1
|
Sims A, Tornaletti LB, Jasim S, Pirillo C, Devlin R, Hirst JC, Loney C, Wojtus J, Sloan E, Thorley L, Boutell C, Roberts E, Hutchinson E. Superinfection exclusion creates spatially distinct influenza virus populations. PLoS Biol 2023; 21:e3001941. [PMID: 36757937 PMCID: PMC9910727 DOI: 10.1371/journal.pbio.3001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 02/10/2023] Open
Abstract
Interactions between viruses during coinfections can influence viral fitness and population diversity, as seen in the generation of reassortant pandemic influenza A virus (IAV) strains. However, opportunities for interactions between closely related viruses are limited by a process known as superinfection exclusion (SIE), which blocks coinfection shortly after primary infection. Using IAVs, we asked whether SIE, an effect which occurs at the level of individual cells, could limit interactions between populations of viruses as they spread across multiple cells within a host. To address this, we first measured the kinetics of SIE in individual cells by infecting them sequentially with 2 isogenic IAVs, each encoding a different fluorophore. By varying the interval between addition of the 2 IAVs, we showed that early in infection SIE does not prevent coinfection, but that after this initial lag phase the potential for coinfection decreases exponentially. We then asked how the kinetics of SIE onset controlled coinfections as IAVs spread asynchronously across monolayers of cells. We observed that viruses at individual coinfected foci continued to coinfect cells as they spread, because all new infections were of cells that had not yet established SIE. In contrast, viruses spreading towards each other from separately infected foci could only establish minimal regions of coinfection before reaching cells where coinfection was blocked. This created a pattern of separate foci of infection, which was recapitulated in the lungs of infected mice, and which is likely to be applicable to many other viruses that induce SIE. We conclude that the kinetics of SIE onset segregate spreading viral infections into discrete regions, within which interactions between virus populations can occur freely, and between which they are blocked.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Seema Jasim
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chiara Pirillo
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Ryan Devlin
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Jack C. Hirst
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joanna Wojtus
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Luke Thorley
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Edward Roberts
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
2
|
Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses 2021; 13:v13040698. [PMID: 33920517 PMCID: PMC8072579 DOI: 10.3390/v13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.
Collapse
|
3
|
Nogales A, Baker SF, Domm W, Martínez-Sobrido L. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 2016; 216:26-40. [PMID: 26220478 PMCID: PMC4728073 DOI: 10.1016/j.virusres.2015.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William Domm
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
4
|
Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment. Vaccine 2015; 33:6955-66. [PMID: 26603954 DOI: 10.1016/j.vaccine.2015.10.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
Large outbreaks of zoonotic influenza A virus (IAV) infections may presage an influenza pandemic. However, the likelihood that an airborne-transmissible variant evolves upon zoonotic infection or co-infection with zoonotic and seasonal IAVs remains poorly understood, as does the relative importance of accumulating mutations versus re-assortment in this process. Using discrete-time probabilistic models, we determined quantitative probability ranges that transmissible variants with 1-5 mutations and transmissible re-assortants evolve after a given number of zoonotic IAV infections. The systematic exploration of a large population of model parameter values was designed to account for uncertainty and variability in influenza virus infection, epidemiological and evolutionary processes. The models suggested that immunocompromised individuals are at high risk of generating IAV variants with pandemic potential by accumulation of mutations. Yet, both immunocompetent and immunocompromised individuals could generate high viral loads of single and double mutants, which may facilitate their onward transmission and the subsequent accumulation of additional 1-2 mutations in newly-infected individuals. This may result in the evolution of a full transmissible genotype along short chains of contact transmission. Although co-infection with zoonotic and seasonal IAVs was shown to be a rare event, it consistently resulted in high viral loads of re-assortants, which may facilitate their onward transmission among humans. The prevention or limitation of zoonotic IAV infection in immunocompromised and contact individuals, including health care workers, as well as vaccination against seasonal IAVs-limiting the risk of co-infection-should be considered fundamental tools to thwart the evolution of a novel pandemic IAV by accumulation of mutations and re-assortment.
Collapse
|
5
|
van de Sandt CE, Bodewes R, Rimmelzwaan GF, de Vries RD. Influenza B viruses: not to be discounted. Future Microbiol 2015; 10:1447-65. [PMID: 26357957 DOI: 10.2217/fmb.15.65] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and epidemiological properties is imperative to better control this important pathogen. However, some of its characteristics are still elusive and warrant investigation. Here, we review evolution, epidemiology, pathogenesis and immunity and identify gaps in our knowledge of influenza B viruses. The divergence of two antigenically distinct influenza B viruses is highlighted. The co-circulation of viruses of these two lineages necessitated the development of quadrivalent influenza vaccines, which is discussed in addition to possibilities to develop universal vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,ViroClinics Biosciences BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Spronken MI, Short KR, Herfst S, Bestebroer TM, Vaes VP, van der Hoeven B, Koster AJ, Kremers GJ, Scott DP, Gultyaev AP, Sorell EM, de Graaf M, Bárcena M, Rimmelzwaan GF, Fouchier RA. Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS One 2015; 10:e0133888. [PMID: 26241861 PMCID: PMC4524686 DOI: 10.1371/journal.pone.0133888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/15/2023] Open
Abstract
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.
Collapse
Affiliation(s)
- Monique I. Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Kirsty R. Short
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Barbara van der Hoeven
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Abraham J. Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Erin M. Sorell
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Milken Institute School of Public Health, Department of Health Policy and Management, George Washington University, Washington, DC, United States of America
| | - Miranda de Graaf
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Vijaykrishna D, Mukerji R, Smith GJD. RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathog 2015; 11:e1004902. [PMID: 26158697 PMCID: PMC4497687 DOI: 10.1371/journal.ppat.1004902] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dhanasekaran Vijaykrishna
- Duke-NUS Graduate Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pathology, Singapore General Hospital, SingHealth, Singapore
- * E-mail:
| | | | - Gavin J. D. Smith
- Duke-NUS Graduate Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Baker SF, Nogales A, Santiago FW, Topham DJ, Martínez-Sobrido L. Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine 2015; 33:3562-70. [PMID: 26044496 DOI: 10.1016/j.vaccine.2015.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
Abstract
Avian-derived influenza A zoonoses are closely monitored and may be an indication of virus strains with pandemic potential. Both successful vaccination and convalescence of influenza A virus in humans typically results in the induction of antibodies that can neutralize viral infection. To improve long-standing and new-generation methodologies for detection of neutralizing antibodies, we have employed a novel reporter-based approach that allows for multiple antigenic testing within a single sample. Central to this approach is a single-cycle infectious influenza A virus (sciIAV), where a functional hemagglutinin (HA) gene was changed to encode either the green or the monomeric red fluorescent protein (GFP and mRFP, respectively) and HA is complemented in trans by stable HA-expressing cell lines. By using fluorescent proteins with non-overlapping emission spectra, this novel bivalent fluorescence-based microneutralization assay (BiFMA) can be used to detect neutralizing antibodies against two distinct influenza isolates in a single reaction, doubling the speed of experimentation while halving the amount of sera required. Moreover, this approach can be used for the rapid identification of influenza broadly neutralizing antibodies. Importantly, this novel BiFMA can be used for any given influenza HA-pseudotyped virus under BSL-2 facilities, including highly pathogenic influenza HA isolates.
Collapse
Affiliation(s)
- Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Felix W Santiago
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
9
|
van de Sandt CE, Kreijtz JHCM, de Mutsert G, Geelhoed-Mieras MM, Hillaire MLB, Vogelzang-van Trierum SE, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88:1684-93. [PMID: 24257602 PMCID: PMC3911609 DOI: 10.1128/jvi.02843-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/12/2013] [Indexed: 01/05/2023] Open
Abstract
In February 2013, zoonotic transmission of a novel influenza A virus of the H7N9 subtype was reported in China. Although at present no sustained human-to-human transmission has been reported, a pandemic outbreak of this H7N9 virus is feared. Since neutralizing antibodies to the hemagglutinin (HA) globular head domain of the virus are virtually absent in the human population, there is interest in identifying other correlates of protection, such as cross-reactive CD8(+) T cells (cytotoxic T lymphocytes [CTLs]) elicited during seasonal influenza A virus infections. These virus-specific CD8(+) T cells are known to recognize conserved internal proteins of influenza A viruses predominantly, but it is unknown to what extent they cross-react with the newly emerging H7N9 virus. Here, we assessed the cross-reactivity of seasonal H3N2 and H1N1 and pandemic H1N1 influenza A virus-specific polyclonal CD8(+) T cells, obtained from HLA-typed study subjects, with the novel H7N9 virus. The cross-reactivity of CD8(+) T cells to H7N9 variants of known influenza A virus epitopes and H7N9 virus-infected cells was determined by their gamma interferon (IFN-γ) response and lytic activity. It was concluded that, apart from recognition of individual H7N9 variant epitopes, CD8(+) T cells to seasonal influenza viruses display considerable cross-reactivity with the novel H7N9 virus. The presence of these cross-reactive CD8(+) T cells may afford some protection against infection with the new virus.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- China/epidemiology
- Cross Protection
- Cross Reactions
- Disease Outbreaks
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/isolation & purification
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/virology
- Interferon-gamma/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Seasons
- Sequence Alignment
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ron A. M. Fouchier
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| | - Guus F. Rimmelzwaan
- Viroscience Laboratory, Erasmus MC, Rotterdam, The Netherlands
- ViroClinics Biosciences BV, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Marshall N, Priyamvada L, Ende Z, Steel J, Lowen AC. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog 2013; 9:e1003421. [PMID: 23785286 PMCID: PMC3681746 DOI: 10.1371/journal.ppat.1003421] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/30/2013] [Indexed: 01/12/2023] Open
Abstract
Reassortment is fundamental to the evolution of influenza viruses and plays a key role in the generation of epidemiologically significant strains. Previous studies indicate that reassortment is restricted by segment mismatch, arising from functional incompatibilities among components of two viruses. Additional factors that dictate the efficiency of reassortment remain poorly characterized. Thus, it is unclear what conditions are favorable for reassortment and therefore under what circumstances novel influenza A viruses might arise in nature. Herein, we describe a system for studying reassortment in the absence of segment mismatch and exploit this system to determine the baseline efficiency of reassortment and the effects of infection dose and timing. Silent mutations were introduced into A/Panama/2007/99 virus such that high-resolution melt analysis could be used to differentiate all eight segments of the wild-type and the silently mutated variant virus. The use of phenotypically identical parent viruses ensured that all progeny were equally fit, allowing reassortment to be measured without selection bias. Using this system, we found that reassortment occurred efficiently (88.4%) following high multiplicity infection, suggesting the process is not appreciably limited by intracellular compartmentalization. That co-infection is the major determinant of reassortment efficiency in the absence of segment mismatch was confirmed with the observation that the proportion of viruses with reassortant genotypes increased exponentially with the proportion of cells co-infected. The number of reassortants shed from co-infected guinea pigs was likewise dependent on dose. With 106 PFU inocula, 46%–86% of viruses isolated from guinea pigs were reassortants. The introduction of a delay between infections also had a strong impact on reassortment and allowed definition of time windows during which super-infection led to reassortment in culture and in vivo. Overall, our results indicate that reassortment between two like influenza viruses is efficient but also strongly dependent on dose and timing of the infections. Reassortment is the process by which influenza viruses, which carry RNA genomes comprising eight segments, exchange genetic material. Reassortment of the genome segments of two differing influenza strains has the potential to vastly increase the diversity of circulating influenza viruses. Despite its importance to influenza virus evolution, the frequency with which reassortment occurs in a cell or an animal infected with two or more variant viruses is unclear. Toward determining how readily reassortment can occur, we assessed the incidence of reassortment during experimental infection in cultured cells and in guinea pigs. We found that reassortment can occur with high efficiency in both systems, but that that efficiency is dependent on i) the dose of each virus added to the cells or taken up by the host and ii) the relative timing with which each virus infects. These results suggest that influenza A virus reassortment may be more prevalent in nature than one might expect based on the results of surveillance studies.
Collapse
Affiliation(s)
- Nicolle Marshall
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | | | | | | | |
Collapse
|
11
|
Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments. PLoS One 2013; 8:e59889. [PMID: 23527283 PMCID: PMC3604002 DOI: 10.1371/journal.pone.0059889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/19/2013] [Indexed: 12/20/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.
Collapse
|
12
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|