1
|
Li Y, Wang Y, Pei X, Chen S, Jing Y, Wu Y, Ma Z, Li Z, Zheng Z, Feng Y, Xu L, Liu X, Guo X, Zheng H, Xiao S. A chimeric strain of porcine reproductive and respiratory syndrome virus 2 derived from HP-PRRSV and NADC30-like PRRSV confers cross-protection against both strains. Vet Res 2024; 55:132. [PMID: 39375803 PMCID: PMC11460240 DOI: 10.1186/s13567-024-01390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant swine viral infectious diseases worldwide. Vaccination is a key strategy for the control and prevention of PRRS. At present, the NADC30-like PRRSV strain has become the predominant epidemic strain in China, superseding the HP-PRRSV strain. The existing commercial vaccines offer substantial protection against HP-PRRSV, but their efficacy against NADC30-like PRRSV is limited. The development of a novel vaccine that can provide valuable cross-protection against both NADC30-like PRRSV and HP-PRRSV is highly important. In this study, an infectious clone of a commercial MLV vaccine strain, GD (HP-PRRSV), was first generated (named rGD). A recombinant chimeric PRRSV strain, rGD-SX-5U2, was subsequently constructed by using rGD as a backbone and embedding several dominant immune genes, including the NSP2, ORF5, ORF6, and ORF7 genes, from an NADC30-like PRRSV isolate. In vitro experiments demonstrated that chimeric PRRSV rGD-SX-5U2 exhibited high tropism for MARC-145 cells, which is of paramount importance in the production of PRRSV vaccines. Moreover, subsequent in vivo inoculation and challenge experiments demonstrated that rGD-SX-5U2 confers cross-protection against both HP-PRRSV and NADC30-like PRRSV, including an improvement in ADG levels and a reduction in viremia and lung tissue lesions. In conclusion, our research demonstrated that the chimeric PRRSV strain rGD-SX-5U2 is a novel approach that can provide broad-spectrum protection against both HP-PRRSV and NADC30-like PRRSV. This may be a significant improvement over previous MLV vaccinations.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yumiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiuxiu Pei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Shao Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Yongshuai Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Lele Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xuyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhou L, Han J, Yang H. The evolution and diversity of porcine reproductive and respiratory syndrome virus in China. Vet Microbiol 2024; 298:110252. [PMID: 39299012 DOI: 10.1016/j.vetmic.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has emerged as a significant pathogen in the global pork industry since the late 1980s, causing substantial economic losses due to its high contagiousness and genetic variability. China, with its complex epidemiological landscape, has witnessed the emergence of four distinct lineages of PRRSV-2 (Lineages 1, 3, 5, and 8) and occasional occurrences of PRRSV-1. This review summarizes the historical context and epidemiological trends that have led to the diversification of PRRSV in China, discusses the evolutionary dynamics behind the establishment of diverse genetic variants, as well as the impact of recombination and modified live vaccines (MLVs) on the virus's rapid evolution. The implications for disease management, including strategies to reduce the complexity of PRRSV epidemics and improve prevention and control measures, are also suggested. Understanding the evolutionary pattern and factors contributing to PRRSV diversity is crucial for enhancing our knowledge, control capabilities, and prevention strategies, which could be integrated into swine health management practices.
Collapse
Affiliation(s)
- Lei Zhou
- National Key Laboratory of Veterinary Public Health Safey, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safey, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safey, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Xu H, Xie Y, Deng K, He D. Isolation and identification, genome-wide analysis and pathogenicity study of a novel PRRSV-1 in southern China. Front Microbiol 2024; 15:1465449. [PMID: 39323887 PMCID: PMC11422217 DOI: 10.3389/fmicb.2024.1465449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused severe economic losses to the global swine industry. In recent years, the incidence of PRRSV-1 has been gradually increasing in China, but there are still few studies on it. In this study, clinical samples for PRRS virus isolation were collected from a pig farm in South China in 2022. We effectively isolated a strain of PRRSV utilizing PAM cells and demonstrated its consistent transmission capability on Marc-145 cells. The isolated strain was confirmed as PRRSV-1 by RT-qPCR, IFA, electron microscopy, etiolated spot purification and whole genome sequencing, the strain was named GD2022. The length of GD2022 genome is 15058nt; Based on the genome-wide genetic evolutionary analysis of GD2022, the strain was classified as PRRSV-1. Further genetic evolutionary analysis of its ORF5 gene showed that GD2022 belonged to PRRSV-1 subtype 1 and formed an independent branch in the evolutionary tree. Compared with the sequence of the classical PRRSV-1 strain (LV strain), GD2022 has several amino acid site mutations in the antigenic region from GP3 to GP5, these mutations are different from those of other PRRSV-1 strains in China. Recombination analysis showed no recombination events with GD2022. In addition, piglets infected with GD2022 displayed clinical respiratory symptoms and typical pathological changes. In this study, a strain of the PRRSV-1 virus was isolated using both PAM cells and Marc-145 and proved to be pathogenic to piglets, providing an important reference for the identification, prevention, and control of PRRSV-1.
Collapse
Affiliation(s)
- Huirui Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yongsheng Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, Jiangxi, China
| | - Kehui Deng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Dongsheng He
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
4
|
Liu J, Wang X, Ren T, Qin J, Qin Y, Ouyang K, Chen Y, Huang W, Wei Z. Identification of B-cell epitope on the N protein of type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) using monoclonal antibody and construction of epitope-mutated virus. Virology 2024; 596:110102. [PMID: 38749084 DOI: 10.1016/j.virol.2024.110102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
The escalating epidemic of PRRSV-1 in China has prompted widespread concern regarding the evolution of strains, disparities in pathogenicity to herds, and immunological detection of emerging strains. The nucleocapsid (N) protein, as a highly conserved protein with immunogenic properties in PRRSV, is a subject of intensive study. In this research, the recombinant His-N protein was expressed based on the N gene of PRRSV-1 using a prokaryotic expression system and then administered to BALB/c mice. A cell fusion protocol was implemented between SP2/0 cells and splenocytes, resulting in the successful screening of a monoclonal antibody against the N protein, designated as mAb 2D7, by indirect ELISA. Western Blot analysis and Indirect Immunofluorescence Assay (IFA) confirmed that mAb 2D7 positively responded to PRRSV-1. By constructing and expressing a series of truncated His-fused N proteins, a B-cell epitope of N protein, 59-AAEDDIR-65, was identified. A sequence alignment of two genotypes of PRRSV revealed that this epitope is relatively conserved in PRRSV, yet more so in genotype 1. Cross-reactivity analysis by Western blot analysis demonstrated that the B-cell epitope containing D62Y mutation could not be recognized by mAb 2D7. The inability of mAb 2D7 to recognize the epitope carrying the D62Y mutation was further determined using an infectious clone of PRRSV. This research may shed light on the biological significance of the N protein of PRRSV, paving the way for the advancement of immunological detection and development of future recombinant marker vaccine.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xindong Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Jianguang Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China.
| |
Collapse
|
5
|
Zhao S, Li F, Li W, Wang M, Wang Y, Zhang Y, Xia P, Chen J. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with N in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:7219. [PMID: 39000325 PMCID: PMC11241482 DOI: 10.3390/ijms25137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
One of the most significant diseases in the swine business, porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory problems in piglets and reproductive failure in sows. The PRRSV nucleocapsid (N) protein is essential for the virus' assembly, replication, and immune evasion. Stages in the viral replication cycle can be impacted by interactions between the PRRSV nucleocapsid protein and the host protein components. Therefore, it is of great significance to explore the interaction between the PRRSV nucleocapsid protein and the host. Nevertheless, no information has been published on the network of interactions between the nucleocapsid protein and the host proteins in primary porcine alveolar macrophages (PAMs). In this study, 349 host proteins interacting with nucleocapsid protein were screened in the PRRSV-infected PAMs through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. Bioinformatics analysis, which included gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes database enrichment, and a protein-protein interaction (PPI) network, revealed that the host proteins interacting with PRRSV-N may be involved in protein binding, DNA transcription, metabolism, and innate immune responses. This study confirmed the interaction between the nucleocapsid protein and the natural immune-related proteins. Ultimately, our findings suggest that the nucleocapsid protein plays a pivotal role in facilitating immune evasion during a PRRSV infection. This study contributes to enhancing our understanding of the role played by the nucleocapsid protein in viral pathogenesis and virus-host interaction, thereby offering novel insights for the prevention and control of PRRS as well as the development of vaccines.
Collapse
Affiliation(s)
- Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Fahao Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
6
|
Cui XY, Xia DS, Luo LZ, An TQ. Recombination of Porcine Reproductive and Respiratory Syndrome Virus: Features, Possible Mechanisms, and Future Directions. Viruses 2024; 16:929. [PMID: 38932221 PMCID: PMC11209122 DOI: 10.3390/v16060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Recombination is a pervasive phenomenon in RNA viruses and an important strategy for accelerating the evolution of RNA virus populations. Recombination in the porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in 1999, and many case reports have been published in recent years. In this review, all the existing reports on PRRSV recombination events were collected, and the genotypes, parental strains, and locations of the recombination breakpoints have been summarized and analyzed. The results showed that the recombination pattern constantly changes; whether inter- or intra-lineage recombination, the recombination hotspots vary in different recombination patterns. The virulence of recombinant PRRSVs was higher than that of the parental strains, and the emergence of virulence reversion was caused by recombination after using MLV vaccines. This could be attributed to the enhanced adaptability of recombinant PRRSV for entry and replication, facilitating their rapid propagation. The aim of this paper was to identify common features of recombinant PRRSV strains, reduce the recombination risk, and provide a foundation for future research into the mechanism of PRRSV recombination.
Collapse
Affiliation(s)
- Xing-Yang Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Da-Song Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ling-Zhi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
7
|
Li W, Li Y, Li M, Zhang H, Feng Z, Xu H, Li C, Guo Z, Gong B, Peng J, Zhou G, Tian Z, Wang Q. Development and application of a blocking ELISA based on a N protein monoclonal antibody for the antibody detection against porcine reproductive and respiratory syndrome virus 2. Int J Biol Macromol 2024; 269:131842. [PMID: 38679249 DOI: 10.1016/j.ijbiomac.2024.131842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.
Collapse
Affiliation(s)
- Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yanwei Li
- Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.), Beijing 102600, China
| | - Minhua Li
- Beijing IDEXX Laboratories, Co., Ltd, Beijing 101318, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zixuan Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
8
|
Li S, Qiu M, Li S, Li C, Lin H, Qiu Y, Qi W, Feng B, Cui M, Yang S, Zheng W, Shang S, Tian K, Zhu J, Lu Y, Chen N. A chimeric porcine reproductive and respiratory syndrome virus 1 strain containing synthetic ORF2-6 genes can trigger T follicular helper cell and heterologous neutralizing antibody responses and confer enhanced cross-protection. Vet Res 2024; 55:28. [PMID: 38449049 PMCID: PMC10918997 DOI: 10.1186/s13567-024-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Lu
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Zhang H, Ren J, Li J, Zhai C, Mao F, Yang S, Zhang Q, Liu Z, Fu X. Comparison of heterologous prime-boost immunization strategies with DNA and recombinant vaccinia virus co-expressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus in pigs. Microb Pathog 2023; 183:106328. [PMID: 37661073 DOI: 10.1016/j.micpath.2023.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.
Collapse
Affiliation(s)
- Hewei Zhang
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China; Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jiachen Li
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Chongkai Zhai
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Fuchao Mao
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Shaozhe Yang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Qingwei Zhang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Zhongyu Liu
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| | - Xiuhong Fu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| |
Collapse
|
10
|
Li C, Li S, Li S, Qiu M, Lin H, Sun Z, Qiu Y, Qi W, Feng B, Li J, Zheng W, Yu X, Tian K, Shang S, Fan K, Zhu J, Chen N. Efficacy of a porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) natural recombinant against a heterologous PRRSV-1 isolate both clustered within the subgroup of BJEU06-1-like isolates. Vet Microbiol 2023; 285:109847. [PMID: 37625255 DOI: 10.1016/j.vetmic.2023.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) has been prevalent in more than 20 provinces of China. However, no PRRSV-1-specific vaccine is commercially available in China. To evaluate the feasibility of using a low virulent PRRSV-1 isolate against potential outbreaks caused by virulent Chinese PRRSV-1 isolates, here we evaluated the efficacy of a low virulent PRRSV-1 HLJB1 strain isolated in 2014 as live vaccine against a virulent PRRSV-1 SD1291 strain isolated in 2022. Genome-based phylogenetic analysis showed that both HLJB1 and SD1291 were grouped within BJEU06-1-like isolates. However, they shared only 85.27% genomic similarity. Piglet inoculation and challenge study showed that HLJB1 inoculation could reduce viremia but did not significantly alleviate clinical signs and tissue lesions. Virus neutralization test indicated that HLJB1 inoculation could induce homologous neutralizing antibodies (NAbs) but no heterologous NAbs at 42 dpi. In addition, flow cytometric analyses showed that no memory T follicular helper (Tfh) cells against SD1291 and SD1291-specific IFN-γ secreting cells were induced by HLJB1 pre-inoculation. These results supported that HLJB1 inoculation only provides partial cross-protection against SD1291 infection even though they are clustered within the same PRRSV-1 subgroup, which is closely related to the failure in conferring cross-protective adaptive immune responses.
Collapse
Affiliation(s)
- Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of animal pathogen infection and Immunology of Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
11
|
Ruan S, Ren W, Yu B, Yu X, Wu H, Li W, Jiang Y, He Q. Development and Implementation of a Quadruple RT-qPCR Method for the Identification of Porcine Reproductive and Respiratory Syndrome Virus Strains. Viruses 2023; 15:1946. [PMID: 37766352 PMCID: PMC10536281 DOI: 10.3390/v15091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion in sows and respiratory distress in breeding pigs. In China, PRRSV1 and PRRSV2 are the two circulating genotypes in swine herds, with distinct virulence. PRRSV2 further consists of classical (C-PRRSV2), highly pathogenic (HP-PRRSV2), and NADC30-Like (N-PRRSV2) subtypes. The diversity of PRRSV poses challenges for control and eradication, necessitating reliable detection assays for differentiating PRRSV genotypes. METHODS A new TaqMan-based RT-qPCR assay with four sets of primers and probes targeting conserved regions of the ORF7 and NSP2 genes of PRRSV was developed, optimized, and evaluated by us. Reaction conditions such as annealing temperature, primer concentration, and probe concentration were optimized for the assay. Specificity, sensitivity, repeatability, stability, limit of detection (LOD), concordance with the reference method were evaluated for the assay. RESULTS The assay could detect and type PRRSV1, C-PRRSV2, HP-PRRSV2, and N-PRRSV2 simultaneously with 97.33% specificity, 96.00% sensitivity, 12 copies/μL LOD, 97.00% concordance with reference assays. We applied the assay to 321 clinical samples from swine farms in China. The assay successfully detected and typed 230 PRRSV-positive samples, with 24.78% (57/230) of them further confirmed by ORF5 gene sequencing. The prevalence of PRRSV subtypes among the positive samples was as follows: C-PRRSV2 (15.22%), HP-PRRSV2 (23.48%), and N-PRRSV2 (61.30%). Two samples showed coinfection with different PRRSV subtypes. CONCLUSION The quadruple RT-qPCR assay is a powerful tool for detecting and typing the currently circulating PRRSV strains in Chinese swine populations. It can assist in the surveillance of PRRSV prevalence and the implementation of prevention and control strategies.
Collapse
Affiliation(s)
- Shengnan Ruan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Ren
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuexiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunbo Jiang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.R.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
13
|
Guan Z, Pang L, Ouyang Y, Jiang Y, Zhang J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Secondary Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2) Infection Augments Inflammatory Responses, Clinical Outcomes, and Pathogen Load in Glaesserella-parasuis-Infected Piglets. Vet Sci 2023; 10:vetsci10050365. [PMID: 37235448 DOI: 10.3390/vetsci10050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (Gps), Gram-negative bacteria, are a universal respiratory-disease-causing pathogen in swine that colonize the upper respiratory tract. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2HP-PRRSV2) and Gps coinfections are epidemics in China, but little is known about the influence of concurrent coinfection on disease severity and inflammatory responses. Herein, we studied the effects of secondary HP-PRRS infection on clinical symptoms, pathological changes, pathogen load, and inflammatory response of Gps coinfection in the upper respiratory tract of piglets. All coinfected piglets (HP-PRRSV2 + Gps) displayed fever and severe lesions in the lungs, while fever was present in only a few animals with a single infection (HP-PRRSV2 or Gps). Additionally, HP-PRRSV2 and Gps loading in nasal swabs and blood and lung tissue samples was significantly increased in the coinfected group. Necropsy data showed that coinfected piglets suffered from severe lung damage and had significantly higher antibody titers of HP-PRRSV2 or Gps than single-infected piglets. Moreover, the serum and lung concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) were also significantly higher in coinfected piglets than in those infected with HP-PRRSV2 or Gps alone. In conclusion, our results show that HP-PRRSV2 promotes the shedding and replication of Gps, and their coinfection in the upper respiratory tract aggravates the clinical symptoms and inflammatory responses, causing lung damage. Therefore, in the unavoidable situation of Gps infection in piglets, necessary measures must be made to prevent and control secondary infection with HP-PRRSV2, which can save huge economic losses to the pork industry.
Collapse
Affiliation(s)
- Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yan Ouyang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| |
Collapse
|
14
|
Wang X, Bai X, Wang Y, Wang L, Wei L, Tan F, Zhou Z, Tian K. Pathogenicity characterization of PRRSV-1 181187-2 isolated in China. Microb Pathog 2023; 180:106158. [PMID: 37201637 DOI: 10.1016/j.micpath.2023.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
PRRSV-1 has caused more clinical infections in pigs in Chinese swine herds in recent years, however, the pathogenicity of PRRSV-1 in China is unclear. In order to study the pathogenicity of PRRSV-1, in this study, a PRRSV-1 strain, 181187-2, was isolated in primary alveolar macrophage (PAM) cells from a farm where abortions had been reported in China. The complete genome of 181187-2 was 14932 bp excluding Poly A, with 54-amino acid continuous deletion in the Nsp2 gene and 1 amino deletion in ORF3 gene compared with LV. Additionally, the piglets inoculated with strain 181187-2 by intranasal and intranasal plus intramuscular injection, animal experiments showed clinical symptoms including transient fever and depression, with no death. The obvious histopathological lesions including interstitial pneumonia and lymph node hemorrhage, and there were no significant differences in clinical symptoms and histopathological lesions with different challenge ways. Our results indicated that PRRSV -1 181187-2 was a moderately pathogenic strain in piglets.
Collapse
Affiliation(s)
- Xiaojuan Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Xiaofei Bai
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Yuzhou Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wang
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Lulu Wei
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China
| | - Feifei Tan
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China
| | - Zhi Zhou
- WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Cuiwei Road, High-Tech District, Luoyang, 471003, Henan Province, People's Republic of China; WOAH Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, No. 17 Tiangui Road, Daxing District, Beijing, 100125, People's Republic of China.
| |
Collapse
|
15
|
Li S, Li J, Tian Y, Liu J, Zhu J, Chen N, Shang S. A potent CD8 T-cell response may be associated with partial cross-protection conferred by an attenuated Chinese HP-PRRSV vaccine against NADC30-like PRRSV challenge. J Gen Virol 2023; 104. [PMID: 37159409 DOI: 10.1099/jgv.0.001850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens to the global swine industry. Many commercial PRRSV vaccines, originally designed to provide homologous protection, have shown partial protection against heterologous strains. However, the protective immune mechanisms mediated by these PRRSV vaccines are not fully understood. In this study, we investigated the factors responsible for partial protection conferred by an attenuated Chinese HP-PRRSV vaccine (TJM-F92) against heterologous NADC30-like PRRSV. By analysing peripheral T-cell responses induced by the TJM-F92 vaccine and local and systemic memory responses following challenge with NADC30-like PRRSV (SD17-38 strains) as well as neutralizing antibody response, we found that the TJM-F92 vaccine induced a significant expansion of CD8 T cells but not CD4 T cells or γδ T cells. The expanded CD8 T cells exhibited a phenotype of effector memory T cells and secreted IFN-γ upon restimulation with SD17-38 strains in vitro. In addition, only CD8 T cells in the prior immunized pigs rapidly expanded in the blood and spleen after heterologous challenge, with higher magnitude, compared to the unvaccinated pigs, showing a remarkable memory response. In contrast, no obvious humoral immune response was enhanced in the vaccinated and challenged pigs, and no heterologous neutralizing antibodies were detected throughout the experiment. Our results suggested that CD8 T cells elicited by the TJM-F92 vaccine may be responsible for partial heterologous protection against NADC30-like PRRSV strains and potentially recognize the conserved antigens among PRRSV strains.
Collapse
Affiliation(s)
- Shuai Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaqi Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yunfei Tian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiawei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Nanhua Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Shaobin Shang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, PR China
| |
Collapse
|
16
|
Xu H, Gong B, Sun Q, Li C, Zhao J, Xiang L, Li W, Guo Z, Tang YD, Leng C, Li Z, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Peng J, Zhang H. Genomic Characterization and Pathogenicity of BJEU06-1-Like PRRSV-1 ZD-1 Isolated in China. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/6793604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 have long been cocirculating in China. To date, all PRRSV-1 strains in China have been classified as subtype 1. We investigated the prevalence of PRRSV-1 in several areas of China from 2016 to 2022 and found that BJEU06-1-like strains comprised the main epidemic branch of PRRSV-1. Pathogenicity data for this subgroup are currently lacking. In this study, the Chinese BJEU06-1-like PRRSV-1 strain ZD-1 was isolated from primary alveolar macrophages (PAMs). ZD-1 has undergone no recombination and has a 5-aa discontinuous deletion in the Nsp2 protein, similar to other BJEU06-1-like strains; additionally, ZD-1 has a 26 aa C-terminal truncation in the GP3 gene. Pathogenicity studies revealed that ZD-1 causes obvious clinical symptoms: prolonged fever; reduced body weight; alveolar epithelial proliferation and moderate alveolar diaphragm widening in the lungs; diffuse lymphocytic hyperplasia in the lymph nodes; high levels of viremia in the serum; and elevated viral loads in the lungs, lymph nodes, and tonsils. These results suggested that the BJEU06-1-like PRRSV-1 strain ZD-1 is moderately pathogenic to piglets. This is the first study to evaluate the pathogenicity of the BJEU06-1-like branch in China, enriching the understanding of PRRSV-1 in China.
Collapse
|
17
|
Li C, Xu H, Zhao J, Gong B, Sun Q, Xiang L, Li W, Guo Z, Li J, Tang YD, Leng C, Peng J, Wang Q, An T, Cai X, Tian ZJ, Zhou G, Zhang H. Epidemiological investigation and genetic evolutionary analysis of PRRSV-1 on a pig farm in China. Front Microbiol 2022; 13:1067173. [PMID: 36532471 PMCID: PMC9751794 DOI: 10.3389/fmicb.2022.1067173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has brought serious economic losses to pig industry. PRRSV-1 have existed in China for more than 25 years. The prevalence and features of PRRSV-1 on Chinese farms are unclear. We continuously monitored PRRSV in a pig farm with strict biosafety measures in Henan Province, China, in 2020. The results showed that multiple types of PRRSV coexisted on this single pig farm. PRRSV-1 was one of the main circulating strains on the farm and was responsible for infections throughout nearly the entire epidemic cycle. Phylogenetic analysis showed that PRRSV-1 isolates from this pig farm formed an independent branch, with all isolates belonging to BJEU06-1-like PRRSV. The analysis of selection pressure on ORF5 on this branch identified 5 amino acids as positive selection sites, indicating that PRRSV-1 had undergone adaptive evolution on this farm. According to the analysis of ORF5 of PRRSV-1 on this farm, the evolutionary rate of the BJEU06-1-like branch was estimated to be 1.01 × 10-2 substitutions/site/year. To further understand the genome-wide characteristics of PRRSV-1 on this pig farm, two full-length PRRSV-1 genomes representative of pig farms were obtained. The results of amino acid alignment revealed that although one NSP2 deletion was consistent with BJEU06-1, different new features were found in ORF3 and ORF4. According to the above results, PRRSV-1 has undergone considerable evolution in China. This study is the first to report the prevalence and characteristics of PRRSV-1 on a large farm in mainland China, which will provide a reference for the identification and further prevention and control of PRRSV-1.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
18
|
Zhao J, Xu Z, Xu T, Zhou Y, Li J, Deng H, Li F, Xu L, Sun X, Zhu L. Molecular Characterization of the Nsp2 and ORF5s of PRRSV Strains in Sichuan China during 2012-2020. Animals (Basel) 2022; 12:ani12233309. [PMID: 36496830 PMCID: PMC9736255 DOI: 10.3390/ani12233309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that poses a serious threat to the global pig industry. Sichuan Province is one of the largest pig breeding provinces in China. There is a lack of reports on the continuous surveillance and systematic analysis of prevalent strains of PRRSV in Sichuan Province in recent years. To fill this gap, a total of 539 samples were collected from 13 breeding regions in Sichuan during 2012-2020. The detection result showed that the positive rate of PRRSV was 52.32% (282/539). The ORF5s and Nsp2 were obtained and further analyzed, with Chinese reference strains downloaded from the GenBank. Phylogenetic analysis showed that the PRRSV strains sequenced in this study belonged to PRRSV-1 and PRRSV-2 (lineage 1, 3, 5 and 8). In total, 168 PRRSV-2 strains were selected for ORF5 analyses, and these strains were classified into sub-lineage 8.7 (HP-PRRSV), sub-lineage 5.1 (classical PRRSV), sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like) and sub-lineage 3.5 (QYYZ-like), accounting for 60.71% (102/168), 11.31% (19/168), 18.45% (31/168), 2.97% (5/168) and 6.55% (11/168) of the total analyzed strains, respectively. The Nsp2 of identified PRRSV strains exhibited a nucleotide identity of 44.5-100%, and an amino acid identity of 46.82-100%. The ORF5 of the identified PRRSV strains exhibited a nucleotide identity of 81.3-100%, and an amino acid identity of 78.5-100%. A sequence analysis of ORF5 revealed that the mutation sites of GP5 were mainly concentrated in HVR1 and HVR2 and the virulence sites. In summary, the HP-PRRSV, NADC30-like PRRSV, Classic-PRRSV, QYYZ-like PRRSV, NADC34-like PRRSV and PRRSV-1 strains exist simultaneously in pigs in Sichuan. NADC30-like PRRSV was gradually becoming the most prevalent genotype currently in Sichuan province. This study suggested that PRRSV strains in Sichuan were undergoing genomic divergence.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chia Tai Animal Husbandry Investment (Beijing) Co., Ltd., Beijing 101301, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Jiangling Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610058, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- College of Animal Science, Xichang University, Xichang 615012, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
19
|
Sun Q, Xu H, Li C, Gong B, Li Z, Tian ZJ, Zhang H. Emergence of a novel PRRSV-1 strain in mainland China: A recombinant strain derived from the two commercial modified live viruses Amervac and DV. Front Vet Sci 2022; 9:974743. [PMID: 36157177 PMCID: PMC9505512 DOI: 10.3389/fvets.2022.974743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) is one of the main pathogens causing porcine reproductive and respiratory syndrome (PRRS). In recent years, the rate of PRRSV-1 detection in China has gradually increased, and the PRRSV-1 strains reported in China belong to subtype I (Global; Clade A-L). In the present study, a novel PRRSV-1 strain, TZJ2134, was found during epidemiological surveillance of PRRSV-1 in Shandong Province in China. We obtained two fragments of the TZJ2134 genome: TZJ2134-L12 (located at nt 1672-nt 2112 in the partial Nsp2 gene) and TZJ2134-(A+B) (located at nt 7463-nt 11272 in the partial Nsp9, complete Nsp10 and partial Nsp11 genes). Phylogenetic and recombination analyses based on the two sequences showed that TZJ2134 is a recombinant strain derived from two commercial PRRSV-1 modified live vaccine (MLV) strains (the Amervac vaccine and DV vaccine strains) that formed a new recombinant subgroup of DV+Amervac-like isolates with other strains. However, PRRSV-1 MLV is not currently allowed for use in China. This study is the first to detected recombinant PRRSV-1 MLV strain in China and provides new data for the epidemiological study of PRRSV-1 in China. The existence of the TZJ2134 strain is a reminder that the swine surveillance at the Chinese customs should be strengthened.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhen Li
- Pingdingshan Center for Animal Disease Control and Prevention, Pingdingshan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- *Correspondence: Hongliang Zhang
| |
Collapse
|
20
|
Genomic Analysis of Porcine Reproductive and Respiratory Syndrome Virus 1 Revealed Extensive Recombination and Potential Introduction Events in China. Vet Sci 2022; 9:vetsci9090450. [PMID: 36136666 PMCID: PMC9505194 DOI: 10.3390/vetsci9090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome, caused by the porcine reproductive and respiratory syndrome virus, is considered one of the most devastating swine diseases worldwide. Porcine reproductive and respiratory syndrome virus 1 was first isolated in China in 2006, and there have been few reports concerning its genetic characteristics in China. We hope to find out the regularity of genetic diversity, recombination, and evolution of the virus by analyzing all available genomic sequences during 1991–2018. We found that high-frequency recombination regions were concentrated in non-structural protein 2 and structural proteins 2 to 4 and extensive deletions in non-structural protein 2; phylogenetic analysis revealed four independent introductions in China. Our results suggest that attention should be paid to the prevention and control of porcine reproductive and respiratory syndrome virus 1 and the rational use of vaccine strains. These results will help us to understand the recombination of porcine reproductive and respiratory syndrome virus and strengthen viral inspection before mixing herds of swine to reduce the probability of novel recombinant variants. Moreover, our study might form the basis of monitoring and control measures to prevent the spread of this economically important virus. Abstract Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is considered one of the most devastating swine diseases worldwide. PRRSV-1 was first isolated in China in 2006. However, there were few reports concerning the genetic characteristics of PRRSV-1 in China. In this study, three PRRSV-1 strains (HL85, HeB3, and HeB47) were detected by a general RT-qPCR method from clinical samples in 2018. HeB47 was identified as a recombinant between the BJEU06-1 and CReSA228-like strains. To further analyze the recombination and deletion features of PRRSV-1, all the available 88 complete genome sequences (isolated in 19 countries) from 1991 to 2018 in GenBank were analyzed. The high-frequency recombination regions were concentrated in NSP2 and GP2 to GP4. More importantly, phylogenetic analysis of PRRSV-1 revealed four independent introductions in China. Therefore, it is necessary to strengthen the important monitoring of breeding pigs and pork products and epidemiological surveys on pig farms to prevent the further spread of PRRSV-1.
Collapse
|
21
|
Lineage 1 Porcine Reproductive and Respiratory Syndrome Virus Attenuated Live Vaccine Provides Broad Cross-Protection against Homologous and Heterologous NADC30-Like Virus Challenge in Piglets. Vaccines (Basel) 2022; 10:vaccines10050752. [PMID: 35632508 PMCID: PMC9146329 DOI: 10.3390/vaccines10050752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that endangers the swine industry worldwide. Recently, lineage 1 PRRSVs, especially NADC30-like PRRSVs, have become the major endemic strains in many pig-breeding countries. Since 2016, NADC30-like PRRSV has become the predominant strain in China. Unfortunately, current commercial vaccines cannot provide sufficient protection against this strain. Here, an attenuated lineage 1 PRRSV strain, named SD-R, was obtained by passaging an NADC30-like PRRSV strain SD in Marc-145 cells for 125 passages. Four-week-old PRRSV-free piglets were vaccinated intramuscularly with 105.0TCID50 SD-R and then challenged intramuscularly (2 mL) and intranasally (2 mL) with homologous NADC30-like PRRSV SD (1 × 105.0TCID50/mL) and heterologous NADC30-like PRRSV HLJWK108-1711 (1 × 105.0TCID50/mL). The results showed that antibodies against specific PRRSVs in 5 of 5 immunized piglets were positive after a 14-day post-vaccination and did not develop fever or clinical diseases after NADC30-like PRRSV challenges. Additionally, compared with challenge control piglets, vaccinated piglets gained significantly more weight and showed much milder pathological lesions. Furthermore, the viral replication levels of the immunized group were significantly lower than those of the challenge control group. These results demonstrate that lineage 1 PRRSV SD-R is a good candidate for an efficacious vaccine, providing complete clinical protection for piglets against NADC30-like PRRSVs.
Collapse
|
22
|
Qiu M, Li S, Ye M, Li J, Sun Z, Li X, Xu Y, Xiao Y, Li C, Feng B, Lin H, Zheng W, Yu X, Tian K, Zhu J, Chen N. Systemic Homologous Neutralizing Antibodies Are Inadequate for the Evaluation of Vaccine Protective Efficacy against Coinfection by High Virulent PEDV and PRRSV. Microbiol Spectr 2022; 10:e0257421. [PMID: 35315711 PMCID: PMC9045284 DOI: 10.1128/spectrum.02574-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yulin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
23
|
Li J, Li S, Qiu M, Li X, Li C, Feng B, Lin H, Zheng W, Zhu J, Chen N. Minor and major envelope proteins of PRRSV play synergistic roles in inducing heterologous neutralizing antibodies and conferring cross protection. Virus Res 2022; 315:198789. [PMID: 35487365 DOI: 10.1016/j.virusres.2022.198789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
High genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) isolates is a major obstacle for the development of effective PRRS vaccines. A chimeric highly pathogenic PRRSV2 (HP-PRRSV2) strain containing the consensus sequence of ORF2-6 genes was constructed in our previous study, which could induce broadly neutralizing antibodies (bnAbs) and confer satisfied cross protection against virulent NADC30-like isolate. To further elucidate the roles of minor and major envelope proteins encoded by ORF2-4 and ORF5-6 genes in conferring cross protection, two chimeric HP-PRRSV2 strains (rJS-ORF2-4-CON and rJS-ORF5-6-CON) containing consensus sequences of ORF2-4 or ORF5-6 were constructed and rescued in this study. The rJS-ORF5-6-CON strain has similar replication efficiency as the backbone HP-PRRSV2 rJSTZ1712-12 virus, while rJS-ORF2-4-CON has significantly lower in vitro and in vivo replication efficiency comparing to rJS-ORF5-6-CON. Animal inoculation indicated that both rJS-ORF2-4-CON and rJS-ORF5-6-CON did not cause obvious clinical signs in piglets and could induce heterologous nAbs after immunization. Challenge with a virulent heterologous NADC30-like SD17-38 isolate showed that even though both immunized groups presented lower viremia, faster virus elimination, less fever and alleviated lung gross lesions when compared with the only challenged pigs, rJS-ORF2-4-CON and rJS-ORF5-6-CON could not confer enough cross protection. Considering the bnAbs and satisfied cross protection induced by the chimeric virus containing ORF2-6 consensus sequence, our results support that minor and major envelope proteins play synergistic roles in inducing broader nAbs and conferring better cross protection.
Collapse
Affiliation(s)
- Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Joint International Research Laboratories of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Xu W, Du S, Li T, Wu S, Jin N, Ren L, Li C. Generation and Evaluation of Recombinant Baculovirus Coexpressing GP5 and M Proteins of Porcine Reproductive and Respiratory Syndrome Virus Type 1. Viral Immunol 2021; 34:697-707. [PMID: 34935524 DOI: 10.1089/vim.2021.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of the porcine reproductive and respiratory syndrome, which is one of the most economically devastating diseases of the swine industry. However, whether the inactivated vaccine and modified live attenuated vaccines are effective in disease control is still controversial. Although several groups developed PRRSV virus-like particles (VLPs) as a vaccine against PRRSV, all these VLP-based vaccines targeted PRRSV-2, but not PRRSV-1 or both. Therefore, it is urgent to produce VLPs against PRRSV-1. In this study, we rescued recombinant baculovirus expressing GP5 and M proteins of PRRSV-1 through the Bac-to-Bac® baculovirus expression system. Thereafter, PRRSV VLP was obtained efficiently in the recombinant baculovirus-infected High Five insect cells. Moreover, the PRRSV VLP and PRRSV VLP+A5 could efficiently trigger specific humoral immune responses and B cellular immune responses through intranasal immunization. The combination of PRRSV VLP and A5 adjuvant could improve the level of the immune response. The PRRSV-1 VLPs generated in this study have greater potential for vaccine development to control PRRSV-1 infection.
Collapse
Affiliation(s)
- Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Department of Infectious Diseases, Shenzhen People's Hospital, Second Clinical Hospital of Jinan University, Shenzhen, China
| | - Tiyuan Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Shipin Wu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Linzhu Ren
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
25
|
Madapong A, Saeng-Chuto K, Tantituvanont A, Nilubol D. Safety of PRRSV-2 MLV vaccines administrated via the intramuscular or intradermal route and evaluation of PRRSV transmission upon needle-free and needle delivery. Sci Rep 2021; 11:23107. [PMID: 34845289 PMCID: PMC8629989 DOI: 10.1038/s41598-021-02444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Two distinct experiments (Exp) were conducted to evaluate the shedding and efficacy of 2 modified live porcine reproductive and respiratory syndrome virus (PRRSV) type 2 vaccines (MLV) when administered intramuscularly (IM) or intradermally (ID) (Exp A), and the potential of PRRSV transmission using a needle-free device (Exp B). One-hundred fifty-four, 3-week-old castrated-male, pigs were procured from a PRRSV-free herd. In Exp A, 112 pigs were randomly allocated into 4 groups of 21 pigs including IM/Ingelvac MLV (G1), IM/Prime Pac (G2), ID/Prime Pac (G3), and non-vaccination (G4). Twenty-eight remaining pigs were served as non-vaccination, age-matched sentinel pigs. G1 was IM vaccinated once with Ingelvac PRRS MLV (Ing) (Boehringer Ingelheim, Germany). G2 and G3 were IM and ID vaccinated once with a different MLV, Prime Pac PRRS (PP) (MSD Animal Health, The Netherlands), respectively. Following vaccination, an antibody response, IFN-γ-SC, and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera, tonsils, nasal swabs, bronchoalveolar lavage, urines, and feces were collected from 3 vaccinated pigs each week to 42 days post-vaccination (DPV) and assayed for the presence of PRRSV using virus isolation and qPCR. Age-matched sentinel pigs were used to evaluate the transmission of vaccine viruses and were introduced into vaccinated groups from 0 to 42 DPV. Seroconversion was monitored. In Exp B, 42 pigs were randomly allocated into 5 groups of 3 pigs each including IM/High (T1), ID/High (T2), IM/Low (T3), ID/Low (T4), and NoChal. Twenty-seven remaining pigs were left as non-challenge, age-matched sentinel pigs. The T1 and T2, and T3 and T4 groups were intranasally challenged at approximately 26 days of age with HP-PRRSV-2 at high (106) and low (103 TCID50/ml) doses, respectively. At 7 days post-challenge, at the time of the highest viremia levels of HP-PRRSV-2, T1 and T2, and T3 and T4 groups were IM and ID injected with Diluvac Forte using needles and a need-less device (IDAL 3G, MSD Animal Health, The Netherlands), respectively. Same needles or needle-less devices were used to inject the same volume of Diluvac Forte into sentinel pigs. Seroconversion of sentinels was evaluated. The results demonstrated that PP vaccinated groups (G2 and G3), regardless of the route of vaccination, had ELISA response significantly lower than G1 at 7 and 14 DPV. PP-vaccinated groups (G2 and G3) had significantly higher IFN-γ-SC and lower IL-10 secretion compared to the Ing-vaccinated group (G1). The two different MLV when administered intramuscularly demonstrated the difference in virus distribution and shedding patterns. PP-vaccinated pigs had significantly shortened viremia than the Ing-vaccinated pigs. However, ID-vaccinated pigs had lower virus distribution in organs and body fluids without virus shedding to sentinel pigs. In Exp B, regardless of the challenge dose, sentinel pigs intradermally injected with the same needle-less device used to inject challenged pigs displayed no seroconversion. In contrast, sentinel pigs intramuscularly injected with the same needle used to inject challenged pigs displayed seroconversion. The results demonstrated the transmission of PRRSV by using a needle, but not by using a needle-less device. In conclusion, our results demonstrated that ID vaccination might represent an alternative to improve vaccine efficacy and safety, and may be able to reduce the shedding of vaccine viruses and reduce the iatrogenic transfer of pathogens between animals with shared needles.
Collapse
Affiliation(s)
- Adthakorn Madapong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Development of a Nanobody-Based Competitive Enzyme-Linked Immunosorbent Assay for Efficiently and Specifically Detecting Antibodies against Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses. J Clin Microbiol 2021; 59:e0158021. [PMID: 34524888 PMCID: PMC8601240 DOI: 10.1128/jcm.01580-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes considerable economic loss to the global pig industry. Efficient detection assay is very important for the prevention of the virus infection. Nanobodies are the advantages of small molecular weight, simple genetic engineering, and low production cost for promising diagnostic application. In this study, to develop a nanobody-based competitive ELISA (cELISA) for specifically detecting antibodies against PRRSV, three nanobodies against PRRSV-N protein were screened by camel immunization, library construction, and phage display. Subsequently, a recombinant HEK293S cell line stably secreting nanobody-horseradish peroxidase (HRP) fusion protein against PRRSV-N protein was successfully constructed using the lentivirus transduction assay. Using the cell lines, the fusion protein was easily produced. Then, a novel cELISA was developed using the nanobody-HRP fusion protein for detecting antibodies against PRRSV in pig sera, exhibiting a cut-off value of 23.19% and good sensitivity, specificity, and reproducibility. Importantly, the cELISA specifically detect anti-genotype 2 PRRSV antibodies. The cELISA showed more sensitive than the commercial IDEXX ELISA kit by detecting the sequential sera from the challenged pigs. The compliance rate of cELISA with the commercial IDEXX ELISA kit was 96.4%. In addition, the commercial IDEXX ELISA kit can be combined with the developed cELISA for the differential detection of antibodies against genotype 1 and 2 PRRSV in pig sera. Collectively, the developed nanobody-based cELISA showed advantages of simple operation and low production cost and can be as an assay for epidemiological investigation of genotype 2 PRRSV infection in pigs and evaluation after vaccination.
Collapse
|
27
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
28
|
Li S, Li X, Qiu M, Li J, Xiao Y, Lin H, Zheng W, Zhu J, Chen N. Transcriptomic profiling reveals different innate immune responses in primary alveolar macrophages infected by two highly homologous porcine reproductive and respiratory syndrome viruses with distinct virulence. Microb Pathog 2021; 158:105102. [PMID: 34298124 DOI: 10.1016/j.micpath.2021.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates show high genetic and pathogenic diversity. The mechanisms underlying different virulence of PRRSV isolates are still not fully clarified. Two highly homologous PRRSV isolates (XJ17-5 and JSTZ1712-12) with distinct virulence were identified in our previous study. To evaluate the association between host responses and different virulence, here we investigated the transcriptomic profiles of porcine alveolar macrophages (PAMs) infected with these two isolates. RNA-Seq results showed that there are 1932 differential expression genes (DEGs) between two PRRSV infected groups containing 1067 upregulation and 865 downregulation genes. Compared with the avirulent JSTZ1712-12 infected group, GO analysis identified significant enrichment gene sets not only associated with virus infection but also innate immune response in the virulent XJ17-5 infected group. In addition, KEGG analysis indicated significantly enriched genes associated with NOD-like and RIG-I-like receptor signaling pathways in XJ17-5 vs JSTZ1712-12 group. Furthermore, XJ17-5 isolate induced significantly higher levels of innate immune response associated genes (IL-1β, CXCL2, S100A8, OAS2, MX1, IFITM3, ISG15 and IFI6) than JSTZ1712-12 isolate, which were further confirmed by real-time PCR. Given that these two isolates share similar replication efficiency in vivo and in vitro, our results indicated that distinct virulence of PRRSV isolates is associated with different host innate immune responses.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
29
|
Chen N, Li S, Tian Y, Li X, Li S, Li J, Qiu M, Sun Z, Xiao Y, Yan X, Lin H, Yu X, Tian K, Shang S, Zhu J. Chimeric HP-PRRSV2 containing an ORF2-6 consensus sequence induces antibodies with broadly neutralizing activity and confers cross protection against virulent NADC30-like isolate. Vet Res 2021; 52:74. [PMID: 34044890 PMCID: PMC8161975 DOI: 10.1186/s13567-021-00944-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the substantial genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV), commercial PRRS vaccines fail to provide sufficient cross protection. Previous studies have confirmed the existence of PRRSV broadly neutralizing antibodies (bnAbs). However, bnAbs are rarely induced by either natural infection or vaccination. In this study, we designed and synthesized a consensus sequence of PRRSV2 ORF2-6 genes (ORF2-6-CON) encoding all envelope proteins based on 30 representative Chinese PRRSV isolates. The ORF2-6-CON sequence shared > 90% nucleotide identities to all four lineages of PRRSV2 isolates in China. A chimeric virus (rJS-ORF2-6-CON) containing the ORF2-6-CON was generated using the avirulent HP-PRRSV2 JSTZ1712-12 infectious clone as a backbone. The rJS-ORF2-6-CON has similar replication efficiency as the backbone virus in vitro. Furthermore, pig inoculation and challenge studies showed that rJS-ORF2-6-CON is not pathogenic to piglets and confers better cross protection against the virulent NADC30-like isolate than a commercial HP-PRRS modified live virus (MLV) vaccine. Noticeably, the rJS-ORF2-6-CON strain could induce bnAbs while the MLV strain only induced homologous nAbs. In addition, the lineages of VDJ repertoires potentially associated with distinct nAbs were also characterized. Overall, our results demonstrate that rJS-ORF2-6-CON is a promising candidate for the development of a PRRS genetic engineered vaccine conferring cross protection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yunfei Tian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471003, Henan, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, Jiangsu, China. .,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
31
|
Zhao J, Zhu L, Deng H, Li F, Xu L, Sun X, Yin W, Kuang S, Li S, Zhou Y, Xu Z. Genetic characterization of a novel porcine reproductive and respiratory syndrome virus type I strain from southwest China. Arch Virol 2021; 166:1769-1773. [PMID: 33761009 DOI: 10.1007/s00705-021-04998-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 10/21/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry. Recently, we isolated and plaque-purified porcine reproductive and respiratory syndrome virus (PRRSV) strain SC2020-1 from "aborted piglets" on a farm in Sichuan, China. To investigate the molecular biological characteristics of this strain, it was subjected to genome sequencing and analysis. The full-length genome sequence of strain SC2020-1 was 87.7% identical to that of the Lelystad strain (PRRSV type I protoype strain) and 82.2-84.8% identical to PRRSV type I isolates from China. NSP2, ORF3, and ORF4 were the most variable regions and contained discontinuous deletions or insertions when compared to other PRRSV type I strains. Phylogenetic analysis of the complete genome sequence showed that SC2020-1 clustered with PRRSV type I but outside of the three previously described branches (Lelystad virus-like, Amervac PRRS-like, and BJEU06-1-like). The Nsp2 gene was in the same branch with EUGDHD strains from China. This is the first report of PRRSV type I infection associated with abortion in sows in southwest China. Close attention should be paid to the prevention and control of this evolving virus.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key , Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenqi Yin
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Shengyao Kuang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | | | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China. .,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China. .,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Animtech Bioengineering Co. Ltd, Chengdu, China.
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China. .,Key , Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China.
| |
Collapse
|
32
|
Welner S, Ruggli N, Liniger M, Summerfield A, Larsen LE, Jungersen G. Reduced Virus Load in Lungs of Pigs Challenged with Porcine Reproductive and Respiratory Syndrome Virus after Vaccination with Virus Replicon Particles Encoding Conserved PRRSV Cytotoxic T-Cell Epitopes. Vaccines (Basel) 2021; 9:vaccines9030208. [PMID: 33801369 PMCID: PMC8000205 DOI: 10.3390/vaccines9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respiratory distress and reproductive failure in swine. Modified live virus (MLV) vaccines provide the highest degree of protection and are most often the preferred choice. While somewhat protective, the use of MLVs is accompanied by multiple safety issues, why safer alternatives are urgently needed. Here, we describe the generation of virus replicon particles (VRPs) based on a classical swine fever virus genome incapable of producing infectious progeny and designed to express conserved PRRSV-2 cytotoxic T-cell epitopes. Eighteen pigs matched with the epitopes by their swine leucocyte antigen-profiles were vaccinated (N = 11, test group) or sham-vaccinated (N = 7, control group) with the VRPs and subsequently challenged with PRRSV-2. The responses to vaccination and challenge were monitored using serological, immunological, and virological analyses. Challenge virus load in serum did not differ significantly between the groups, whereas the virus load in the caudal part of the lung was significantly lower in the test group compared to the control group. The number of peptide-induced interferon-γ secreting cells after challenge was higher and more frequent in the test group than in the control group. Together, our results provide indications of a shapeable PRRSV-specific cell-mediated immune response that may inspire future development of effective PRRSV vaccines.
Collapse
Affiliation(s)
- Simon Welner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark;
- Correspondence:
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Matthias Liniger
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (N.R.); (M.L.); (A.S.)
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| | - Lars Erik Larsen
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Frederiksberg C, Denmark;
| | - Gregers Jungersen
- Center for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark;
| |
Collapse
|
33
|
Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9020185. [PMID: 33671826 PMCID: PMC7926738 DOI: 10.3390/vaccines9020185] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) presents one of the challenging viral pathogens in the global pork industry. PRRS is characterized by two distinct clinical presentations; reproductive failure in breeding animals (gilts, sows, and boars), and respiratory disease in growing pigs. PRRSV is further divided into two species: PRRSV-1 (formerly known as the European genotype 1) and PRRSV-2 (formerly known as the North American genotype 2). A PRRSV-2 modified-live virus (MLV) vaccine was first introduced in North America in 1994, and, six years later, a PRRSV-1 MLV vaccine was also introduced in Europe. Since then, MLV vaccination is the principal strategy used to control PRRSV infection. Despite the fact that MLV vaccines have shown some efficacy, they were problematic as the efficacy of vaccine was often unpredictable and depended highly on the field virus. This paper focused on the efficacy of commercially available MLV vaccines at a global level based on respiratory disease in growing pigs, and maternal and paternal reproductive failure in breeding animals.
Collapse
|
34
|
Chen N, Li X, Xiao Y, Li S, Zhu J. Characterization of four types of MLV-derived porcine reproductive and respiratory syndrome viruses isolated in unvaccinated pigs from 2016 to 2020. Res Vet Sci 2020; 134:102-111. [PMID: 33360570 DOI: 10.1016/j.rvsc.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Modified live vaccines (MLVs) have been utilized to combat porcine reproductive and respiratory syndrome (PRRS), which raises a serious concern about the MLV-derived PRRS virus (PRRSV) isolates. During the routine investigation of PRRSV in China, four lung samples collected from unvaccinated diseased pigs from 2016 to 2020 were detected as PRRSV positive. The PRRSVs shared high ORF5 identities to CH-1R, JXA1-R, TJM-F92 and RespPRRS MLV vaccines, respectively. The viruses were isolated in Marc-145 cells and denominated as SD1612-1, JS1703-21, JSTZ1907-714 and JSYC20-05-1. Genome comparison confirmed that these isolates share the highest genomic homologies to CH-1R (97.96%), JXA1-R (99.64%), TJM-F92 (99.00%) and RespPRRS MLV (99.57%) than any other known isolates. Genome-based phylogenetic analysis showed that SD1612-1 and CH-1R, JS1703-21 and JXA1-R, JSTZ1907-714 and TJM-F92, JSYC20-05-1 and RespPRRS MLV were grouped in the same branches. In addition, amino acids unique to corresponding vaccine attenuations were also identified in our isolates. Noticeably, amino-acids potentially associated with the virulence revision from MLV strains to parental virulent viruses were also identified in the MLV-derived isolates. Our results confirm that the four types of MLV-derived isolates are circulating and evolving in Chinese swine herds for years, which highlights the necessity for the fair use of PRRS MLVs.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
35
|
Zhang Q, Song Z, Yu Y, Huang J, Jiang P, Shan H. Genetic analysis of a porcine reproductive and respiratory syndrome virus 1 strain in China with new patterns of amino acid deletions in nsp2, GP3 and GP4. Microb Pathog 2020; 149:104531. [PMID: 32980471 DOI: 10.1016/j.micpath.2020.104531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) 1 and PRRSV 2 have coexisted in China for a very long time. In this study, the complete genomic characterization of a PRRSV 1 strain named KZ2018 was conducted. The results showed that it shared 88.6% identity with Lelystad virus and 81.9-90.8% identities with other Chinese PRRSV 1 strains. Further study showed that its nsp2 protein had a unique discontinuous 6-amino acid (aa) deletion (aa357-360+aa411+aa449). Additionally, its GP3 and GP4 contained a long continuous 18-aa deletion in their overlapped region, which has never been described in other Chinese PRRSV 1 isolates. Amino acid analysis of cell epitopes revealed that GP3245-256 and GP457-68 were the most variable epitopes among different Chinese PRRSV 1 isolates. The results might enrich our knowledge of PRRSV 1 strains in China.
Collapse
Affiliation(s)
- Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China.
| | - Zhongbao Song
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China
| | - Juan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong, China; Shandong Province New Veterinary Drug Creation Collaborative Innovation Center, Qingdao 266109, Shandong, China; Qingdao Veterinary Biotechnology Engineering Research Center, Qingdao 266109, Shandong, China.
| |
Collapse
|
36
|
Chen N, Li S, Li X, Ye M, Xiao Y, Yan X, Li X, Zhu J. The infectious cDNA clone of commercial HP-PRRS JXA1-R-attenuated vaccine can be a potential effective live vaccine vector. Transbound Emerg Dis 2020; 67:1820-1827. [PMID: 32304348 DOI: 10.1111/tbed.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Multiple commercial porcine reproductive and respiratory syndrome (PRRS) modified live vaccines are currently utilized in Chinese swine herds due to the limited cross-protection of vaccines and coexistence of different PRRS viruses. In this study, an infectious cDNA clone of the highly pathogenic PRRS (HP-PRRS) vaccine JXA1-R strain was generated. We successfully rescued the virus from direct in vitro DNA transfection of rJXA1-R clone, which has similar growth kinetics to the parental JXA1-R virus in Marc-145 cells. To further evaluate the potential use of the cloned rJXA1-R virus as a live vector for foreign gene expression, the enhanced green fluorescent protein (EGFP) was inserted between non-structural and structural genes. Our results showed that the dynamic expression of EGFP can be visualized by live cell imaging system during the infection in Marc-145 cells. The availability of our cloned JXA1-R viruses provides a crucial platform to study the fundamental biology of HP-PRRS virus vaccine and also serves as a potential effective vector for developing live vector vaccines against swine pathogens.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Qindao, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xilin Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P.R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, P.R. China
| |
Collapse
|
37
|
Jung BK, Kim HR, Jang H, Chang KS. Replacing the decoy epitope of PCV2 capsid protein with epitopes of GP3 and/or GP5 of PRRSV enhances the immunogenicity of bivalent vaccines in mice. J Virol Methods 2020; 284:113928. [PMID: 32650038 DOI: 10.1016/j.jviromet.2020.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/15/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure and causes economic losses in the domestic swine industry. The decoy epitope (169-180 amino acid (aa)) of the PCV2 capsid (Cap) protein is an immunodominant epitope and diverts the immune response away from protective epitopes. The mixed infection of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common co-infections in the pig industry and shows more severe clinical symptoms. Linear B-cell antigenic epitopes of PRRSV GP3 epitope Ⅰ (61-72aa) and PRRSV GP5 epitope Ⅳ (187-200aa) efficiently elicited neutralizing antibodies against PRRSV. The recombinant baculovirus expressing the Cap protein (Bac-Cap) was modified by replacing the decoy epitope of the Cap protein with either the PRRSV GP3 epitope Ⅰ, the PRRSV GP5 epitope Ⅳ, or the PRRSV GP3 epitope Ⅰ- GP5 epitope Ⅳ to produce the recombinant baculoviruses Bac-Cap-GP3, Bac-Cap-GP5 and Bac-Cap-GP35. The four recombinant baculoviruses were successfully established and characterized as demonstrated with western blot analysis and immunofluorescence assay. Immunogenicities of the four recombinant baculoviruses in mice were tested in sera harvested at 21 and 42 days post-primary immunization. The titers of antibodies in the sera were determined by a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The serum IFN-γ levels were measured by indirect ELISA. The results showed that Bac-Cap-GP3, Bac-Cap-GP5, and Bac-Cap-GP35 elicited higher GP3/GP5 and Cap antibody titers than the Bac-Cap. Virus neutralization test also confirmed that the serum from the Bac-Cap-GP3 immunized mice had high levels of the both PCV2 and PRRSV neutralization antibodies. These findings collectively demonstrated that substituting the decoy epitope of the PCV2 capsid substituted with PRRSV epitopes could be developed into an effective vaccine against PCV2.
Collapse
Affiliation(s)
- Bo-Kyoung Jung
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea; Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Hye-Ran Kim
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Daegu, 38610, Republic of Korea.
| | - Huyn Jang
- Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea.
| |
Collapse
|
38
|
Chen N, Xiao Y, Ye M, Li X, Li S, Xie N, Wei Y, Wang J, Zhu J. High genetic diversity of Chinese porcine reproductive and respiratory syndrome viruses from 2016 to 2019. Res Vet Sci 2020; 131:38-42. [PMID: 32289611 DOI: 10.1016/j.rvsc.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
High genetic diversity and limited cross-protection are two major reasons for ineffective control of porcine reproductive and respiratory syndrome virus (PRRSV) infection. Therefore, it's important to dynamically monitor the prevalence of PRRSV for adopting appropriate control strategy. In this study, we analyzed PRRSV infection by detecting 712 clinical samples collected from 2016 to 2019 in China. Totally 100 samples were detected as PRRSV positive, including 2 and 98 samples were infected with PRRSV1 and PRRSV2, respectively. In addition, two out of the 98 PRRSV2 positive samples were co-infected with two distinct viruses. ORF5-based phylogenetic analysis showed that JXA1-like HP-PRRSV2 (lineage 8) and NADC30-like PRRSV2 (lineage 1) isolates are currently predominant, but QYYZ-like PRRSV2, CH-1a-like PRRSV2 and PRRSV1 isolates also co-exist in Chinese swine herds. In addition, two commercial MLV-derived viruses (TJM-F92-like and JXA1-R-like) were frequently detected. GP5 alignment also detected insertion and deletion in the extravirion domain. Our study presents the up-to-date PRRSV infection status and highlights the high genetic diversity of PRRSV currently circulating in China.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ningjun Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yue Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jialin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
39
|
Madapong A, Saeng-Chuto K, Chaikhumwang P, Tantituvanont A, Saardrak K, Pedrazuela Sanz R, Miranda Alvarez J, Nilubol D. Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet Microbiol 2020; 244:108655. [PMID: 32402335 DOI: 10.1016/j.vetmic.2020.108655] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023]
Abstract
The study was conducted to evaluate the immune response of pigs vaccinated intramuscularly (IM) or intradermally (ID) with porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) modified live vaccine (MLV). The protective efficacy was evaluated upon challenge with highly pathogenic (HP)-PRRSV-2, either alone or in combination with PRRSV-1. Forty-two, castrated male, PRRSV-free pigs were randomly allocated into 7 groups of 6 pig each. IM/HPPRRSV2, IM/CoChallenge, ID/HPPRRSV2 and ID/CoChallenge groups were vaccinated IM or ID with PRRSV-1 MLV (UNISTRAIN® PRRS, Laboratorios Hipra S.A., Amer, Spain) in accordance to the manufacturer's directions. NV/HPPRRSV2 and NoVac/CoChallenge groups were nonvaccinated/challenged controls. NoVac/NoChallenge group was left as the control. Antibody response, IFN-γ-secreting cells (IFN-γ-SC) and IL-10 production were evaluated following vaccination. At 35 days post vaccination (DPV), all challenged groups were intranasally inoculated with HP-PRRSV-2, either alone or in combination with PRRSV-1. PRRSV viremia and lung lesion scores were evaluated following challenge. The results demonstrated that ID vaccinated pigs had significantly lower IL-10 levels and higher IFN-γ-SC than that of IM vaccinated pigs. Following challenge with HP-PRRSV-2 either alone or with PRRSV-1, PRRSV viremia and lung lesions, both macroscopically and microscopically, were significantly reduced in vaccinated pigs than that of nonvaccinated pigs, regardless to the route of vaccine administration. ID vaccinated pigs had significantly lower levels of PRRSV viremia and lung lesion scores than that of IM vaccinated pigs. The results of the study suggested that the administration of PRRSV-1 MLV, either IM or ID, provided partial protection against HP-PRRSV-2, either alone or when cochallenged with PRRSV-1, as demonstrated by the reduction in lung lesions and viremia. The ID route might represent an alternative to improve vaccine efficacy, as it resulted in lower IL-10 levels and higher IFN-γ-SC levels.
Collapse
Affiliation(s)
- Adthakorn Madapong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puwich Chaikhumwang
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kriangsak Saardrak
- Department of Animal Science at Kamphaeng Sean, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University Kamphaeng Sean Campus, Nakhon Pathom 73140, Thailand
| | | | | | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
40
|
Outbreak of Porcine Reproductive and Respiratory Syndrome Virus 1 in Taiwan. Viruses 2020; 12:v12030316. [PMID: 32188123 PMCID: PMC7150920 DOI: 10.3390/v12030316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry worldwide. The PRRS virus (PRRSV) can be divided into two species, PRRSV 1 (European) and PRRSV 2 (North American). In Taiwan, PRRSV 2 isolates are dominant and cause respiratory symptoms in nursing pigs. From October to November 2018, in a pig herd in central Taiwan, pregnant sows had abortions and stillbirths, and piglets suffered from respiratory disorders. Laboratory tests identified the presence of PRRSV 1 in serum from sows and suckling piglets in this scenario. The complete genome of the identified PRRSV 1 strain was genetically closely related to that of a European PRRSV vaccine strain (98.2%). This local European isolate is designated as PRRSV/NPUST-2789-3W-2/TW/2018 (NPUST2789). This report is the first to indicate an outbreak in Taiwan of a PRRSV 1 strain that shares a common evolutionary ancestor with the European PRRSV vaccine strain.
Collapse
|
41
|
Xie C, Ha Z, Sun W, Nan F, Zhang P, Han J, Zhao G, Zhang H, Zhuang X, Lu H, Jin N. Construction and immunological evaluation of recombinant adenovirus vaccines co-expressing GP3 and GP5 of EU-type porcine reproductive and respiratory syndrome virus in pigs. J Vet Med Sci 2019; 81:1879-1886. [PMID: 31694992 PMCID: PMC6943305 DOI: 10.1292/jvms.19-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) keeps causing economic
damages in the swine sector across the globe. There has been emergence of the European
(EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) in
China in recent years. The presently available vaccines cannot unable to provide safeguard
against PRRSV infection completely. This study was aimed to construct recombinant
adenovirus expressing the ORF3 and ORF5 genes of the EU-type PRRSV strain. Then, the
recombinant adenovirus vaccines for EU-type PRRSV (rAd-E3518, rAd-E35, rAd-E3 and rAd-E5)
which we constructed and evaluated were constructed and identified by western blot and
PCR. All recombinant adenovirus vaccines were evaluated for humoral and cellular responses
and EU-type PRRSV challenge in pigs. The results showed that the group of rAd-E3518+Quil A
developed higher GP3 and GP5 specific antibody responses compared to the group of
rAd-E3518. The majority of the neutralizing antibody titers were higher than 1:16
(P<0.05), the fusion of IL-18 has increased significantly
PRRSV-stimulated secretion of IFN-γ and IL-4 in porcine serum, the group of rAd-E3518+Quil
A produced highest T-lymphocytes (CD3+CD4+ and
CD3+CD8+ T cells) proliferative in peripheral blood of pigs. The
animals were challenged with the EU-type PRRSV strain and the viral load was detected in
the several tissues, the viral load of rAd-E3518 and rAd-E3518+Quil A were lower than the
wild-type adenovirus group. Our findings provide evidence to confirm that the recombinant
adenovirus vaccine can protect pigs from EU-PRRSV infection.
Collapse
Affiliation(s)
- Changzhan Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhuo Ha
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Wenchao Sun
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Fulong Nan
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Ping Zhang
- Institute of specialty, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jicheng Han
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Guanyu Zhao
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - He Zhang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinyu Zhuang
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China
| | - Huijun Lu
- Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Ningyi Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Institute of Military Veterinary Medicine, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
42
|
Genetic diversity of porcine reproductive and respiratory syndrome virus 1 in the United States of America from 2010 to 2018. Vet Microbiol 2019; 239:108486. [PMID: 31767088 DOI: 10.1016/j.vetmic.2019.108486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/27/2023]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in the United States of America (USA) in 1999, several strains were also recognized soon later, and these isolates are typically called North American (NA) PRRSV-1. However, few reports have characterized PRRSV-1 viruses in the USA. We explored the genetic characteristics and diversity of PRRSV-1 viruses circulating in the USA. PRRSV-1 PCR-positive samples collected from seven states in 2010-2018 (n = 27) were subjected to next-generation sequencing. The 27 PRRSV-1 viruses had 88.4-91.3% nucleotide identity to the PRRSV-1 Lelystad-virus strain (the type 1 prototype strain) and 87.4-89.8% to the previously reported NA PRRSV-1 viruses. Individual proteins had several unique genetic characteristics and only one of the 27 tested samples had the characteristic 17-amino acid (aa) deletion in Nsp2, a genetic marker of NA PRRSV-1 viruses described previously. Fourteen isolates displayed a 3-aa C-terminal truncation in the highly conserved Nsp12 gene; 16 samples had a 21- or 18-aa C-terminal truncation in GP3 gene; and one was observed with a 1-aa deletion at the overlapping region of GP3 and GP4. In addition, the GP5 protein in most isolates, excluding one exception, demonstrated similar genetic variation as other reported NA PRRSV-1 isolates. All tested isolates clustered within subtype 1 together with other available NA PRRSV-1 viruses. Collectively, our results provide up-to-date information on PRRSV-1 viruses circulating in the USA in the past 9 years although the number of PRRSV-1 isolates included in this study is limited. These PRRSV-1 viruses have undergone gradual genetic variation and exhibited some previously undescribed genetic characteristics and diversity, which complicates the diagnosis and control of NA PRRSV-1.
Collapse
|
43
|
Chen N, Ye M, Huang Y, Li S, Xiao Y, Li X, Li S, Li X, Yu X, Tian K, Zhu J. Identification of Two Porcine Reproductive and Respiratory Syndrome Virus Variants Sharing High Genomic Homology but with Distinct Virulence. Viruses 2019; 11:v11090875. [PMID: 31540541 PMCID: PMC6783987 DOI: 10.3390/v11090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic loss to the global swine industry. Even though several control strategies have been applied, PRRS is still not effectively controlled due to the continuous emergence of new variants and limited cross-protection by current vaccines. During the routine epidemiological investigation in 2017, two PRRSV variants were identified from a severe abortion farm and a clinically healthy farm, respectively. The viruses were isolated and denominated as XJ17-5 and JSTZ1712-12. Genomic sequencing indicated that their genomes are both 14,960 bp in length sharing 99.45% nucleotide identity. Sequence alignments identified a discontinuous 30-amino-acid deletion and a continuous 120-amino-acid deletion in nsp2 of both isolates. Genome-based phylogenetic analysis confirmed that XJ17-5 and JSTZ1712-12 belong to the HP-PRRSV subtype but form a new branch with other isolates containing the same 150-amino-acid deletion in nsp2. Pathogenic analysis showed that XJ17-5 is highly virulent causing 60% mortality, while JSTZ1712-12 is avirulent for piglets. Furthermore, fragment comparisons identified 34-amino-acid differences between XJ17-5 and JSTZ1712-12 that might be associated with the distinct virulence. The identification of highly homologous HP-PRRSV variants with new genetic feature and distinct virulence contributes to further analyze the pathogenesis and evolution of PRRSV in the field.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yucheng Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangdong Li
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, Henan 471003, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
44
|
Chen N, Ye M, Xiao Y, Li S, Huang Y, Li X, Tian K, Zhu J. Development of universal and quadruplex real-time RT-PCR assays for simultaneous detection and differentiation of porcine reproductive and respiratory syndrome viruses. Transbound Emerg Dis 2019; 66:2271-2278. [PMID: 31233656 DOI: 10.1111/tbed.13276] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV1) and 2 (PRRSV2) (including 3 major subtypes: classical (CA-PRRSV2), highly pathogenic (HP-PRRSV2) and NADC30-like (NL-PRRSV2)) are currently coexisting in Chinese swine herds but with distinct virulence. Reliable detection and differentiation assays are crucial to monitor the prevalence of PRRSV and to adopt effective control strategies. However, current diagnostic methods cannot simultaneously differentiate the four major groups of PRRSV in China. In this study, universal and quadruplex real-time RT-PCR assays using TaqMan-MGB probes were developed for simultaneous detection and differentiation of Chinese PRRSV isolates. The newly developed real-time RT-PCR assays exhibited good specificity, sensitivity, repeatability and reproducibility. In addition, the newly developed real-time RT-PCR assays were further validated by comparing with a universal PRRSV conventional RT-PCR assay on the detection of 664 clinical samples collected from 2016 to 2019 in China. Based on the clinical performance, the agreements between the universal and quadruplex real-time RT-PCR assays and the conventional RT-PCR assay were 99.55% and 99.40%, respectively. Totally 90 samples were detected as PRRSV-positive, including 2 samples that were determined to be co-infected with NL-PRRSV2 and HP-PRRSV2 isolates by the quadruplex real-time RT-PCR assay. ORF5 sequencing confirmed the real-time RT-PCR results that 2, 6, 27 and 57 of the 92 sequences were PRRSV1, CA-PRRSV2, NL-PRRSV2 and HP-PRRSV2, respectively. This study provides promising alternative tools for simultaneous detection and differentiation of PRRSV circulating in Chinese swine herds.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yucheng Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiangdong Li
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, High-Tech District, Luoyang, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,OIE Porcine Reproductive and Respiratory Syndrome Virus Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Bi C, Shao Z, Li J, Weng C. Identification of novel epitopes targeting non-structural protein 2 of PRRSV using monoclonal antibodies. Appl Microbiol Biotechnol 2019; 103:2689-2699. [DOI: 10.1007/s00253-019-09665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/30/2022]
|
46
|
Chen N, Huang Y, Ye M, Li S, Xiao Y, Cui B, Zhu J. Co-infection status of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) in eight regions of China from 2016 to 2018. INFECTION GENETICS AND EVOLUTION 2018; 68:127-135. [PMID: 30572028 DOI: 10.1016/j.meegid.2018.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) are economically important swine viruses that cause reproductive failure and/or respiratory symptoms in pigs. However, the co-infection status of these viruses in Chinese swine herds is not well clarified. In this study, we evaluated the co-infection of these four viruses in 159 pigs collected from 63 herds in eight regions of China from 2016 to 2018. CSFV, PRRSV, PCV2 and PCV3 were detected in 14, 56, 43 and 4 of the pigs, respectively. The percentage of singular infections was 32.71%, while the percentages of dual infections and multiple infections were 15.72% and 3.15%, respectively. The E2 of CSFV, ORF5 of PRRSV, ORF2s of PCV2 and PCV3 from all positive samples were determined and used for phylogenetic analyses. E2-based phylogenetic tree showed that all 14 CSFVs identified in this study belong to 2.1b subtype. ORF5-based phylogenetic tree showed that PRRSV2 is predominant in China while PRRSV1 can also be detected. In addition, 35, 16, 4 and 1 of our PRRSVs are clustered with highly pathogenic PRRSV2, NADC30-like PRRSV2, classical PRRSV2 and PRRSV1, respectively. ORF2-based phylogenetic trees showed that our PCVs are grouped with 2 PCV2 subtypes (PCV2d and PCV2b) and 3 PCV3 subtypes (PCV3a, PCV3b and PCV3c), respectively. Our results provide the latest co-infection status and the diversity of four important swine viruses in Chinese swine herds, which is beneficial for understanding the epidemiology of these viruses.
Collapse
Affiliation(s)
- Nanhua Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Yucheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mengxue Ye
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shuai Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Bailei Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
47
|
Chen N, Li S, Ye M, Huang Y, Huang Y, Xiao Y, Yu X, Dong J, Tian K, Zhu J. A novel NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV) plays a limited role in the pathogenicity of porcine circoviruses (PCV2 and PCV3) and PRRSV co-infection. Transbound Emerg Dis 2018; 66:28-34. [PMID: 30267610 DOI: 10.1111/tbed.13026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
Co-infection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCVs) is commonly observed under field conditions and elicits more severe diseases than any singular infection. In this study, the co-infection of PRRSV, PCV2 and PCV3 was analyzed in tissue samples collected from 150 pigs from April 2016 to April 2018. PRRSV, PCV2 and PCV3 was detected in 55 (36.67%), 43 (28.67%) and 3 (2%) of 150 pigs respectively. Remarkably, one lung sample (SD17-36) collected from a diseased pig was co-infected with PRRSV, PCV2 and PCV3. The complete genomes of SD17-36 viruses of PRRSV, PCV2 and PCV3 were determined, which belong to the subgroups of NADC30-like PRRSV, PCV2d and PCV3a respectively. Sequence comparison showed that PRRSV SD17-36 isolate contains a N33 deletion in GP5. Animal challenge study showed that the novel NADC30-like PRRSV SD17-36 isolate is low pathogenic. Our results indicate that the co-infection of PRRSV and PCVs might cause diseases even when PRRSV plays a limited role in the pathogenicity of the co-infection.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yucheng Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ya Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao Yu
- Animal Husbandry and Veterinary Station of Jiangyan District, Taizhou, China
| | - Jianbao Dong
- Department of Veterinary Medical Science, Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Kegong Tian
- OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
48
|
Jeong J, Park C, Oh T, Park KH, Yang S, Kang I, Park SJ, Chae C. Cross-protection of a modified-live porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine against a heterologous PRRSV-1 challenge in late-term pregnancy gilts. Vet Microbiol 2018; 223:119-125. [PMID: 30173737 DOI: 10.1016/j.vetmic.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 11/29/2022]
Abstract
We have evaluated the cross-protection of a modified-live virus (MLV) vaccine based on porcine reproductive and respiratory syndrome virus (PRRSV)-2, against a heterologous PRRSV-1 challenge in late term pregnancy gilts. Gilts were vaccinated 42 days prior to breeding and then challenged intranasally with PRRSV-1 at 93 days of gestation. No local or systemic adverse effects related to vaccination were observed in the vaccinated gilts throughout the study. Vaccination resulted in a longer gestation period, a higher number of live-born and weaned piglets, and a significant decrease in the number of stillborn piglets compared to the unvaccinated group. The PRRSV-2 MLV vaccine was also able to significantly reduce PRRSV-1 viremia. At the time of PRRSV-1 challenge, vaccinated gilts had significantly higher PRRSV-1 specific interferon-γ secreting cells but low neutralizing antibody titers against PRRSV-1 compared to unvaccinated gilts. This correlated with a reduction of PRRSV-1 viremia, indicating that cell-mediated rather than humoral immunity played a role in PRRSV-1 clearance from the blood. Fetal thymic tissues from vaccinated pregnant gilts had fewer PRRSV-1 positive cells compared to unvaccinated gilts. Taken together these results indicate that vaccination of gilts with PRRSV-2 MLV vaccine can provide cross-protection against PRRSV-1 challenge and improve reproductive performance.
Collapse
Affiliation(s)
- Jiwoon Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changhoon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kee Hwan Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Siyeon Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ikjae Kang
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Su-Jin Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
49
|
Chen N, Ye M, Li S, Huang Y, Zhou R, Yu X, Tian K, Zhu J. Emergence of a novel highly pathogenic recombinant virus from three lineages of porcine reproductive and respiratory syndrome virus 2 in China 2017. Transbound Emerg Dis 2018; 65:1775-1785. [PMID: 29992742 DOI: 10.1111/tbed.12952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
Abstract
A novel porcine reproductive and respiratory syndrome virus 2 (PRRSV2) was isolated from diseased piglets in Shandong, China in 2017 and denominated as SD17-38. ORF5 sequencing showed that SD17-38 contains a unique serine/asparagine deletion at position 33 and an asparagine insertion at position 60 of GP5, which has never been described. The SD17-38 complete genome was then determined, and genome-based phylogenetic analysis showed that SD17-38 is clustered with NADC30-like isolates. Sequence alignment and recombination analyses by RDP4 and SimPlot all indicated that SD17-38 is a recombinant virus from NADC30 (lineage 1), BJ-4 (lineage 5) and TJ (lineage 8) isolates. Animal challenge study in 4-week piglets showed that SD17-38 causes high fever (≥41°C), 100% morbidity and 40% mortality. In addition, significantly lower weight gain and severe histopathological lung lesions could be observed in SD17-38-infected pigs. In particular, the unique deletion and insertion in GP5 were stable during the challenge study. This study provides direct evidence for the natural occurrence of recombination events among three lineages of PRRSV2 in Chinese swine herds, resulting in the emergence of novel PRRSV variant with unique genetic property and high pathogenicity.
Collapse
Affiliation(s)
- Nanhua Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Mengxue Ye
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yucheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Rongyun Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiuling Yu
- OIE Porcine Reproductive and Respiratory Syndrome Virus Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Kegong Tian
- OIE Porcine Reproductive and Respiratory Syndrome Virus Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Jianzhong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
50
|
Zhai SL, Lin T, Zhou X, Pei ZF, Wei ZZ, Zhang H, Wen XH, Chen QL, Lv DH, Wei WK. Phylogeographic analysis of porcine reproductive and respiratory syndrome virus 1 in Guangdong province, Southern China. Arch Virol 2018; 163:2443-2449. [PMID: 29749588 DOI: 10.1007/s00705-018-3873-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/27/2018] [Indexed: 02/02/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is considered an important economic pathogen for the international swine industry. At present, both PRRSV-1 and PRRSV-2 have been confirmed to be co-circulating in China. However, there is little available information about the prevalence or distribution of PRRSV-1 in Guangdong province, southern China. In this study, we performed molecular detection of PRRSV-1 in 750 samples collected from 50 farms in 15 major pig farming regions in this province. After RT-PCR testing, 64% (32/50) of farms were confirmed as PRRSV-1-positive. Surprisingly, PRRSV-1 was circulating on at least one pig farm in all 15 regions; of the 750 samples, 186 samples (24.8%) were positive for PRRSV-1. Furthermore, 15 representative PRRSV-1 ORF5 sequences (606 bp) (n = 1 per region) were obtained from those PRRSV-1-positive regions. Sequence alignment analysis indicated that they shared 81.8% ~ 100% nucleotide and 81.2% ~ 100% amino acid similarity with each other. Although all current PRRSV-1 sequences were divided into pandemic subtype 1, most of them had unique glycoprotein-5 amino acid sequences that are significantly different from other known PRRSV-1 isolates. To conclude, the present findings revealed wide geographical distribution of PRRSV-1 in Guangdong province, southern China. This study further extends the epidemiological significance of PRRSV-1 in China.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, China Ministry of Agriculture/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Xia Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhang-Fu Pei
- Guangdong Wens Dahuanong Biotechnology Co., Ltd, Xinxing, China
| | - Zu-Zhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - He Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Hui Wen
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, China Ministry of Agriculture/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qin-Ling Chen
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, China Ministry of Agriculture/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dian-Hong Lv
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, China Ministry of Agriculture/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Wen-Kang Wei
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, China Ministry of Agriculture/Key Laboratory of Livestock Disease Prevention of Guangdong Province/Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|