus populations. J Gen Virol 2012; 94:860-868. [PMID: 23239575 DOI: 10.1099/vir.0.048082-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus adaptation to an ever-changing environment requires the availability of variants with phenotypes that can fulfil new requirements for replication. High mutation rates result in the generation of these variants. The factors that contribute to the maintenance or elimination of this diversity, however, are not fully understood. This study used a collection of vesicular stomatitis virus strains generated under different conditions to measure the extent of variation within each population, and tested the effects of several environmental factors on diversity. It was found that the host-cell type used for selection sometimes had an effect on the extent of variation and that there may be different levels of variation over time. Persistent infections promoted higher levels of diversity than acute infections, presumably due to complementation. In contrast, environmental heterogeneity, host breadth and the cell type used for testing (as opposed to the cell type used for selection) did not seem to have an effect on the amount of phenotypic diversity observed.
Collapse
Affiliation(s)
- Sarah D Smith-Tsurkan
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Roger A Herr
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Sadik Khuder
- Department of Medicine, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Claus O Wilke
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology, and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, USA
| |
Collapse
|
14
|
Remold S. Understanding specialism when the Jack of all trades can be the master of all. Proc Biol Sci 2012; 279:4861-9. [PMID: 23097515 DOI: 10.1098/rspb.2012.1990] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Specialism is widespread in nature, generating and maintaining diversity, but recent work has demonstrated that generalists can be equally fit as specialists in some shared environments. This no-cost generalism challenges the maxim that 'the jack of all trades is the master of none', and requires evolutionary genetic mechanisms explaining the existence of specialism and no-cost generalism, and the persistence of specialism in the face of selection for generalism. Examining three well-described mechanisms with respect to epistasis and pleiotropy indicates that sign (or antagonistic) pleiotropy without epistasis cannot explain no-cost generalism and that magnitude pleiotropy without epistasis (including directional selection and mutation accumulation) cannot explain the persistence of specialism. However, pleiotropy with epistasis can explain all. Furthermore, epistatic pleiotropy may allow past habitat use to influence future use of novel environments, thereby affecting disease emergence and populations' responses to habitat change.
Collapse
Affiliation(s)
- Susanna Remold
- Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
15
|
Wargo AR, Kurath G. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2012; 2:538-45. [PMID: 22986085 PMCID: PMC7102723 DOI: 10.1016/j.coviro.2012.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Collapse
Affiliation(s)
- Andrew R Wargo
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | |
Collapse
|
16
|
Lancaster KZ, Pfeiffer JK. Viral population dynamics and virulence thresholds. Curr Opin Microbiol 2012; 15:525-30. [PMID: 22658738 PMCID: PMC3424342 DOI: 10.1016/j.mib.2012.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/07/2012] [Accepted: 05/13/2012] [Indexed: 12/17/2022]
Abstract
Viral factors and host barriers influence virally induced disease, and asymptomatic versus symptomatic infection is governed by a 'virulence threshold'. Understanding modulation of virulence thresholds could lend insight into disease outcome and aid in rational therapeutic and vaccine design. RNA viruses are an excellent system to study virulence thresholds in the context of quasispecies population dynamics. RNA viruses have high error frequencies and our understanding of viral population dynamics has been shaped by quasispecies evolutionary theory. In turn, research using RNA viruses as replicons with short generation times and high mutation rates has been an invaluable tool to test models of quasispecies theory. The challenge and new frontier of RNA virus population dynamics research is to combine multiple theoretical models and experimental data to describe viral population behavior as it changes, moving within and between hosts, to predict disease and pathogen emergence. Several excellent studies have begun to undertake this challenge using novel approaches.
Collapse
Affiliation(s)
- Karen Z Lancaster
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
17
|
Novella IS, Presloid JB, Smith SD, Wilke CO. Specific and nonspecific host adaptation during arboviral experimental evolution. J Mol Microbiol Biotechnol 2012; 21:71-81. [PMID: 22248544 PMCID: PMC3697271 DOI: 10.1159/000332752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the past decade or so, there has been a substantial body of work to dissect arboviral evolution and to develop models of adaptation during host switching. Regardless of what species serve as host or vectors, and of the geographic distribution and the mechanisms of replication, arboviruses tend to have slow evolutionary rates in nature. The hypothesis that this is the result of replication in the disparate environments provided by host and vector did not receive solid experimental support in any of the many viral species tested. Instead, it seems that from the virus's point of view, either the two environments are sufficiently similar or one of the environments so dominates viral evolution that there is tolerance for suboptimal adaptation to the other environment. Replication in alternating environments has an unexpected cost in that there is decreased genetic variance that translates into a compromised adaptability for bypassed environments. Arboviruses under strong and continuous positive selection may have unusual patterns of genomic changes, with few or no mutations accumulated in the consensus sequence or with dN/dS values typically consistent with random drift in DNA-based organisms.
Collapse
Affiliation(s)
- Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, Ohio, USA.
| | | | | | | |
Collapse
|
18
|
Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 2010; 8:802-13. [PMID: 20938453 PMCID: PMC7097030 DOI: 10.1038/nrmicro2440] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adaptation is often thought to affect the likelihood that a virus will be able to successfully emerge in a new host species. If so, surveillance for genetic markers of adaptation could help to predict the risk of disease emergence. However, adaptation is difficult to distinguish conclusively from the other processes that generate genetic change. In this Review we survey the research on the host jumps of influenza A, severe acute respiratory syndrome-coronavirus, canine parvovirus and Venezuelan equine encephalitis virus to illustrate the insights that can arise from combining genetic surveillance with microbiological experimentation in the context of epidemiological data. We argue that using a multidisciplinary approach for surveillance will provide a better understanding of when adaptations are required for host jumps and thus when predictive genetic markers may be present.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
19
|
Ogbunugafor CB, Basu S, Morales NM, Turner PE. Combining mathematics and empirical data to predict emergence of RNA viruses that differ in reservoir use. Philos Trans R Soc Lond B Biol Sci 2010; 365:1919-30. [PMID: 20478887 DOI: 10.1098/rstb.2010.0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
RNA viruses may be particularly capable of contributing to the increasing biomedical problem of infectious disease emergence. Empirical studies and epidemiological models are informative for the understanding of evolutionary processes that promote pathogen emergence, but rarely are these approaches combined in the same study. Here, we used an epidemiology model containing observations of pathogen productivity in reservoirs, as a means to predict which pathogens should be most prone to emerge in a primary host such as humans. We employed as a model system a collection of vesicular stomatitis virus populations that had previously diverged in host-use strategy: specialists, directly selected generalists and indirectly selected (fortuitous) generalists. Using data from experiments where these viral strategists were challenged to grow on unencountered novel hosts in vitro, logistic growth models determined that the directly selected generalist viruses tended to grow best on model reservoirs. Furthermore, when we used the growth data to estimate average reproductive rate across secondary reservoirs, we showed that the combined approach could be used to estimate relative success of the differing virus strategists when encountering a primary host. Our study suggests that synergistic approaches combining epidemiological modelling with empirical data from experimental evolution may be useful for developing efforts to predict which types of pathogens pose the greatest probability of emerging in the future.
Collapse
Affiliation(s)
- C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|