1
|
Herod MR, Ward JC, Tuplin A, Harris M, Stonehouse NJ, McCormick CJ. Positive strand RNA viruses differ in the constraints they place on the folding of their negative strand. RNA (NEW YORK, N.Y.) 2022; 28:1359-1376. [PMID: 35918125 PMCID: PMC9479745 DOI: 10.1261/rna.079125.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.
Collapse
Affiliation(s)
- Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Purdy MA, Drexler JF, Meng XJ, Norder H, Okamoto H, Van der Poel WHM, Reuter G, de Souza WM, Ulrich RG, Smith DB. ICTV Virus Taxonomy Profile: Hepeviridae 2022. J Gen Virol 2022; 103. [PMID: 36170152 DOI: 10.1099/jgv.0.001778] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The family Hepeviridae includes enterically transmitted small quasi-enveloped or non-enveloped positive-sense single-stranded RNA viruses infecting mammals and birds (subfamily Orthohepevirinae) or fish (Parahepevirinae). Hepatitis E virus (genus Paslahepevirus) is responsible for self-limiting acute hepatitis in humans; the infection may become chronic in immunocompromised individuals and extrahepatic manifestations have been described. Avian hepatitis E virus (genus Avihepevirus) causes hepatitis-splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hepeviridae, which is available at www.ictv.global/report/hepeviridae.
Collapse
Affiliation(s)
- Michael A Purdy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Xiang-Jin Meng
- Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Heléne Norder
- University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | | | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Riems, Germany
| | - Donald B Smith
- University of Oxford, England and University of Edinburgh, Scotland, UK
| |
Collapse
|
3
|
Nimgaonkar I, Archer NF, Becher I, Shahrad M, LeDesma RA, Mateus A, Caballero-Gómez J, Berneshawi AR, Ding Q, Douam F, Gaska JM, Savitski MM, Kim H, Ploss A. Isocotoin suppresses hepatitis E virus replication through inhibition of heat shock protein 90. Antiviral Res 2021; 185:104997. [PMID: 33326835 PMCID: PMC8649941 DOI: 10.1016/j.antiviral.2020.104997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/21/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) causes 14 million infections and 60,000 deaths per year globally, with immunocompromised persons and pregnant women experiencing severe symptoms. Although ribavirin can be used to treat chronic hepatitis E, toxicity in pregnant patients and the emergence of resistant strains are major concerns. Therefore there is an imminent need for effective HEV antiviral agents. The aims of this study were to develop a drug screening platform and to discover novel approaches to targeting steps within the viral life cycle. We developed a screening platform for molecules inhibiting HEV replication and selected a candidate, isocotoin. Isocotoin inhibits HEV replication through interference with heat shock protein 90 (HSP90), a host factor not previously known to be involved in HEV replication. Additional work is required to understand the compound's translational potential, however this suggests that HSP90-modulating molecules, which are in clinical development as anti-cancer agents, may be promising therapies against HEV.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Nicholas F Archer
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mohammad Shahrad
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier Caballero-Gómez
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Andrew R Berneshawi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Florian Douam
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Frick Laboratory, Princeton University, Princeton, NJ, USA; Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Scholz J, Falkenhagen A, Bock CT, Johne R. Reverse genetics approaches for hepatitis E virus and related viruses. Curr Opin Virol 2020; 44:121-128. [PMID: 32818718 DOI: 10.1016/j.coviro.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The hepatitis E virus (HEV) is the causative agent of acute and chronic hepatitis in humans. Related viruses have been found in several animal species. Reverse genetics systems (RGSs), which enable the generation of infectious virus from cloned cDNA by transfection of cultured cells or intrahepatic injection into laboratory animals, have been developed for HEV genotypes 1, 3, 4, 5 and 7 as well as for avian HEV and rat HEV. However, low virus recovery rates and slow replication in cell cultures are observed for most of the HEV types. Nevertheless, the RGSs enabled the site-directed mutagenesis of single nucleotides, deletion of genome fragments, insertion of sequence tags and a marker gene as well as the generation of chimeric viruses.
Collapse
Affiliation(s)
- Johannes Scholz
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Alexander Falkenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claus-Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Reimar Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
5
|
Kumar M, Hooda P, Khanna M, Patel U, Sehgal D. Development of BacMam Induced Hepatitis E Virus Replication Model in Hepatoma Cells to Study the Polyprotein Processing. Front Microbiol 2020; 11:1347. [PMID: 32625196 PMCID: PMC7315041 DOI: 10.3389/fmicb.2020.01347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
The processing of polyprotein(s) to form structural and non-structural components remains an enigma due to the non-existence of an efficient and robust Hepatitis E Virus (HEV) culture system. We used the BacMam approach to construct an HEV replication model in which the HEV genome was cloned in the BacMam vector under the CMV promoter. The recombinant BacMam was used to infect Huh7 cells to transfer the HEV genome. HEV replication was authenticated by the presence of RNAs of both the polarity (+) and (-) and formation of hybrid RNA, a replication intermediate. The presence of genes for Papain-like Cysteine Protease (PCP), methyltransferase (MeT), RNA dependent RNA polymerase (RdRp), and ORF2 was confirmed by PCR amplification. Further, the infectious nature of the culture system was established as evidenced by the cross-infection of uninfected cells using the cell lysate from the infected cells. The HEV replication model was validated by detection of the ORF1 (Open Reading Frame1) encoded proteins, identified by Western blotting and Immunofluorescence by using epitope-specific antibodies against each protein. Consequently, discrete bands of 18, 35, 37, and 56 kDa corresponding to PCP, MeT, RdRp, and ORF2, respectively, were seen. Besides demonstrating the presence of non-structural enzymes of HEV along with ORF2, activity of a key enzyme, HEV-methyltransferase has also been observed. A 20% decrease in the replicative forms of RNA could be seen in presence of 100 μM Ribavirin after 48 h of treatment. The inhibition gradually increased from 0 to 24 to 48 h post-treatment. Summarily, infectious HEV culture system has been established, which could demonstrate the presence of HEV replicative RNA forms, the structural and non-structural proteins and the methyltransferase in its active form. The system may also be used to study the mechanism of action of Ribavirin in inhibiting HEV replication and develop a therapy.
Collapse
Affiliation(s)
- Manjeet Kumar
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Preeti Hooda
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Madhu Khanna
- Virology Lab, Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India
| | - Utkarsh Patel
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
6
|
Ju X, Xiang G, Gong M, Yang R, Qin J, Li Y, Nan Y, Yang Y, Zhang QC, Ding Q. Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication. PLoS Pathog 2020; 16:e1008488. [PMID: 32433693 PMCID: PMC7239442 DOI: 10.1371/journal.ppat.1008488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/22/2020] [Indexed: 12/29/2022] Open
Abstract
There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5’ and 3’ untranslated regions and three open reading frames (ORF). HEV genome has 5’ cap and 3’ poly(A) tail to mimic host mRNA to escape the host innate immune surveillance and utilize host translational machineries for viral protein translation. The replication mechanism of HEV is poorly understood, especially how the viral polymerase distinguishes viral RNA from host mRNA to synthesize new viral genomes. We hypothesize that the HEV genome contains cis-acting elements that can be recognized by the virally encoded polymerase as “self” for replication. To identify functional cis-acting elements systematically across the HEV genome, we utilized an ORF1 transcomplementation system. Ultimately, we found two highly conserved cis-acting RNA elements within the ORF1 and ORF2 coding regions that are required for viral genome replication in a diverse panel of HEV genotypes. Synonymous mutations in the cis-acting RNA elements, not altering the ORF1 and ORF2 protein sequences, significantly impaired production of infectious viral particles. Mechanistic studies revealed that the cis-acting elements form secondary structures needed to interact with the HEV ORF1 protein to promote HEV replication. Thus, these cis-acting elements function as a scaffold, providing a specific “signal” that recruits viral and host factors to assemble the viral replication complex. Altogether, this work not only facilitates our understanding of the HEV life cycle and provides novel, RNA-directed targets for potential HEV treatments, but also sheds light on the development of HEV as a therapeutic delivery vector. Hepatitis E virus (HEV) is an underestimated pathogen, causing approximately 20 million infections worldwide annually and leading to about 60,000 deaths. There are no direct-acting antivirals for treating HEV, and although significant progress has been made to establish robust HEV cell culture models, the life cycle remains poorly characterized. A better understanding of HEV replication could facilitate the development of new drugs targeting this critical process. Our study found that RNA elements in the HEV genome interact with the HEV replicases to promote viral replication, suggesting that these RNA elements function as a scaffold for recruitment and assembly of the viral replication complex. This work furthers our understanding of HEV replication and could inform the generation of RNA-based therapeutics for treating HEV infection.
Collapse
Affiliation(s)
- Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Guangtao Xiang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Mingli Gong
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rui Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jierui Qin
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yafei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yonglin Yang
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiangfeng Cliff Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
LeDesma R, Nimgaonkar I, Ploss A. Hepatitis E Virus Replication. Viruses 2019; 11:E719. [PMID: 31390784 PMCID: PMC6723718 DOI: 10.3390/v11080719] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) is a small quasi-enveloped, (+)-sense, single-stranded RNA virus belonging to the Hepeviridae family. There are at least 20 million HEV infections annually and 60,000 HEV-related deaths worldwide. HEV can cause up to 30% mortality in pregnant women and progress to liver cirrhosis in immunocompromised individuals and is, therefore, a greatly underestimated public health concern. Although a prophylactic vaccine for HEV has been developed, it is only licensed in China, and there is currently no effective, non-teratogenic treatment. HEV encodes three open reading frames (ORFs). ORF1 is the largest viral gene product, encoding the replicative machinery of the virus including a methyltransferase, RNA helicase, and an RNA-dependent RNA polymerase. ORF1 additionally contains a number of poorly understood domains including a hypervariable region, a putative protease, and the so-called 'X' and 'Y' domains. ORF2 is the viral capsid essential for formation of infectious particles and ORF3 is a small protein essential for viral release. In this review, we focus on the domains encoded by ORF1, which collectively mediate the virus' asymmetric genome replication strategy. We summarize what is known, unknown, and hotly debated regarding the coding and non-coding regions of HEV ORF1, and present a model of how HEV replicates its genome.
Collapse
Affiliation(s)
- Robert LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ila Nimgaonkar
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
B. SR, Patel AK, Kabra SK, Lodha R, Ratageri VH, Ray P. Virus load and clinical features during the acute phase of Chikungunya infection in children. PLoS One 2019; 14:e0211036. [PMID: 30707708 PMCID: PMC6358158 DOI: 10.1371/journal.pone.0211036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) infection is a long known mosquito-borne disease that is associated with severe morbidity, characterized by fever, headache, rashes, joint pain, and myalgia. It is believed that virus load has relation with severity of clinical features. OBJECTIVES We performed this study to assess the relationship between virus load and clinical features in children during the acute phase of CHIKV infection, in order to draw insights for better-informed treatment. STUDY DESIGN Between June 1, 2009, and May 31, 2010, 338 patients with fever and susceptive to CHIKV during first 4 days of illness were prospectively enrolled from Karnataka Institute of Medical Sciences, Hubli in our hospital based cross sectional observational study. Sybr green quantitative reverse transcription polymerase chain reaction was performed to estimate the virus load. RESULTS Quantitative RT-PCR was positive for CHIKV in 54 patients. The median copy number of CHIKV was 1.3x 108 copies/ml (1.7x105-9.9x109 copies/ml). Among the observed clinical features, a statistically significant difference in log mean virus load was found between patients with and without myalgia (log mean 7.50 vs 8.34, P = 0.01). CONCLUSION Patients with myalgia had lower virus load and those without myalgia had a higher virus load.
Collapse
Affiliation(s)
- Siva Raghavendhar B.
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Sushil Kumar Kabra
- Dept. of Pediatrics, All India Institute of Medical Sciences, Ansari nagar, New Delhi, India
| | - Rakesh Lodha
- Dept. of Pediatrics, All India Institute of Medical Sciences, Ansari nagar, New Delhi, India
| | - Vinod H. Ratageri
- Dept. of Pediatrics, Karnataka institute of Medical Sciences, Hubli, India
| | - Pratima Ray
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
9
|
Identification of the Intragenomic Promoter Controlling Hepatitis E Virus Subgenomic RNA Transcription. mBio 2018; 9:mBio.00769-18. [PMID: 29739903 PMCID: PMC5941075 DOI: 10.1128/mbio.00769-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Approximately 20 million hepatitis E virus (HEV) infections occur annually in both developing and industrialized countries. Most infections are self-limiting, but they can lead to chronic infections and cirrhosis in immunocompromised patients, and death in pregnant women. The mechanisms of HEV replication remain incompletely understood due to scarcity of adequate experimental platforms. HEV undergoes asymmetric genome replication, but it produces an additional subgenomic (SG) RNA encoding the viral capsid and a viroporin in partially overlapping open reading frames. Using a novel transcomplementation system, we mapped the intragenomic subgenomic promoter regulating SG RNA synthesis. This cis-acting element is highly conserved across all eight HEV genotypes, and when the element is mutated, it abrogates particle assembly and release. Our work defines previously unappreciated viral regulatory elements and provides the first in-depth view of the intracellular genome dynamics of this emerging human pathogen. HEV is an emerging pathogen causing severe liver disease. The genetic information of HEV is encoded in RNA. The genomic RNA is initially copied into a complementary, antigenomic RNA that is a template for synthesis of more genomic RNA and for so-called subgenomic RNA. In this study, we identified the precise region within the HEV genome at which the synthesis of the subgenomic RNA is initiated. The nucleotides within this region are conserved across genetically distinct variants of HEV, highlighting the general importance of this segment for the virus. To identify this regulatory element, we developed a new experimental system that is a powerful tool with broad utility to mechanistically dissect many other poorly understood functional elements of HEV.
Collapse
|
10
|
Abstract
At least 20 million hepatitis E virus (HEV) infections occur annually, with >3 million symptomatic cases and ∼60,000 fatalities. Hepatitis E is generally self-limiting, with a case fatality rate of 0.5-3% in young adults. However, it can cause up to 30% mortality in pregnant women in the third trimester and can become chronic in immunocompromised individuals, such as those receiving organ transplants or chemotherapy and individuals with HIV infection. HEV is transmitted primarily via the faecal-oral route and was previously thought to be a public health concern only in developing countries. It is now also being frequently reported in industrialized countries, where it is transmitted zoonotically or through organ transplantation or blood transfusions. Although a vaccine for HEV has been developed, it is only licensed in China. Additionally, no effective, non-teratogenic and specific treatments against HEV infections are currently available. Although progress has been made in characterizing HEV biology, the scarcity of adequate experimental platforms has hampered further research. In this Review, we focus on providing an update on the HEV life cycle. We will further discuss existing cell culture and animal models and highlight platforms that have proven to be useful and/or are emerging for studying other hepatotropic (viral) pathogens.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Paliwal D, Joshi P, Panda SK. Hepatitis E Virus (HEV) egress: Role of BST2 (Tetherin) and interferon induced long non- coding RNA (lncRNA) BISPR. PLoS One 2017; 12:e0187334. [PMID: 29091957 PMCID: PMC5665557 DOI: 10.1371/journal.pone.0187334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background The biology of Hepatitis E Virus (HEV), a common cause of epidemic and sporadic hepatitis, is still being explored. HEV exits liver through bile, a process which is essential for its natural transmission by feco-oral route. Though the process of this polarised HEV egress is not known in detail, HEV pORF3 and hepatocyte actin cytoskeleton have been shown to play a role. Methods Our transcriptome analysis in Hepatitis E virus (HEV) replicon transfected Huh7 cells at 24 and 72 hrs indicated that at 24hrs, both LncBISPR and BST2, expressed by a bidirectional promoter were highly upregulated whereas at 72 hrs, BST2 expression was comparatively reduced accompanied by normal levels of BISPR. These findings were confirmed by qPCR analysis. Co-localisation of BST2 and HEV pORF2 was confirmed in HEV transfected Huh7 by confocal microscopy. To investigate the role of BISPR/BST2 in HEV life cycle, particularly virus egress, we generated Huh7 cells with ~8kb deletion in BISPR gene using Crispr-Cas9 system. The deletion was confirmed by PCR screening, Sanger sequencing and Real time PCR. Virus egress in ΔBISPR Huh7 and Huh7 cells was compared by measuring HEV positive strand RNA copy numbers in cell lysates and culture supernatants at 24 and 72 hrs post HEV replicon transfection and further validated by western blot for HEV pORF2 capsid protein. Results ΔBISPR Huh7 cells showed ~8 fold increase in virus egress at 24 hrs compared to Huh7 cells. No significant difference in virus egress was observed at 72hrs. Immunohistochemistry in histologically normal liver and HEV associated acute liver failure revealed BST2 overexpression in HEV infected hepatocytes and a dominant canalicular BST2 distribution in normal liver in addition to the cytoplasmic localisation reported in literature. Conclusions These findings lead us to believe that BISPR and BST2 may regulate egress of HEV virions into bile in vivo. This system may also be used to scale up virus production in vitro.
Collapse
Affiliation(s)
- Daizy Paliwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Purdy MA, Harrison TJ, Jameel S, Meng XJ, Okamoto H, Van der Poel WHM, Smith DB, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Hepeviridae. J Gen Virol 2017; 98:2645-2646. [PMID: 29022866 PMCID: PMC5718254 DOI: 10.1099/jgv.0.000940] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which is responsible for self-limiting acute hepatitis in humans and several mammalian species; the infection may become chronic in immunocompromised individuals. Extrahepatic manifestations of Guillain–Barré syndrome, neuralgic amyotrophy, glomerulonephritis and pancreatitis have been described in humans. Avian hepatitis E virus causes hepatitis–splenomegaly syndrome in chickens. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Hepeviridae, which is available at www.ictv.global/report/hepeviridae.
Collapse
Affiliation(s)
- Michael A Purdy
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, MS-A33, 1600 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Tim J Harrison
- University College London, Gower St, Bloomsbury, London, WC1E 6BT, UK
| | - S Jameel
- Wellcome Trust/DBT India Alliance, 1110 DLF Tower B, Jasola, New Delhi 110025, India
| | - X-J Meng
- College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - H Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi-ken, Japan
| | - W H M Van der Poel
- Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
| | - Donald B Smith
- Ashworth Laboratories, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, Scotland, UK
| | | |
Collapse
|
13
|
Tsatsralt-Od B, Primadharsini PP, Nishizawa T, Ohnishi H, Nagashima S, Takahashi M, Jirintai S, Nyamkhuu D, Okamoto H. Distinct changing profiles of hepatitis A and E virus infection among patients with acute hepatitis in Mongolia: The first report of the full genome sequence of a novel genotype 1 hepatitis E virus strain. J Med Virol 2017; 90:84-92. [PMID: 28776712 DOI: 10.1002/jmv.24907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
Abstract
In January 2012, Mongolia started a hepatitis A vaccination program, which has not yet been evaluated. The first occurrence of autochthonous acute hepatitis E in 2013, caused by genotype 4 hepatitis E virus (HEV), suggests the need for a routine study to monitor its prevalence. One hundred fifty-four consecutive patients who were clinically diagnosed with acute hepatitis between 2014 and 2015 in Ulaanbaatar, Mongolia were studied. By serological and molecular testing followed by sequencing and phylogenetic analysis, only one patient (0.6%) was diagnosed with acute hepatitis A, caused by genotype IA hepatitis A virus (HAV), and 32 (20.8%) patients were diagnosed with acute hepatitis E, caused by genotype 1 HEV. The 32 HEV isolates obtained in this study shared 99.5-100% nucleotide identity and were grouped into a cluster separated from those of subtypes 1a to 1f. Upon comparison of p-distances over the entire genome, the distances between one representative HEV isolate (MNE15-072) and 1a-1f strains were 0.071-0.137, while those between 1b and 1c were 0.062-0.070. In conclusion, the prevalence of acute hepatitis A has decreased in Mongolia since the start of the vaccination program, while the monophyletic genotype 1 HEV strain of a probably novel subtype has been prevalent.
Collapse
Affiliation(s)
- Bira Tsatsralt-Od
- National Center for Communicable Diseases, Ministry of Health, NCCD-Campus, Ulaanbaatar, Mongolia
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Hiroshi Ohnishi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Suljid Jirintai
- Division of Pathology, Department of Basic Veterinary Medicine, Inner Mongolia Agricultural University College of Veterinary Medicine, Hohhot, Inner Mongolia, China
| | - Dulmaa Nyamkhuu
- National Center for Communicable Diseases, Ministry of Health, NCCD-Campus, Ulaanbaatar, Mongolia
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| |
Collapse
|
14
|
Todt D, Walter S, Brown RJP, Steinmann E. Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations. Viruses 2016; 8:E283. [PMID: 27754363 PMCID: PMC5086615 DOI: 10.3390/v8100283] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.
Collapse
Affiliation(s)
- Daniel Todt
- Institute of Experimental Virology, Twincore-Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany.
| | - Stephanie Walter
- Institute of Experimental Virology, Twincore-Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, Twincore-Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, Twincore-Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany.
| |
Collapse
|
15
|
Abstract
INTRODUCTION Infection with hepatitis E virus (HEV) is the commonest cause of acute hepatitis worldwide. HEV was discovered in 1980s and is known to have small non-enveloped virions with single-stranded RNA genome of positive polarity. In recent years. In recent years, availability of new information has changed our understanding of this virus and the pathogenesis of the related disease. AREAS COVERED This article reviews the current knowledge about structure, genomic organization, taxonomy, genetic epidemiology, host specificity and replication of the human HEV and of various closely-related viruses that infect other animals. In addition, the models available for the study of HEV infection, the available information on the pathogenesis of this infection and the techniques available for its diagnosis are also reviewed. Expert commentary: A circulating, enveloped form of the human HEV has been recently recognized. Originally believed to naturally infect only humans and possibly primates, HEV-like viruses are now known to infect several vertebrate animals. Based on this, phylogenetic classification of these viruses has recently been revised. In vitro replicons and infection systems have been developed, which have improved our understanding about the virus and the pathogenesis of infection with it. Recent development of mouse models with chimeric livers that contain human hepatocytes provides another avenue for further advancement of this knowledge.
Collapse
Affiliation(s)
- Rakesh Aggarwal
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | - Amit Goel
- a Department of Gastroenterology , Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
16
|
Smith DB, Simmonds P. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology? Liver Int 2015; 35:1334-40. [PMID: 24974734 PMCID: PMC4676335 DOI: 10.1111/liv.12629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 06/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Fulminant hepatitis is a rare outcome of infection with hepatitis E virus. Several recent reports suggest that virus variation is an important determinant of disease progression. To critically examine the evidence that virus-specific factors underlie the development of fulminant hepatitis following hepatitis E virus infection. METHODS Published sequence information of hepatitis E virus isolates from patients with and without fulminant hepatitis was collected and analysed using statistical tests to identify associations between virus polymorphisms and disease outcome. RESULTS Fulminant hepatitis has been reported following infection with all four hepatitis E virus genotypes that infect humans comprising multiple phylogenetic lineages within genotypes 1, 3 and 4. Analysis of virus sequences from individuals infected by a common source did not detect any common substitutions associated with progression to fulminant hepatitis. Re-analysis of previously reported associations between virus substitutions and fulminant hepatitis suggests that these were probably the result of sampling biases. CONCLUSIONS Host-specific factors rather than virus genotype, variants or specific substitutions appear to be responsible for the development of fulminant hepatitis.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | |
Collapse
|
17
|
Jagya N, Varma SPK, Thakral D, Joshi P, Durgapal H, Panda SK. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells. PLoS One 2014; 9:e87835. [PMID: 24505321 PMCID: PMC3914852 DOI: 10.1371/journal.pone.0087835] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022] Open
Abstract
Pathogenesis of hepatitis B virus (HBV) and hepatitis E virus (HEV) infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line) by transfection with HEV replicon only (HEV-only), HBV replicon only (HBV-only) and both HBV and HEV replicons (HBV+HEV). Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq) analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (p<0.05) or more. Majority of the significant genes with altered expression clustered into immune-associated, signal transduction, and metabolic process categories. Differential gene expression of functionally important genes in these categories was also validated by real-time RT-PCR based relative gene-expression analysis. To our knowledge, this is the first report of in vitro replicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.
Collapse
Affiliation(s)
- Neetu Jagya
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Satya Pavan Kumar Varma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Deepshi Thakral
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prashant Joshi
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Hemlata Durgapal
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Subrat Kumar Panda
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Arends JE, Ghisetti V, Irving W, Dalton HR, Izopet J, Hoepelman AIM, Salmon D. Hepatitis E: An emerging infection in high income countries. J Clin Virol 2013; 59:81-8. [PMID: 24388207 DOI: 10.1016/j.jcv.2013.11.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 11/11/2013] [Accepted: 11/25/2013] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) genotype 3 is the most recently characterized hepatotropic virus and is increasingly being recognized as the cause of unexplained liver disease in many western countries. Although asymptomatic in most cases, HEV GT3 may be responsible for a wide range of illnesses, from mild to fulminant acute hepatitis, and also chronic hepatitis in immunocompromised patients. Extrahepatic manifestations have been occasionally described. Anti-HEV antibody detection by immunoassays is hampered by moderate test accuracy particularly in immunocompromised hosts while a WHO international standard for molecular detection of HEV RNA by RT-PCR has recently been introduced. This review describes the basic virology, epidemiology, clinical virology and treatment of HEV GT3 infections in high income countries.
Collapse
Affiliation(s)
- J E Arends
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands; Members of the European Study Group on Viral Hepatitis (ESGVH) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Switzerland.
| | - V Ghisetti
- Microbiology & Virology Laboratory, Department of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy; Members of the European Study Group on Viral Hepatitis (ESGVH) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Switzerland
| | - W Irving
- Faculty of Medicine & Health Sciences, NIHR Nottingham Digestive Diseases Biomedical Research Unit, Queen's Medical Centre, Nottingham, United Kingdom; Members of the European Study Group on Viral Hepatitis (ESGVH) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Switzerland
| | - H R Dalton
- Peninsula College of Medicine and Dentistry, Royal Cornwall Hospital Trust, Truro, United Kingdom
| | - J Izopet
- Centre de Physiopathologie de Toulouse-Purpan, Université Paul Sabatier, Toulouse, France
| | - A I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands; Members of the European Study Group on Viral Hepatitis (ESGVH) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Switzerland
| | - D Salmon
- Department of Infectious Diseases, Hôpital Cochin, Paris, France; Members of the European Study Group on Viral Hepatitis (ESGVH) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Switzerland
| |
Collapse
|
19
|
Agrawal S, Dhiman RK. Hepatobiliary quiz-7 (2013). J Clin Exp Hepatol 2013; 3:267-71. [PMID: 25755512 PMCID: PMC3940107 DOI: 10.1016/j.jceh.2013.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Swastik Agrawal
- Address for correspondence: Radha K. Dhiman, Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | |
Collapse
|
20
|
Panda SK, Varma SP. Hepatitis e: molecular virology and pathogenesis. J Clin Exp Hepatol 2013; 3:114-24. [PMID: 25755485 PMCID: PMC3940135 DOI: 10.1016/j.jceh.2013.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus is a single, positive-sense, capped and poly A tailed RNA virus classified under the family Hepeviridae. Enteric transmission, acute self-limiting hepatitis, frequent epidemic and sporadic occurrence, high mortality in affected pregnants are hallmarks of hepatitis E infection. Lack of an efficient culture system and resulting reductionist approaches for the study of replication and pathogenesis of HEV made it to be a less understood agent. Early studies on animal models, sub-genomic expression of open reading frames (ORF) and infectious cDNA clones have helped in elucidating the genome organization, important stages in HEV replication and pathogenesis. The genome contains three ORF's and three untranslated regions (UTR). The 5' distal ORF, ORF1 is translated by host ribosomes in a cap dependent manner to form the non-structural polyprotein including the viral replicase. HEV replicates via a negative-sense RNA intermediate which helps in the formation of the positive-sense genomic RNA and a single bi-cistronic sub-genomic RNA. The 3' distal ORF's including the major structural protein pORF2 and the multifunctional host interacting protein pORF3 are translated from the sub-genomic RNA. Pathogenesis in HEV infections is not well articulated, and remains a concern due to the many aspects like host dependent and genotype specific variations. Animal HEV, zoonosis, chronicity in immunosuppressed patients, and rapid decompensation in affected chronic liver diseased patients warrants detailed investigation of the underlying pathogenesis. Recent advances about structure, entry, egress and functional characterization of ORF1 domains has furthered our understanding about HEV. This article is an effort to review our present understanding about molecular biology and pathogenesis of HEV.
Collapse
Affiliation(s)
- Subrat K. Panda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India,Address for correspondence. Subrat K. Panda, JC Bose Fellow, Professor & Head, Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India. Tel.: +91 11 26594924 (off.); fax: +91 11 26588663, +91 11 26588641.
| | - Satya P.K. Varma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
21
|
Gupta P, Jagya N, Pabhu SB, Durgapal H, Acharya SK, Panda SK. Immunohistochemistry for the diagnosis of hepatitis E virus infection. J Viral Hepat 2012; 19:e177-83. [PMID: 22239516 DOI: 10.1111/j.1365-2893.2011.01498.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis E virus (HEV) is an emerging pathogen and the most common cause of acute viral hepatitis all over the world. We describe here an immunohistochemical method for the detection of HEV antigens (pORF2 and pORF3) in formalin-fixed, paraffin-embedded liver tissues using monoclonal antibodies raised against two of the virus proteins (pORF2 and pORF3). We analysed their specificity and sensitivity in comparison with serology and nucleic acid detection in cases of acute liver failure (ALF). We used this test on 30 liver biopsies collected post-mortem from the patients of ALF caused by HEV infection. These cases were selected on the basis of positive results for enzyme immunoassay (IgM anti-HEV). Of the 30 cases taken from the archives of the Department of Pathology, the antibodies successfully stained all. However, only 25 serum samples (83.3%) of these were positive for HEV RNA. Fifteen controls used (Five noninfected liver tissues, five HBV- and five hepatitis C virus-infected liver tissues) were all negative. The immunohistochemical assay described here may prove a valuable tool for the detection of HEV infection in biopsy, autopsy and explant liver tissues and can serve as a link along with other available tests to delineate the extent of HEV-associated problem worldwide.
Collapse
Affiliation(s)
- P Gupta
- Departments of Pathology Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
22
|
Detection of negative-sense RNA in packaged hepatitis E virions by use of an improved strand-specific reverse transcription-PCR method. J Clin Microbiol 2012; 50:1467-70. [PMID: 22205803 DOI: 10.1128/jcm.06717-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Current hepatitis E virus (HEV) negative-sense RNA detection assays have the drawback of false positivity. cDNA synthesis using tag-based primer and Superscript RT-III followed by exonuclease I treatment increased the specificity. Assays could detect as few as 10 copies of negative-sense RNA and could be used in detecting low levels of HEV replication in cells. Virus particles in stool samples of hepatitis E patients showed encapsidation of negative-sense RNA along with HEV genomic RNA.
Collapse
|