1
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
2
|
Hoff FW, Rolwes J, Hardeman PA, Perkins M, Major EO, Douek D, Collins RH, Greenberg BM. Long-term outcome of progressive multifocal leukoencephalopathy with recombinant interleukin-2 treatment and an associated increase in the number of HPyV-2-specific T-cells: a case report. Ther Adv Hematol 2023; 14:20406207231201721. [PMID: 37822572 PMCID: PMC10563476 DOI: 10.1177/20406207231201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by reactivation of the human polyomavirus 2 (HPyV-2). PML is associated with a high morbidity and mortality rate and there is currently no standard curative therapy. We report short-term immunologic response and long-term clinical outcomes in a patient diagnosed with follicular lymphoma (FL) who developed PML. Diagnosis of PML was established conclusively based on findings from a brain biopsy. The patient was treated with recombinant interleukin 2 (IL-2) and showed rapid clinical improvement. HPyV-2-specific T-cells were tracked longitudinally and correlation with clinical status, viral load, and radiographic imaging was documented. After the progression of the patient's FL, which required an allogeneic bone marrow transplant, the patient prophylactically received human leukocyte antigen-matched donor-derived HPyV-2 T-cells to prevent the recurrence of the PML as part of a clinical trial. Twelve years after the initial diagnosis of PML, he did not develop a relapse of his PML, supporting data that therapies that increase HPyV-2-specific T-cells, including IL-2, may be effective in the management of PML.
Collapse
Affiliation(s)
- Fieke W Hoff
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - John Rolwes
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Paula A Hardeman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Molly Perkins
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eugene O Major
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert H Collins
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8806, USA
| | - Benjamin M Greenberg
- Department of Neurology, O'Donnell Brain Institute, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8806, USA
| |
Collapse
|
3
|
Bakirtzis C, Lima M, De Lorenzo SS, Artemiadis A, Theotokis P, Kesidou E, Konstantinidou N, Sintila SA, Boziki MK, Parissis D, Ioannidis P, Karapanayiotides T, Hadjigeorgiou G, Grigoriadis N. Secondary Central Nervous System Demyelinating Disorders in the Elderly: A Narrative Review. Healthcare (Basel) 2023; 11:2126. [PMID: 37570367 PMCID: PMC10418902 DOI: 10.3390/healthcare11152126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Secondary demyelinating diseases comprise a wide spectrum group of pathological conditions and may either be attributed to a disorder primarily affecting the neurons or axons, followed by demyelination, or to an underlying condition leading to secondary damage of the myelin sheath. In the elderly, primary demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis, are relatively uncommon. However, secondary causes of CNS demyelination may often occur and in this case, extensive diagnostic workup is usually needed. Infectious, postinfectious, or postvaccinal demyelination may be observed, attributed to age-related alterations of the immune system in this population. Osmotic disturbances and nutritional deficiencies, more commonly observed in the elderly, may lead to conditions such as pontine/extrapontine myelinolysis, Wernicke encephalopathy, and demyelination of the posterior columns of the spinal cord. The prevalence of malignancies is higher in the elderly, sometimes leading to radiation-induced, immunotherapy-related, or paraneoplastic CNS demyelination. This review intends to aid clinical neurologists in broadening their diagnostic approach to secondary CNS demyelinating diseases in the elderly. Common clinical conditions leading to secondary demyelination and their clinical manifestations are summarized here, while the current knowledge of the underlying pathophysiological mechanisms is additionally presented.
Collapse
Affiliation(s)
- Christos Bakirtzis
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Maria Lima
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Artemios Artemiadis
- Faculty of Medicine, University of Cyprus, Nicosia CY-2029, Cyprus; (A.A.); (G.H.)
| | - Paschalis Theotokis
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Evangelia Kesidou
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Natalia Konstantinidou
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Styliani-Aggeliki Sintila
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Marina-Kleopatra Boziki
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Dimitrios Parissis
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Panagiotis Ioannidis
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | - Theodoros Karapanayiotides
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| | | | - Nikolaos Grigoriadis
- Second Department of Neurology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.L.); (S.S.D.L.); (P.T.); (E.K.); (N.K.); (S.-A.S.); (M.-K.B.); (D.P.); (P.I.); (T.K.); (N.G.)
| |
Collapse
|
4
|
Alvarez-Mulett S, Sepkowitz E, Sepkowitz D. Newly diagnosed AIDS patient with cerebellar JC virus. IDCases 2023; 33:e01842. [PMID: 37645527 PMCID: PMC10461121 DOI: 10.1016/j.idcr.2023.e01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 08/31/2023] Open
Abstract
We present a case of a 57-year-old man with newly diagnosed acquired immunodeficiency syndrome (AIDS) infection who initially sought care for progressive dysarthria and gait instability. Neuroimaging and CSF studies revealed a diagnosis of progressive multifocal leukoencephalopathy (PML). Although the patient's human immunodeficiency virus (HIV) decreased considerably in response to anti-retroviral therapy, he continued to deteriorate clinically. Ultimately, the central nervous system (CNS) lesions, which were once centered in the cerebellum, became expansile throughout his posterior fossa. There are few reported cases of cerebellar PML in patients with AIDS.
Collapse
Affiliation(s)
| | - Eli Sepkowitz
- Department of Physical Medicine & Rehabilitation, Northwell Hospital, Manhasset, NY, USA
| | - Douglas Sepkowitz
- Department of Infectious Disease, NYP-Brooklyn Methodist Hospital, Brooklyn, NY, USA
| |
Collapse
|
5
|
Dsilva L, McCarthy K, Lyons J, Cabigas B, Campbell N, Kong G, Adams B, Kuhelj R, Singhal P, Smirnakis K. Progressive multifocal leukoencephalopathy with natalizumab extended or standard interval dosing in the United States and the rest of the world. Expert Opin Drug Saf 2023; 22:995-1002. [PMID: 37272350 DOI: 10.1080/14740338.2023.2221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML), an important identified risk for natalizumab, has been described for standard interval dosing (SID; dosing interval every-4-weeks). Information on PML with natalizumab extended interval dosing (EID; dosing interval >every-4-weeks) in the US and the rest of the world (ROW) is limited. RESEARCH DESIGN AND METHODS A retrospective analysis of patient demographics, risk factors, clinical characteristics, and clinical outcomes was conducted on confirmed natalizumab EID and SID PML cases evaluated from Biogen pharmacovigilance systems. RESULTS Of 857 confirmed natalizumab PML cases, EID and SID accounted for 7.5% and 92.5%, respectively (US: 12.9% and 87.1%; ROW: 5.4% and 94.6%). PML risk factors included anti-JCV index > 1.5 (US: EID, 56.7% and SID, 12.8%; ROW: EID, 44.1% and SID, 21.0%), mean duration of natalizumab treatment (US: 90.0 and 70.2 months; ROW: 54.1 and 49.8 months), and prior immunosuppressive therapy (US: 20.0% and 21.7%; ROW:11.8% and 18.0%). In the EID and SID groups, 68.8% and 76.0% of patients, respectively, were alive at up to 2 years after diagnosis. CONCLUSIONS This analysis provides insights on PML in patients receiving natalizumab that extend current knowledge, particularly regarding PML in patients receiving natalizumab EID, which can be built upon in the future.
Collapse
Affiliation(s)
| | - Kerry McCarthy
- Drug Safety, Pharmacovigilance & Systems & Data Analytics, Biogen, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Karen Smirnakis
- Safety and Benefit Risk Management, Biogen, Cambridge, MA, USA
| |
Collapse
|
6
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Atypical presentations and course of JC virus infection. J Neurovirol 2022; 28:183-186. [PMID: 35001250 DOI: 10.1007/s13365-021-01031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/04/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
There is increasing evidence that the spectrum of human polyomavirus 2 (JCV) CNS disease includes novel syndromes other than progressive multifocal leukoencephalopathy (PML), the appreciation of which is increasingly important in the context of MS therapies and immunodeficiency states. Our objective is to describe unusual presentations of JCV infection to heighten clinician awareness. We describe three case reports of various PML presentations. Firstly a 56-year-old HIV positive male with decades of viral suppression and normal immune function presented with 1 month of non-specific headache that spontaneously resolved despite an MRI showing a new area of PML and CSF being JC DNA + . He had had two similar episodes in 2013 and 2014 with MRI scans consistent with PML, CSF, JCV, and PCR positivity once and brain biopsy-positive twice. Another 61-year-old male presented with subacute binocular vision loss and was found to have newly diagnosed HIV and JCV DNA detected in CSF. MRI brain only demonstrated symmetrical chiasmo-hypothalamic enhancement. There has been some improvement with combination antiretroviral therapy and corticosteroids for immune reconstitution inflammatory syndrome (IRIS). Thirdly, a 65-year-old male presented with subacute progressive confusion and behavioural disturbance, one year post-bilateral lung transplantation. MRI brain demonstrated no evidence of PML but CSF on three occasions demonstrated a progressively increasing JCV DNA load. Despite reduction in his immunosuppression, the patient developed profound encephalopathy without localising features leading to death two months later. These cases emphasise the atypical presentations of JCV: chronic relapsing, unusual symmetrical visual pathway disease, and non-localising encephalopathy without MRI evidence of PML.
Collapse
|
8
|
A Case of John Cunningham Virus Induced Rhombencephalitis after Rituximab Therapy for Idiopathic Thrombocytopenic Purpura. Case Rep Infect Dis 2021; 2021:5525053. [PMID: 34221521 PMCID: PMC8219458 DOI: 10.1155/2021/5525053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background John Cunningham virus (JCV) is known to cause progressive multifocal leukoencephalopathy (PML) in immuno-compromised patients due to lytic infection of oligodendrocytes and astrocytes. Rarely, it may also present as granule cell neuronopathy (GCN), leading to degeneration of cerebellar granule cell neurons. It is described in patients with underlying conditions or medication contributing to immune compromise. Case Presentation. A 73-year-old man presented with ataxia and difficulty in speech which began 3 months after initiation of treatment for idiopathic thrombocytopenic purpura with rituximab. Neurological examination was significant for torsional nystagmus, motor aphasia, right-sided dysmetria, and dysdiadochokinesia with gait ataxia. Magnetic resonance imaging (MRI) showed right cerebellar lesion and cerebrospinal fluid (CSF) polymerase chain reaction (PCR) was positive for JC virus. Conclusion The diagnosis of JC virus-related cerebellar disease can be missed, due to the subacute to chronic onset and challenges in detection. Clinicians should have a high degree of suspicion for development of these symptoms, even a few months after initiation of immune-modulatory therapy because the progression and outcomes can be disastrous.
Collapse
|
9
|
Saxena R, Saribas S, Jadiya P, Tomar D, Kaminski R, Elrod JW, Safak M. Human neurotropic polyomavirus, JC virus, agnoprotein targets mitochondrion and modulates its functions. Virology 2021; 553:135-153. [PMID: 33278736 PMCID: PMC7847276 DOI: 10.1016/j.virol.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.
Collapse
Affiliation(s)
- Reshu Saxena
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Rafal Kaminski
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
10
|
Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2020; 17:37-51. [PMID: 33219338 PMCID: PMC7678594 DOI: 10.1038/s41582-020-00427-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. In this Review, Cortese et al. provide an overview of the pathobiology and evolving presentations of progressive multifocal leukoencephalopathy and other diseases caused by JC virus, and discuss emerging immunotherapeutic approaches that could increase survival. Progressive multifocal leukoencephalopathy (PML) is a rare, debilitating and often fatal disease of the CNS caused by JC virus (JCV). JCV establishes asymptomatic, lifelong persistent or latent infection in immune competent hosts, but impairment of cellular immunity can lead to reactivation of JCV and PML. PML most commonly occurs in patients with HIV infection or lymphoproliferative disease and in patients who are receiving natalizumab for treatment of multiple sclerosis. The clinical phenotype of PML varies and is shaped primarily by the host immune response; changes in the treatment of underlying diseases associated with PML have changed phenotypes over time. Other clinical manifestations of JCV infection have been described, including granule cell neuronopathy. Survival of PML depends on reversal of the underlying immunosuppression; emerging immunotherapeutic strategies include use of checkpoint inhibitors and adoptive T cell transfer.
Collapse
Affiliation(s)
- Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
JC virus granule cell neuronopathy associated with Ruxolitinib: A case report and review of the literature. eNeurologicalSci 2020; 21:100269. [PMID: 32954021 PMCID: PMC7486434 DOI: 10.1016/j.ensci.2020.100269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
We report here a case of JC virus granule cell neuronopathy associated with Ruxolitinib It is worthwhile considering the possibility of JCV-GCN in myelofibrosis patients receiving ruxiolitinib, who present with progressive cerebellar symptoms and cerebellar atrophy. Combination therapy using mefloquine and mirtazapine may be an effective treatment.
Collapse
|
12
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Hidaka K, Takegami T. Characterization of JC Polyomavirus Derived from COS-IMRb Cells. Jpn J Infect Dis 2020; 74:48-53. [PMID: 32741932 DOI: 10.7883/yoken.jjid.2020.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system affecting immunocompromised patients. The study of PML-type JCPyV in vitro has been limited owing to the inefficient propagation of the virus in cultured cells. In this study, we carried out long-term culture of COS-7 cells (designated as COS-IMRb cells) transfected with PML-type M1-IMRb, an adapted viral DNA with a rearranged non-coding control region (NCCR). The JCPyV derived from COS-IMRb cells were characterized by analyzing the viral replication, amount of virus by hemagglutination (HA), production of viral protein 1 (VP1), and structure of the NCCR. HA assays indicated the presence of high amounts of PML-type JCPyV in COS-IMRb cells. Immunostaining showed only a small population of JCPyV carrying COS-IMRb cells to be VP1-positive. Sequencing analysis of the NCCR of JCPyV after long-term culture revealed that the NCCR of M1-IMRb was conserved in COS-IMRb cells without any point mutation. The JCPyV genomic DNA derived from a clone of COS-IMRb-3 cells was detected, via Southern blotting, as a single band of approximately 5.1 kbp without deletion. These findings suggest the potential of using COS-IMRb-3 cells as a useful tool for screening anti-JCPyV drugs.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Kanazawa Medical University, Japan.,Department of Medical Zoology, School of Medicine, Kanazawa Medical University, Japan
| | - Koushi Hidaka
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Japan
| |
Collapse
|
13
|
Cho KB. Diagnostic Method for the Detection of JC PolyomavirusUsing Loop-mediated Isothermal Amplification. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.4.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kyu Bong Cho
- Department of Biomedical Laboratory Science, Shinhan University, Uijeongbu, Korea
| |
Collapse
|
14
|
Saribas AS, Datta PK, Safak M. A comprehensive proteomics analysis of JC virus Agnoprotein-interacting proteins: Agnoprotein primarily targets the host proteins with coiled-coil motifs. Virology 2019; 540:104-118. [PMID: 31765920 DOI: 10.1016/j.virol.2019.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) Agnoprotein (Agno) plays critical roles in successful completion of the viral replication cycle. Understanding its regulatory roles requires a complete map of JCV-host protein interactions. Here, we report the first Agno interactome with host cellular targets utilizing "Two-Strep-Tag" affinity purification system coupled with mass spectroscopy (AP/MS). Proteomics data revealed that Agno primarily targets 501 cellular proteins, most of which contain "coiled-coil" motifs. Agno-host interactions occur in several cellular networks including those involved in protein synthesis and degradation; and cellular transport; and in organelles, including mitochondria, nucleus and ER-Golgi network. Among the Agno interactions, Rab11B, Importin and Crm-1 were first validated biochemically and further characterization was done for Crm-1, using a HIV-1 Rev-M10-like Agno mutant (L33D + E34L), revealing the critical roles of L33 and E34 residues in Crm-1 interaction. This comprehensive proteomics data provides new foundations to unravel the critical regulatory roles of Agno during the JCV life cycle.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Prasun K Datta
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
15
|
Reoma LB, Trindade CJ, Monaco MC, Solis J, Montojo MG, Vu P, Johnson K, Beck E, Nair G, Khan OI, Quezado M, Hewitt SM, Reich DS, Childs R, Nath A. Fatal encephalopathy with wild-type JC virus and ruxolitinib therapy. Ann Neurol 2019; 86:878-884. [PMID: 31600832 DOI: 10.1002/ana.25608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE JC virus (JCV) infection is a lytic infection of oligodendrocytes in progressive multifocal leukoencephalopathy; less common forms of central nervous system manifestations associated with JCV infection include granule cell neuronopathy, encephalopathy, and meningitis. Presented is the first case of fatal JCV encephalopathy after immunosuppressive therapy that included ruxolitinib. METHODS Postmortem analysis included next generation sequencing, Sanger sequencing, tissue immunohistochemistry, and formalin-fixed hemisphere 7T magnetic resonance imaging. RESULTS JCV DNA isolated from postmortem tissue samples identified a novel 12bp insertion that altered the transcription site binding pattern in an otherwise "wild-type virus," which has long been thought to be the nonpathogenic form of JCV. Anti-VP1 staining demonstrated infection in cortical neurons, hippocampal neurons, and glial and endothelial cells. INTERPRETATION This expands the spectrum of identified JCV diseases associated with broad-spectrum immunosuppression, including JAK-STAT inhibitors, and sheds light on an additional neurotropic virus strain of the archetype variety. ANN NEUROL 2019;86:878-884.
Collapse
Affiliation(s)
- Lauren Bowen Reoma
- Sections of Infections of the Nervous System, NIH National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD
| | | | | | - Jamie Solis
- Sections of Infections of the Nervous System, NIH National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD
| | - Marta Garcia Montojo
- Sections of Infections of the Nervous System, NIH National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD
| | - Phuong Vu
- Medical Oncology Service, NCI, Bethesda, MD
| | | | - Erin Beck
- Translational Neuroradiology Unit, NINDS, Bethesda, MD
| | - Govind Nair
- Translational Neuroradiology Unit, NINDS, Bethesda, MD
| | - Omar I Khan
- Neurology Consult Service, NINDS, Bethesda, MD
| | - Marta Quezado
- Surgical Pathology, Lab of Pathology, NCI, Bethesda, MD
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Lab of Pathology, NIH National Cancer Institute (NCI), Bethesda, MD
| | | | | | - Avindra Nath
- Sections of Infections of the Nervous System, NIH National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD
| |
Collapse
|
16
|
Abstract
JC virus is the etiological agent of progressive multifocal leukoencephalopathy, a white matter demyelinating disease that mostly affects immunocompromised patients. JC virus can also infect neurons and meningeal cells and cause encephalitis, meningitis and granule cell neuronopathy. We report a patient with JC virus granule cell neuronopathy, without concomitant progressive multifocal leukoencephalopathy, presenting as inaugural acquired immune deficiency syndrome-related illness. This patient's human immunodeficiency virus infection remained undiagnosed for several months after neurological symptoms onset. We review JC virus pathophysiology, clinical manifestations, treatment and prognosis, and emphasize the importance of considering human immunodeficiency virus infection and related opportunistic infections in the differential diagnosis of new-onset isolated cerebellar disease.
Collapse
|
17
|
Bartsch T, Rempe T, Leypoldt F, Riedel C, Jansen O, Berg D, Deuschl G. The spectrum of progressive multifocal leukoencephalopathy: a practical approach. Eur J Neurol 2019; 26:566-e41. [PMID: 30629326 DOI: 10.1111/ene.13906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
John Cunningham virus (JCV) infection of the central nervous system causes progressive multifocal leukoencephalopathy (PML) in patients with systemic immunosuppression. With the increased application of modern immunotherapy and biologics in various immune-mediated disorders, the PML risk spectrum has changed. Thus, new tools and strategies for risk assessment and stratification in drug-associated PML such as the JCV antibody indices have been introduced. Imaging studies have highlighted atypical presentations of cerebral JCV disease such as granule cell neuronopathy. Imaging markers have been developed to differentiate PML from new multiple sclerosis lesions and to facilitate the early identification of pre-clinical manifestations of PML and its immune reconstitution inflammatory syndrome. PML can be diagnosed either by brain biopsy or by clinical, radiographic and virological criteria. Experimental treatment options including immunization and modulation of interleukin-mediated immune response are emerging. PML should be considered in any patient with compromised systemic or central nervous system immune surveillance presenting with progressive neurological symptoms.
Collapse
Affiliation(s)
- T Bartsch
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - T Rempe
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - F Leypoldt
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Neuroimmunology, Institute of Clinical Chemistry, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Riedel
- Institute of Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - O Jansen
- Institute of Neuroradiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - D Berg
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - G Deuschl
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
18
|
Saribas AS, Coric P, Bouaziz S, Safak M. Expression of novel proteins by polyomaviruses and recent advances in the structural and functional features of agnoprotein of JC virus, BK virus, and simian virus 40. J Cell Physiol 2018; 234:8295-8315. [PMID: 30390301 DOI: 10.1002/jcp.27715] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022]
Abstract
Polyomavirus family consists of a highly diverse group of small DNA viruses. The founding family member (MPyV) was first discovered in the newborn mouse in the late 1950s, which induces solid tumors in a wide variety of tissue types that are the epithelial and mesenchymal origin. Later, other family members were also isolated from a number of mammalian, avian and fish species. Some of these viruses significantly contributed to our current understanding of the fundamentals of modern biology such as transcription, replication, splicing, RNA editing, and cell transformation. After the discovery of first two human polyomaviruses (JC virus [JCV] and BK virus [BKV]) in the early 1970s, there has been a rapid expansion in the number of human polyomaviruses in recent years due to the availability of the new technologies and brought the present number to 14. Some of the human polyomaviruses cause considerably serious human diseases, including progressive multifocal leukoencephalopathy, polyomavirus-associated nephropathy, Merkel cell carcinoma, and trichodysplasia spinulosa. Emerging evidence suggests that the expression of the polyomavirus genome is more complex than previously thought. In addition to encoding universally expressed regulatory and structural proteins (LT-Ag, Sm t-Ag, VP1, VP2, and VP3), some polyomaviruses express additional virus-specific regulatory proteins and microRNAs. This review summarizes the recent advances in polyomavirus genome expression with respect to the new viral proteins and microRNAs other than the universally expressed ones. In addition, a special emphasis is devoted to the recent structural and functional discoveries in the field of polyomavirus agnoprotein which is expressed only by JCV, BKV, and simian virus 40 genomes.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Pascale Coric
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, Sorbonne Paris Cité, UMR 8015 CNRS, Paris, France
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Mills EA, Mao-Draayer Y. Understanding Progressive Multifocal Leukoencephalopathy Risk in Multiple Sclerosis Patients Treated with Immunomodulatory Therapies: A Bird's Eye View. Front Immunol 2018; 9:138. [PMID: 29456537 PMCID: PMC5801425 DOI: 10.3389/fimmu.2018.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
The increased use of newer potent immunomodulatory therapies for multiple sclerosis (MS), including natalizumab, fingolimod, and dimethyl fumarate, has expanded the patient population at risk for developing progressive multifocal leukoencephalopathy (PML). These MS therapies shift the profile of lymphocytes within the central nervous system (CNS) leading to increased anti-inflammatory subsets and decreased immunosurveillance. Similar to MS, PML is a demyelinating disease of the CNS, but it is caused by the JC virus. The manifestation of PML requires the presence of an active, genetically rearranged form of the JC virus within CNS glial cells, coupled with the loss of appropriate JC virus-specific immune responses. The reliability of metrics used to predict risk for PML could be improved if all three components, i.e., viral genetic strain, localization, and host immune function, were taken into account. Advances in our understanding of the critical lymphocyte subpopulation changes induced by these MS therapies and ability to detect viral mutation and reactivation will facilitate efforts to develop these metrics.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
20
|
ViroFind: A novel target-enrichment deep-sequencing platform reveals a complex JC virus population in the brain of PML patients. PLoS One 2018; 13:e0186945. [PMID: 29360822 PMCID: PMC5779639 DOI: 10.1371/journal.pone.0186945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Deep nucleotide sequencing enables the unbiased, broad-spectrum detection of viruses in clinical samples without requiring an a priori hypothesis for the source of infection. However, its use in clinical research applications is limited by low cost-effectiveness given that most of the sequencing information from clinical samples is related to the human genome, which renders the analysis of viral genomes challenging. To overcome this limitation we developed ViroFind, an in-solution target-enrichment platform for virus detection and discovery in clinical samples. ViroFind comprises 165,433 viral probes that cover the genomes of 535 selected DNA and RNA viruses that infect humans or could cause zoonosis. The ViroFind probes are used in a hybridization reaction to enrich viral sequences and therefore enhance the detection of viral genomes via deep sequencing. We used ViroFind to detect and analyze all viral populations in the brain of 5 patients with progressive multifocal leukoencephalopathy (PML) and of 18 control subjects with no known neurological disease. Compared to direct deep sequencing, by using ViroFind we enriched viral sequences present in the clinical samples up to 127-fold. We discovered highly complex polyoma virus JC populations in the PML brain samples with a remarkable degree of genetic divergence among the JC virus variants of each PML brain sample. Specifically for the viral capsid protein VP1 gene, we identified 24 single nucleotide substitutions, 12 of which were associated with amino acid changes. The most frequent (4 of 5 samples, 80%) amino acid change was D66H, which is associated with enhanced tissue tropism, and hence likely a viral fitness advantage, compared to other variants. Lastly, we also detected sparse JC virus sequences in 10 of 18 (55.5%) of control samples and sparse human herpes virus 6B (HHV6B) sequences in the brain of 11 of 18 (61.1%) control subjects. In sum, ViroFind enabled the in-depth analysis of all viral genomes in PML and control brain samples and allowed us to demonstrate a high degree of JC virus genetic divergence in vivo that has been previously underappreciated. ViroFind can be used to investigate the structure of the virome with unprecedented depth in health and disease state.
Collapse
|
21
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Takegami T. CPT11 prevents virus replication in JCI cells persistently infected with JC polyomavirus. Microbiol Immunol 2017; 61:232-238. [PMID: 28463406 DOI: 10.1111/1348-0421.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/04/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab-related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β-lapachone have inhibitory effects on JCPyV replication in IMR-32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT-PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7-ethy-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real-time PCR combined with Dpn I treatment in IMR-32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR-32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose-dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β-lapachone. These findings suggest that CPT11 may be a potential anti-JCPyV agent that could be used to treat PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
22
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
A Difficult Decision: Atypical JC Polyomavirus Encephalopathy in a Kidney Transplant Recipient. Transplantation 2017; 101:1461-1467. [PMID: 27367472 DOI: 10.1097/tp.0000000000001275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND A number of cerebral manifestations are associated with JC polyomavirus (JCPyV) which are diagnosed by detection of JCPyV in cerebrospinal fluid (CSF), often with the support of cerebral imaging. Here we present an unusual case of a kidney transplant patient presenting with progressive neurological deterioration attributed to JCPyV encephalopathy. METHODS Quantitative polymerase chain reaction JCPyV was used prospectively and retrospectively to track the viral load within the patient blood, urine, CSF, and kidney sections. A JCPyV VP1 enzyme-linked immunosorbent assay was used to measure patient and donor antibody titers. Immunohistochemical staining was used to identify active JCPyV infection within the kidney allograft. RESULTS JC polyomavirus was detected in the CSF at the time of presentation. JC polyomavirus was not detected in pretransplant serum, however viral loads increased with time, peaking during the height of the neurological symptoms (1.5E copies/mL). No parenchymal brain lesions were evident on imaging, but transient cerebral venous sinus thrombosis was present. Progressive decline in neurological function necessitated immunotherapy cessation and allograft removal, which led to decreasing serum viral loads and resolution of neurological symptoms. JC polyomavirus was detected within the graft's collecting duct cells using quantitative polymerase chain reaction and immunohistochemical staining. The patient was JCPyV naive pretransplant, but showed high antibody titers during the neurological symptoms, with the IgM decrease paralleling the viral load after graft removal. CONCLUSIONS We report a case of atypical JCPyV encephalopathy associated with cerebral venous sinus thrombosis and disseminated primary JCPyV infection originating from the kidney allograft. Clinical improvement followed removal of the allograft and cessation of immunosuppression.
Collapse
|
24
|
Assetta B, Atwood WJ. The biology of JC polyomavirus. Biol Chem 2017; 398:839-855. [PMID: 28493815 DOI: 10.1515/hsz-2016-0345] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.
Collapse
|
25
|
Holroyd KB, Sotirchos ES, DeBoer SR, Mills KA, Newsome SD. JC virus granule cell neuronopathy onset two months after chemotherapy for low-grade lymphoma. CEREBELLUM & ATAXIAS 2017; 4:8. [PMID: 28652923 PMCID: PMC5481904 DOI: 10.1186/s40673-017-0066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/14/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Granule cell neuronopathy (GCN) is a rare disease caused by the JC virus, leading to degeneration of cerebellar granule cell neurons. Primarily described in patients with AIDS, it has also been diagnosed in patients with lymphoproliferative diseases and after long-term treatment with immune-suppressing medications such as natalizumab. CASE PRESENTATION A 69 year old woman presented with progressive ataxia which began 2 months after initiation of treatment for follicular low-grade B cell lymphoma with rituximab/bendamustine, and progressed for 2 years prior to admission. Extensive prior evaluation included MRI that showed atrophy of the cerebellum but normal CSF analysis and serum studies. Neurologic exam on admission was notable for severe appendicular ataxia and fatigable end-gaze direction-changing horizontal nystagmus. FDG-PET/CT scan was unremarkable and repeat lumbar puncture revealed 2 WBCs/mm3, 148 RBCs/mm3, glucose 70 mg/dL, protein 37.7 mg/dL and negative flow cytometry/cytopathology. Standard CSF JC virus PCR testing was negative, but ultrasensitive TaqMan real-time JC virus PCR testing was positive, consistent with JC virus-related GCN. CONCLUSIONS Because of the diagnostic challenges in identifying GCN, a high threshold of suspicion should be maintained in patients with an immune-suppressing condition such as lymphoma or on immune-suppressing agents such as rituximab, even shortly after initiation of therapy.
Collapse
Affiliation(s)
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Scott R DeBoer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Scott D Newsome
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA.,Division of Neuroimmunology and Neurological Infections, Johns Hopkins Hospital, 600 North Wolfe St., Pathology 627, Baltimore, MD 21287 USA
| |
Collapse
|
26
|
Nukuzuma S, Nakamichi K, Kameoka M, Sugiura S, Nukuzuma C, Tasaki T, Takegami T. Suppressive effect of topoisomerase inhibitors on JC polyomavirus propagation in human neuroblastoma cells. Microbiol Immunol 2017; 60:253-60. [PMID: 26935240 DOI: 10.1111/1348-0421.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 11/28/2022]
Abstract
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β-lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR-32 transfected with the JCPyV plasmid and RT- PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR-32 cells. It was found that JCPyV replicates less in IMR-32 cells treated with topotecan or β-lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR-32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1-positive cells. These results demonstrate that topotecan and β-lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β-lapachone could potentially be used to treat PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640
| | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521
| | | | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
27
|
Wüthrich C, Batson S, Anderson MP, White LR, Koralnik IJ. JC Virus Infects Neurons and Glial Cells in the Hippocampus. J Neuropathol Exp Neurol 2016; 75:712-717. [PMID: 27297673 PMCID: PMC5909865 DOI: 10.1093/jnen/nlw050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human polyomavirus JC (JCV) infects glial cells and is the etiologic agent of the CNS demyelinating disease progressive multifocal leukoencephalopathy. JCV can infect granule cell neurons of the cerebellum, causing JCV granule cell neuronopathy and cortical pyramidal neurons in JCV encephalopathy. Whether JCV also infects neurons in other areas of the CNS is unclear. We determined the prevalence and pattern of JCV infection of the hippocampus in archival samples from 28 patients with known JCV infection of the CNS and 66 control subjects. Among 28 patients, 11 (39.3%) had JCV infection of hippocampus structures demonstrated by immunohistochemistry. Those included gray matter (dentate gyrus and cornu ammonis, subiculum) in 11/11 and afferent or efferent white matter tracts (perforant path, alveus, fimbria) in 10/11. In the hippocampus, JCV infected granule cell and pyramidal neurons, astrocytes, and oligodendrocytes. Although glial cells expressed either JCV regulatory T Antigen or JCV VP1 capsid protein, infected neurons expressed JCV T Antigen only, suggesting an abortive/restrictive infection. None of the 66 control subjects had evidence of hippocampal JCV protein expression by immunohistochemistry or JCV DNA by in situ hybridization. These results greatly expand our understanding of JCV pathogenesis in the CNS.
Collapse
Affiliation(s)
- Christian Wüthrich
- From the Division of Neuro-Immunology (CW, SB, IJK); Department of Neurology (CW, SB, MPA, IJK); Center for Virology and Vaccine Research, Department of Medicine(CW, SB, IJK); Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (MPA); and John a. Burns School of Medicine, University of Hawaii, Honolulu, and the Pacific Health Research and Education Institute, Honolulu, Hawaii (LRW)
| | - Stephanie Batson
- From the Division of Neuro-Immunology (CW, SB, IJK); Department of Neurology (CW, SB, MPA, IJK); Center for Virology and Vaccine Research, Department of Medicine(CW, SB, IJK); Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (MPA); and John a. Burns School of Medicine, University of Hawaii, Honolulu, and the Pacific Health Research and Education Institute, Honolulu, Hawaii (LRW)
| | - Matthew P Anderson
- From the Division of Neuro-Immunology (CW, SB, IJK); Department of Neurology (CW, SB, MPA, IJK); Center for Virology and Vaccine Research, Department of Medicine(CW, SB, IJK); Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (MPA); and John a. Burns School of Medicine, University of Hawaii, Honolulu, and the Pacific Health Research and Education Institute, Honolulu, Hawaii (LRW)
| | - Lon R White
- From the Division of Neuro-Immunology (CW, SB, IJK); Department of Neurology (CW, SB, MPA, IJK); Center for Virology and Vaccine Research, Department of Medicine(CW, SB, IJK); Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (MPA); and John a. Burns School of Medicine, University of Hawaii, Honolulu, and the Pacific Health Research and Education Institute, Honolulu, Hawaii (LRW)
| | - Igor J Koralnik
- From the Division of Neuro-Immunology (CW, SB, IJK); Department of Neurology (CW, SB, MPA, IJK); Center for Virology and Vaccine Research, Department of Medicine(CW, SB, IJK); Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (MPA); and John a. Burns School of Medicine, University of Hawaii, Honolulu, and the Pacific Health Research and Education Institute, Honolulu, Hawaii (LRW).
| |
Collapse
|
28
|
Soleimani-Meigooni DN, Schwetye KE, Angeles MR, Ryschkewitsch CF, Major EO, Dang X, Koralnik IJ, Schmidt RE, Clifford DB, Kuhlmann FM, Bucelli RC. JC virus granule cell neuronopathy in the setting of chronic lymphopenia treated with recombinant interleukin-7. J Neurovirol 2016; 23:141-146. [PMID: 27421731 DOI: 10.1007/s13365-016-0465-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 11/25/2022]
Abstract
JC virus (JCV) is a human polyomavirus that infects the central nervous system (CNS) of immunocompromised patients. JCV granule cell neuronopathy (JCV-GCN) is caused by infection of cerebellar granule cells, causing ataxia. A 77-year-old man with iatrogenic lymphopenia presented with severe ataxia and was diagnosed with JCV-GCN. His ataxia and cerebrospinal fluid (CSF) improved with intravenous immunoglobulin, high-dose intravenous methylprednisolone, mirtazapine, and mefloquine. Interleukin-7 (IL-7) therapy reconstituted his lymphocytes and reduced his CSF JCV load. One month after IL-7 therapy, he developed worsening ataxia and CSF inflammation, which raised suspicion for immune reconstitution inflammatory syndrome. Steroids were restarted and his ataxia stabilized.
Collapse
Affiliation(s)
- David N Soleimani-Meigooni
- Department of Neurology, Washington University School of Medicine, Campus Box 8111. 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - Katherine E Schwetye
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Maria Reyes Angeles
- Department of Infectious Diseases, Washington University, St. Louis, MO, USA
| | - Caroline F Ryschkewitsch
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xin Dang
- Department of Neurology, Division of Neuro-Immunology and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Igor J Koralnik
- Department of Neurology, Division of Neuro-Immunology and Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - David B Clifford
- Department of Neurology, Washington University School of Medicine, Campus Box 8111. 660 South Euclid Ave., St. Louis, MO, 63110, USA
| | - F Matthew Kuhlmann
- Department of Infectious Diseases, Washington University, St. Louis, MO, USA
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, Campus Box 8111. 660 South Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Martinelli V, Dalla Costa G, Moiola L, Pavan G, Diotti RA, De Riz MA, Gerevini S, Comi G. Progressive ataxia in a natalizumab-treated multiple sclerosis patient: the dark side of JC virus infection. Eur J Neurol 2016; 23:e39-40. [DOI: 10.1111/ene.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
Affiliation(s)
- V. Martinelli
- Department of Neurology; San Raffaele Hospital; Milan Italy
| | - G. Dalla Costa
- Department of Neurology; San Raffaele Hospital; Milan Italy
| | - L. Moiola
- Department of Neurology; San Raffaele Hospital; Milan Italy
| | - G. Pavan
- Department of Neurorehabilitation; San Raffaele Hospital; Milan Italy
| | - R. A. Diotti
- Microbiology and Virology Research Unit; San Raffaele Hospital; Milan Italy
| | - M. A. De Riz
- Department of Neurology; IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - S. Gerevini
- Department of Neuroradiology; San Raffaele Hospital; Milan Italy
| | - G. Comi
- Department of Neurology; San Raffaele Hospital; Milan Italy
| |
Collapse
|
30
|
Jelcic I, Jelcic I, Kempf C, Largey F, Planas R, Schippling S, Budka H, Sospedra M, Martin R. Mechanisms of immune escape in central nervous system infection with neurotropic JC virus variant. Ann Neurol 2016; 79:404-18. [PMID: 26874214 DOI: 10.1002/ana.24574] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Symptomatic infections of the central nervous system (CNS) with JC polyomavirus (JCV) usually occur as a result of immunocompromise and manifest as progressive multifocal leukoencephalopathy (PML) or granule cell neuronopathy (GCN). After immune reconstitution, some of these cases may show long-term persistence of JCV and delayed clinical improvement despite inflammation. METHODS We followed 4 patients with multiple sclerosis, who developed natalizumab-associated PML or GCN with regard to JC viral load and JCV-specific T-cell responses in the CNS. All of them experienced immune reconstitution inflammatory syndrome (IRIS), but in 2 cases JCV persisted > 21 months after IRIS accompanied by delayed clinical improvement. RESULTS Persistence of JCV was associated with a lack of JCV VP1-specific T-cell responses during immune reconstitution in 1 of the patients. Detailed analysis of the brain infiltrate in another patient with neuronal persistence of JCV revealed strong infiltration of CD8(+) T cells and clonal expansion of activated CD8(+) effector T cells with a CD4(dim) CD8(+) phenotype, both exhibiting exquisite specificity for conserved epitopes of JCV large T antigen. However, clearance of JCV was not efficient, because mutations in the major capsid protein VP1 caused reduced CD4(+) T-cell responses against the identified JCV variant and subsequently resulted in a decline of CD8(+) T-cell responses after IRIS. INTERPRETATION Our findings suggest that efficient CD4(+) T-cell recognition of neurotropic JCV variants is crucial to support CD8(+) T cells in combating JCV infection of the CNS.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Christian Kempf
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Fabienne Largey
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Raquel Planas
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Herbert Budka
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Wijburg MT, Siepman D, van Eijk JJJ, Killestein J, Wattjes MP. Concomitant granule cell neuronopathy in patients with natalizumab-associated PML. J Neurol 2016; 263:649-56. [PMID: 26810721 PMCID: PMC4826658 DOI: 10.1007/s00415-015-8001-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
Granule cell neuronopathy (GCN) is a rare JC virus infection of the cerebellar granule cell neurons in immunocompromised patients. On brain imaging, GCN is characterized by cerebellar atrophy which can be accompanied by infratentorial white matter lesions. The objective of this study is to investigate the prevalence of MRI findings suggestive of GCN in a large natalizumab-associated progressive multifocal leukoencephalopathy (PML) cohort. MRI scans from before, at the time of, and during follow-up after diagnosis of PML in 44 natalizumab-treated MS patients, and a control group of 25 natalizumab-treated non-PML MS patients were retrospectively reviewed for imaging findings suggestive of GCN. To assess and quantify the degree of cerebellar atrophy, we used a 4 grade rating scale. Three patients in the PML group showed imaging findings suggestive of GCN and none in the control group. In two of these PML patients, cerebellar atrophy progressed from grade 0 at the time of diagnosis of isolated supratentorial PML to grade 1 and 2 after 2.5 and 3 months, respectively, in the absence of infratentorial white mater lesions. The third patient had grade 1 cerebellar atrophy before diagnosis of infra- and supratentorial PML, and showed progression of cerebellar atrophy to grade 2 in the 3 months following PML diagnosis. None of the other eight patients with infratentorial PML lesions developed cerebellar atrophy suggestive of GCN. Three cases with imaging findings suggestive of GCN were detected among 44 natalizumab-associated PML patients. GCN may, therefore, be more common than previously considered in natalizumab-associated PML patients.
Collapse
Affiliation(s)
- Martijn T Wijburg
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Radiology and Nuclear Medicine, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| | - Dorine Siepman
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, MS Center, Rotterdam, The Netherlands
| | - Jeroen J J van Eijk
- Department of Neurology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Joep Killestein
- Department of Neurology, MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mike P Wattjes
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Neurological immune reconstitution inflammatory response: riding the tide of immune recovery. Curr Opin Neurol 2016; 28:295-301. [PMID: 25887769 DOI: 10.1097/wco.0000000000000200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This manuscript reviews current reports about clinical aspects of immune reconstitution inflammatory syndrome (IRIS), with a particular emphasis on IRIS in the setting of progressive multifocal leukoencephalopathy (PML) and to a lesser extent on cryptococcal meningitis and HIV. RECENT FINDINGS PML prognosis has been radically improved, as it has become possible to provide immune reconstitution, although some remaining morbidity and mortality results from excess inflammation. Similar pathologic responses are seen less often, but remain clinically important in cryptococcal meningitis, and HIV. Early diagnosis and active management of PML results in optimal outcomes with survival of 75% or higher in multiple recent series. These finding apply both to natalizumab and HIV-associated PML. Cryptococcal meningitis is frequently complicated by IRIS, and early treatment with antifungal therapy preceding HIV therapy provides optimal outcomes. HIV IRIS is reduced by early therapy, which is now recommended, but even on therapy, chronic dysregulated immune responses may play important roles in ongoing HIV-associated neurocognitive disease (HAND), which is common, as well as rare but more dramatic subacute encephalopathies. SUMMARY The clinician must actively monitor and treat both opportunistic infection and the inflammatory response that is essential to recovery but may itself augment disease and injury.
Collapse
|
33
|
Novel syndromes associated with JC virus infection of neurons and meningeal cells: no longer a gray area. Curr Opin Neurol 2016; 28:288-94. [PMID: 25887767 DOI: 10.1097/wco.0000000000000201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The availability of a growing number of immunomodulatory medications over the past few years has been associated with various JC virus (JCV)-associated brain syndromes in patients with autoimmune diseases, including multiple sclerosis, Crohn's disease, and psoriasis that had not been previously recognized as predisposing factors for progressive multifocal leukoencephalopathy. This review covers the three novel syndromes discovered in the last decade that are caused by JCV infection of neurons and meningeal cells. RECENT FINDINGS For more than 30 years, JCV was thought to exclusively infect oligodendrocytes and astrocytes in the white matter of the brain of immunosuppressed individuals. We now recognize that JCV-infected glial cells are frequently located at the gray-white matter junction or exclusively within the gray matter causing demyelination in the cortex. Mutations in JCV can trigger a change in tropism leading to involvement of other cell types, such as neurons and meningeal cells, causing clinically distinct entities. These new features of JCV infection provide challenges for clinicians taking care of affected patients and investigators studying the biology of this polyomavirus, its pathogenesis, and tropism. SUMMARY We hope that increasing awareness of these syndromes will lead to early diagnosis, and pave the way for new avenues of research to better understand all aspects of JCV pathogenesis and develop efficient therapies for our patients. However, we need to remain vigilant and open to the possibility that additional JC variants or yet unknown polyomaviruses may also be associated with neurological diseases.
Collapse
|
34
|
Nukuzuma S, Sugiura S, Nakamichi K, Kameoka M, Nukuzuma C, Tasaki T, Takegami T. Replication of IMR-32-adapted JC virus clones in human embryonic kidney cells. Microbiol Immunol 2016; 59:238-42. [PMID: 25659831 DOI: 10.1111/1348-0421.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
It has been difficult to study JCV replication because of its restricted host range. In this study, JCV replication was examined using different clones in 293 cells. RT-PCR assay revealed that large T antigen expression in cells transfected with IMR-32-adapted JCVs was significantly greater than in those transfected with Mad-1 or CY. DNA replication assay and viral load verified that the IMR-32-adapted JCVs were replication-competent in 293 cells, but not Mad-1 or CY JCVs. These results suggest that a 293 culture system with IMR-32-adapted JCVs may be a useful tool for assessing replication of JCV in vitro.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6 Minatojima-Nakamachi, Chuo-ku, Kobe, 650-0046
| | | | | | | | | | | | | |
Collapse
|
35
|
Progressive multifocal leukoencephalopathy and immune reconstitution inflammatory syndrome (IRIS). Acta Neuropathol 2015; 130:751-64. [PMID: 26323992 DOI: 10.1007/s00401-015-1471-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Progressive multifocal leukoencephalopathy is a viral encephalitis induced by the John Cunningham (JC) virus, an ubiquitous neurotropic papovavirus of the genus polyomavirus that in healthy people in latency resides in kidney and bone marrow cells. Activation and entry into the CNS were first seen in patients with malignancies of the hematopoietic system and an impaired immune system. During the 1980 and the 1990s with the appearance of human immunodeficiency virus infection in humans, PML was found to be the most important opportunistic infection of the central nervous system. As a result of highly efficient immunosuppressive and immunomodulatory treatments, in recent years, the number of PML cases again increased. PML is prevented by an intact cellular immune response and accordingly immune reconstitution can terminate established disease in the CNS. However, forced immune reconstitution can lead to massive destruction of virus-infected cells. This may result in clinical exacerbation associated with high morbidity and mortality and referred to as PML with immune reconstitution inflammatory syndrome (PML-IRIS). In the present review, we discuss virological properties and routes of infection in the CNS, but mostly focus on the pathology of PML and PML-IRIS and on the role of the immune system in these disorders. We show that PML and PML-IRIS result from predominant JC virus infection of oligodendrocytes and, to a lesser extent, of infected neurons. Inflammation in these encephalitides seems to be driven by a dominant cytotoxic T cell response which is massively exaggerated during IRIS.
Collapse
|
36
|
Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System. J Neuropathol Exp Neurol 2015; 74:791-803. [PMID: 26115192 DOI: 10.1097/nen.0000000000000218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The human polyomavirus JC (JCV) infects glial cells in immunosuppressed individuals, leading to progressive multifocal leukoencephalopathy. Polyomavirus JC can also infect neurons in patients with JCV granule cell neuronopathy and JCV encephalopathy. CD8-positive T cells play a crucial role in viral containment and outcome in progressive multifocal leukoencephalopathy, but whether CD8-positive T cells can also recognize JCV-infected neurons is unclear. We used immunohistochemistry to determine the prevalence of T cells in neuron-rich areas of archival brain samples from 77 patients with JCV CNS infections and 94 control subjects. Neurons predominantly sustained a restrictive infection with expression of JCV regulatory protein T antigen (T Ag), whereas glial cells were productively infected and expressed both T Ag and the capsid protein VP1. T cells were more prevalent near JCV-infected cells with intact nuclei expressing both T Ag and VP1 compared with those expressing either protein alone. CD8-positive T cells also colocalized more with JCV-infected glial cells than with JCV-infected neurons. Major histocompatibility complex class I expression was upregulated in JCV-infected areas but could only be detected in rare neurons interspersed with infected glial cells. These results suggest that isolated neurons harboring restrictive JCV infection do not upregulate major histocompatibility complex class I and thus may escape recognition by CD8-positive T cells.
Collapse
|
37
|
Ray U, Cinque P, Gerevini S, Longo V, Lazzarin A, Schippling S, Martin R, Buck CB, Pastrana DV. JC polyomavirus mutants escape antibody-mediated neutralization. Sci Transl Med 2015; 7:306ra151. [PMID: 26400912 DOI: 10.1126/scitranslmed.aab1720] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
Abstract
JC polyomavirus (JCV) persistently infects the urinary tract of most adults. Under conditions of immune impairment, JCV causes an opportunistic brain disease, progressive multifocal leukoencephalopathy (PML). JCV strains found in the cerebrospinal fluid of PML patients contain distinctive mutations in surface loops of the major capsid protein, VP1. We hypothesized that VP1 mutations might allow the virus to evade antibody-mediated neutralization. Consistent with this hypothesis, neutralization serology revealed that plasma samples from PML patients neutralized wild-type JCV strains but failed to neutralize patient-cognate PML-mutant JCV strains. This contrasted with serological results for healthy individuals, most of whom robustly cross-neutralized all tested JCV variants. Mice administered a JCV virus-like particle (VLP) vaccine initially showed neutralizing "blind spots" (akin to those observed in PML patients) that closed after booster immunization. A PML patient administered an experimental JCV VLP vaccine likewise showed markedly increased neutralizing titer against her cognate PML-mutant JCV. The results indicate that deficient humoral immunity is a common aspect of PML pathogenesis and that vaccination may overcome this humoral deficiency. Thus, vaccination with JCV VLPs might prevent the development of PML.
Collapse
Affiliation(s)
- Upasana Ray
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paola Cinque
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simonetta Gerevini
- Neuroradiology Unit, Head and Neck Department, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Longo
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Adriano Lazzarin
- Department of Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy. San Raffaele University, 20132 Milan, Italy
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, University Zurich, 8091 Zurich, Switzerland
| | - Christopher B Buck
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Diana V Pastrana
- Lab of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Jelcic I, Combaluzier B, Jelcic I, Faigle W, Senn L, Reinhart BJ, Ströh L, Nitsch RM, Stehle T, Sospedra M, Grimm J, Martin R. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy. Sci Transl Med 2015; 7:306ra150. [PMID: 26400911 DOI: 10.1126/scitranslmed.aac8691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show "recognition holes"; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luzia Senn
- Neurimmune Holding AG, 8952 Schlieren, Switzerland
| | - Brenda J Reinhart
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luisa Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Roger M Nitsch
- Neurimmune Holding AG, 8952 Schlieren, Switzerland. Division of Psychiatry Research, University of Zurich, 8952 Schlieren, Switzerland
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany. Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Grimm
- Neurimmune Holding AG, 8952 Schlieren, Switzerland.
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
39
|
Dang X, Chalkias S, Koralnik IJ. JC virus-iLOV fluorescent strains enable the detection of early and late viral protein expression. J Virol Methods 2015. [PMID: 26205551 DOI: 10.1016/j.jviromet.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
JC virus (JCV) is highly prevalent in humans, and may cause progressive multifocal leukoencephalopathy (PML), JCV granule cell neuronopathy (JCV GCN), JCV encephalopathy (JCVE) and JCV meningitis (JCVM) in immunocompromised individuals. There is no treatment for JCV, and a growing number of multiple sclerosis patients treated with immunomodulatory medications have developed PML. Antiviral agents against JCV are therefore highly desirable but remain elusive, due to the difficulty of determining their effect in vitro. A JCV strain carrying a fluorescent protein gene would greatly simplify and accelerate the drug screening process. To achieve this goal, we selected the 366bp improved Light, Oxygen or Voltage-sensing domain (iLOV) of plant phototropin gene and created two full-length JCV-iLOV constructs on the prototype JCV Mad1 backbone. The iLOV gene was inserted either before the early regulatory T gene (iLOV-T), or after the late Agno gene (iLOV-Agno). Both JCV iLOV strains were replication-competent in vitro and emitted a fluorescent signal detectable by confocal microscope, but JCV iLOV-T exhibited higher cellular and supernatant viral loads compared to JCV iLOV-Agno. JCV iLOV-T could also produce infectious pseudovirions. These data suggest that JCV iLOV constructs may become valuable tools for anti-JCV drug screening.
Collapse
Affiliation(s)
- Xin Dang
- Division of Neuro-Immunology, Department of Neurology; Center for Virology and Vaccine Research
| | - Spyridon Chalkias
- Division of Neuro-Immunology, Department of Neurology; Center for Virology and Vaccine Research; Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Igor J Koralnik
- Division of Neuro-Immunology, Department of Neurology; Center for Virology and Vaccine Research.
| |
Collapse
|
40
|
Henry C, Jouan F, De Broucker T. JC virus granule cell neuronopathy: A cause of infectious cerebellar degeneration. J Neurol Sci 2015; 354:86-90. [PMID: 26003226 DOI: 10.1016/j.jns.2015.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 11/16/2022]
Abstract
JC virus (JCV) infection of glial cells can lead to progressive multifocal leukoencephalopathy (PML) in immunocompromised patients. A newly described phenotype of the infection is infection of neurons. This distinct clinical and radiological syndrome is named JCV granule cell neuronopathy, characterized by exclusive or predominant cerebellar atrophy. We report the clinical and radiological longitudinal findings of 5 HIV-infected patients referred to us between September 2004 and November 2011 who exhibited JCV granule cell neuronopathy (4 probable cases and 1 possible). The association of immunocompromised status, progressive cerebellar syndrome, MRI abnormalities with cortical cerebellar atrophy and cerebrospinal fluid positive for JCV on PCR allowed for a highly probable diagnosis. The reversal of the immunocompromised status is the only way to stop the disease evolution. Motor functioning can remain impaired, but the illness itself, unlike progressive multifocal leukoencephalopathy, does not seem to threaten life.
Collapse
Affiliation(s)
- Carole Henry
- Department of Neurology, Saint-Denis Hospital (93), France.
| | - Fanny Jouan
- Department of Neurology, Saint-Denis Hospital (93), France
| | | |
Collapse
|
41
|
Wollebo HS, White MK, Gordon J, Berger JR, Khalili K. Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann Neurol 2015; 77:560-70. [PMID: 25623836 DOI: 10.1002/ana.24371] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/23/2014] [Accepted: 01/08/2015] [Indexed: 12/11/2022]
Abstract
Many neurological diseases of the central nervous system (CNS) are underpinned by malfunctions of the immune system, including disorders involving opportunistic infections. Progressive multifocal leukoencephalopathy (PML) is a lethal CNS demyelinating disease caused by the human neurotropic polyomavirus JC (JCV) and is found almost exclusively in individuals with immune disruption, including patients with human immunodeficiency virus/acquired immunodeficiency syndrome, patients receiving therapeutic immunomodulatory monoclonal antibodies to treat conditions such as multiple sclerosis, and transplant recipients. Thus, the public health significance of this disease is high, because of the number of individuals constituting the at-risk population. The incidence of PML is very low, whereas seroprevalence for the virus is high, suggesting infection by the virus is very common, and so it is thought that the virus is restrained but it persists in an asymptomatic state that can only occasionally be disrupted to lead to viral reactivation and PML. When JCV actively replicates in oligodendrocytes and astrocytes of the CNS, it produces cytolysis, leading to formation of demyelinated lesions with devastating consequences. Defining the molecular nature of persistence and events leading to reactivation of the virus to cause PML has proved to be elusive. In this review, we examine the current state of knowledge of the JCV life cycle and mechanisms of pathogenesis. We will discuss the normal course of the JCV life cycle including transmission, primary infection, viremia, and establishment of asymptomatic persistence as well as pathogenic events including migration of the virus to the brain, reactivation from persistence, viral infection, and replication in the glial cells of the CNS and escape from immunosurveillance.
Collapse
Affiliation(s)
- Hassen S Wollebo
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA
| | | | | | | | | |
Collapse
|
42
|
Jelcic I, Jelcic I, Faigle W, Sospedra M, Martin R. Immunology of progressive multifocal leukoencephalopathy. J Neurovirol 2015; 21:614-22. [PMID: 25740538 DOI: 10.1007/s13365-014-0294-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
The high prevalence of asymptomatic JC polyomavirus (JCV) infection in the general population indicates coexistence with the human host and efficient immune control in healthy individuals. For unknown reasons, kidney-resident archetypic JCV strains can turn into neurotropic JCV strains which in hereditary or acquired states of immunodeficiency cause opportunistic infection and cytolytic destruction of glial cells or granule cell neurons resulting in progressive multifocal demyelination in the central nervous system (CNS) or cerebellar atrophy, respectively. Immunomodulatory or immunosuppressive therapies with specific monoclonal antibodies including natalizumab, efalizumab, and rituximab have increased the risk of progressive multifocal leukoencephalopathy (PML) among treated patients, highlighting that symptomatic JCV infection of the CNS is associated with disturbances of adaptive immunity affecting B cells, antibodies, and CD4(+) and/or CD8(+) T cells. To date, no specific therapy to overcome PML is available and the only way to eliminate the virus from the CNS is to reconstitute global immune function. However, since the identification of JCV as the causative agent of PML 40 years ago, it is still not fully understood which components of the immune system prevent the development of PML and which immune mechanisms are involved in eliminating the virus from the CNS. This review gives an update about adaptive JCV-specific immune responses.
Collapse
Affiliation(s)
- Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
43
|
|
44
|
Heterogeneous imaging characteristics of JC virus granule cell neuronopathy (GCN): a case series and review of the literature. J Neurol 2014; 262:65-73. [PMID: 25297924 DOI: 10.1007/s00415-014-7530-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
Abstract
Granule cell neuronopathy (GCN) is a rare JC virus (JCV)-related disease in immunocompromised patients, characterized by lytic infection of the cerebellar granule cell layer. To enable early diagnosis and intervention, we identify features of GCN and describe possible aspects of disease heterogeneity. We report on two new cases of GCN in HIV-infected patients of whom we retrospectively assessed clinical and radiologic data. In addition, we carried out a literature search and review of clinical, radiologic and histopathologic findings of all published GCN cases. Including the two new cases reported here, a total of 18 GCN cases were included in this study. HIV infection, present in 12 of the cases, was the most common underlying condition, followed by monoclonal antibody treatment which was present in three cases. Cerebellar atrophy was detected in all except two cases. In 12 patients a heterogeneous distribution pattern of white matter changes in the cerebellum and brainstem was observed. Imaging findings in GCN are remarkably heterogeneous; exhibiting cerebellar atrophy, as well as white matter pathology, particularly in the adjacent infratentorial white matter. This suggests an overlap of GCN with other JCV-related diseases, such as progressive multifocal leukoencephalopathy.
Collapse
|
45
|
Agnihotri SP, Dang X, Carter JL, Fife TD, Bord E, Batson S, Koralnik IJ. JCV GCN in a natalizumab-treated MS patient is associated with mutations of the VP1 capsid gene. Neurology 2014; 83:727-32. [PMID: 25037207 DOI: 10.1212/wnl.0000000000000713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To describe the clinical, neuroimaging, immunologic, and virologic characteristics of JC virus-associated granule cell neuronopathy (JCV GCN) in a natalizumab-treated patient with multiple sclerosis (MS) who developed immune reconstitution inflammatory syndrome (IRIS) after natalizumab withdrawal. METHODS We obtained longitudinal clinical data as well as MRI and proton magnetic resonance spectroscopy from this patient with MS. We measured JCV-specific cellular immune response in his peripheral blood by intracellular cytokine staining and sequenced a fragment of JCV VP1 capsid gene detected in his CSF. We contrast our findings with the first recently reported case. RESULTS This patient presented with worsening cerebellar symptoms and progressive cerebellar atrophy without new MS lesions on MRI after 63 months of natalizumab monotherapy. JCV DNA was detected in his CSF by PCR and harbored novel GCN-type mutations in the VP1 gene. He developed IRIS upon discontinuation of natalizumab and plasma exchange, which manifested itself by a worsening of clinical symptoms and contrast enhancement in the cerebellum on MRI. Treatment with corticosteroids resulted in resolution of IRIS, as demonstrated by proton magnetic resonance spectroscopy. The patient had a strong JCV-specific T-cell response in his peripheral blood and remains alive after 15 months from onset of symptoms, although with significant disability. He did not have MS relapse on glatiramer acetate. CONCLUSIONS JCV GCN should be considered in patients on natalizumab presenting with progressive cerebellar symptoms and cerebellar atrophy, and is associated with mutations in the JCV VP1 gene. Natalizumab withdrawal may be complicated by JCV GCN IRIS, and require treatment with corticosteroids.
Collapse
Affiliation(s)
- Shruti P Agnihotri
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Xin Dang
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Jonathan L Carter
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Terry D Fife
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Evelyn Bord
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Stephanie Batson
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ
| | - Igor J Koralnik
- From the Division of Neurovirology, Department of Neurology (S.P.A., X.D., E.B., S.B., I.J.K.), Center for Virology and Vaccine Research (S.P.A., X.D., E.B., S.B., I.J.K.), and Department of Medicine (I.J.K.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Neurology (J.L.C., T.D.F.), University of Arizona College of Medicine, Tucson; and Barrow Neurological Institute (T.D.F.), Phoenix, AZ.
| |
Collapse
|
46
|
Cerebellar Dysfunction in a Patient with HIV. Case Rep Neurol Med 2014; 2014:180743. [PMID: 25093131 PMCID: PMC4100254 DOI: 10.1155/2014/180743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022] Open
Abstract
A 50-year-old AIDS patient with a CD4 T-cell count of 114/mm3 was admitted with cerebellar symptoms of left CN XI weakness, wide-based gait with left-sided dysmetria, abnormal heel-knee-shin test, and dysdiadochokinesia. MRI showed region of hyperintensity in the left inferior cerebellar hemisphere involving the cortex and underlying white matter. Serological tests for HSV1, HSV2, and syphilis were negative. Her CSF contained high protein content and a WBC of 71/mm3, predominantly lymphocytes. The CSF was also negative for cryptococcal antigen and VDRL. CSF culture did not grow microbes. CSF PCR assay was negative for HSV1 and HSV2 but was positive for JC virus (1,276 copies). The most likely diagnosis is granule cell neuronopathy (GCN), which can only be definitively confirmed with biopsy and immunohistochemistry.
Collapse
|
47
|
Dang L, Dang X, Koralnik IJ, Todd PK. JC polyomavirus granule cell neuronopathy in a patient treated with rituximab. JAMA Neurol 2014; 71:487-9. [PMID: 24515530 DOI: 10.1001/jamaneurol.2013.4668] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IMPORTANCE Progressive multifocal leukoencephalopathy results from lytic infection of the glia by the JC polyomavirus (JCV); JCV granule cell neuronopathy is caused by infection with a mutated form of JCV, leading to a shift in viral tropism from the glia to cerebellar granule cells. This shift results in a clinical syndrome dominated by progressive cerebellar dysfunction that might elude standard diagnostic workup strategies for ataxia. OBSERVATIONS We present the case report of a patient receiving long-term rituximab therapy who developed progressive cerebellar ataxia and marked isolated cerebellar degeneration. This syndrome resulted from JCV granule cell neuronopathy associated with a novel JCV mutation. CONCLUSIONS AND RELEVANCE New onset or worsening of isolated cerebellar ataxia in patients being treated with rituximab or natalizumab warrants early assessment for JCV infection.
Collapse
Affiliation(s)
- Louis Dang
- Department of Neurology, University of Michigan, Ann Arbor
| | - Xin Dang
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Igor J Koralnik
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor
| |
Collapse
|
48
|
Abstract
UNLABELLED The human fetal glial cell line SVG was generated in 1985 by transfecting primary fetal brain cells with a plasmid containing an origin-defective mutant of simian virus 40 (SV40). The cells, which express SV40 large T-antigen, support the replication of human JC polyomavirus (JCPyV) and have been used for JCPyV studies but also for other studies in which cells of neural origin were desirable. We intended to use the SVG p12 cells from ATCC for antiviral drug studies with JCPyV. However, during initial experiments, immunofluorescence microscopy controls unexpectedly revealed cells expressing the late viral proteins VP1, VP2/VP3, and agno. This was confirmed by Western blotting. Since our agnoprotein antiserum is specific for BKPyV agnoprotein, infection with BKPyV was suspected. Indeed, specific BKPyV PCR of SVG p12 supernatants revealed a viral load of >1 × 10(10) genomic equivalents/ml. Negative-staining electron microscopy showed characteristic polyomavirus virions, and infectious BKPyV was transmitted from SVG p12 supernatant to other cells. Long-range PCR covering the viral genome, followed by DNA sequencing, identified BKPyV strain UT as well as deletion derivatives. This was confirmed by next-generation sequencing. JCPyV (MAD-4) was found to infect apparently uninfected and BKPyV-infected SVG p12 cells. In total, 4 vials from 2 different ATCC lots of SVG p12 cells dating back to 2006 contained BKPyV, whereas the subclone SVG-A was negative. In conclusion, SVG p12 cells from ATCC contain infectious BKPyV. This may have affected results and interpretations of previous studies, and caution should be taken in future experiments. IMPORTANCE This work reveals that one of the most frequently used cell lines for JC polyomavirus (JCPyV) research, the SV40-immortalized human fetal glial cell line SVG p12 obtained directly from ATCC, contains infectious BK polyomavirus (BKPyV) of strain UT and a spectrum of defective mutants. Strain UT has been previously found in urine and in tumors of different patients but is also frequently used for research. It is therefore not clear if BKPyV was present in the brain tissue used to generate the cell line or if this is a contamination. Although productive JCPyV infection of SVG cells was not dependent on prior BKPyV infection, the unnoticed presence of BKPyV may have influenced the results of studies using these cells. The interpretation of past results should therefore be reconsidered and cells tested for BKPyV before new studies are initiated. The frequently used subclone SVG-A did not contain BKPyV and could be a useful substitute.
Collapse
|
49
|
Dang X, Koralnik IJ. Gone over to the dark side: Natalizumab-associated JC virus infection of neurons in cerebellar gray matter. Ann Neurol 2014; 74:503-5. [PMID: 23913509 DOI: 10.1002/ana.23985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Dang
- Division of Neurovirology, Department of Neurology and Center for Virology and Vaccine Research Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
50
|
Ellis LC, Norton E, Dang X, Koralnik IJ. Agnogene deletion in a novel pathogenic JC virus isolate impairs VP1 expression and virion production. PLoS One 2013; 8:e80840. [PMID: 24265839 PMCID: PMC3827225 DOI: 10.1371/journal.pone.0080840] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/16/2013] [Indexed: 12/04/2022] Open
Abstract
Infection of glial cells by the human polyomavirus JC (JCV) causes progressive multifocal leukoencephalopathy (PML). JCV Encephalopathy (JCVE) is a newly identified disease characterized by JCV infection of cortical pyramidal neurons. The virus JCVCPN associated with JCVE contains a unique 143 base pair deletion in the agnogene. Contrary to most JCV brain isolates, JCVCPN has an archetype-like regulatory region (RR) usually found in kidney strains. This provided us with the unique opportunity to determine for the first time how each of these regions contributed to the phenotype of JCVCPN. We characterized the replication of JCVCPN compared to the prototype virus JCVMad-1 in kidney, glial and neuronal cell lines. We found that JCVCPN is capable of replicating viral DNA in all cell lines tested, but is unable to establish persistent infection seen with JCVMad-1. JCVCPN does not have an increased ability to replicate in the neuronal cell line tested. To determine whether this phenotype results from the archetype-like RR or the agnogene deletion, we generated chimeric viruses between JCVCPN of JCVMad-1. We found that the deletion in the agnogene is the predominant cause of the inability of the virus to maintain a persistent infection, with the introduction of a full length agnogene, either with or without agnoprotein expression, rescues the replication of JCVCPN. Studying this naturally occurring pathogenic variant of JCV provides a valuable tool for understanding the functions of the agnogene and RR form in JCV replication.
Collapse
Affiliation(s)
- Laura C. Ellis
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Norton
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xin Dang
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Igor J. Koralnik
- Division of Neurovirology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|