1
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Harrison CM, Doster JM, Landwehr EH, Kumar NP, White EJ, Beachboard DC, Stobart CC. Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Common Cold in the COVID-19 Era. Microorganisms 2023; 11:microorganisms11020445. [PMID: 36838410 PMCID: PMC9961755 DOI: 10.3390/microorganisms11020445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Approximately 15-30% of all cases of the common cold are due to human coronavirus infections. More recently, the emergence of the more severe respiratory coronaviruses, SARS-CoV and MERS-CoV, have highlighted the increased pathogenic potential of emergent coronaviruses. Lastly, the current emergence of SARS-CoV-2 has demonstrated not only the potential for significant disease caused by emerging coronaviruses, but also the capacity of novel coronaviruses to promote pandemic spread. Largely driven by the global response to the COVID-19 pandemic, significant research in coronavirus biology has led to advances in our understanding of these viruses. In this review, we evaluate the virology, emergence, and evolution of the four endemic coronaviruses associated with the common cold, their relationship to pandemic SARS-CoV-2, and discuss the potential for future emergent human coronaviruses.
Collapse
Affiliation(s)
- Cameron M. Harrison
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Jayden M. Doster
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Emily H. Landwehr
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Nidhi P. Kumar
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Ethan J. White
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Correspondence:
| |
Collapse
|
3
|
Bonavia A, Dominguez SR, Dveksler G, Gagneten S, Howard M, Jeffers S, Qian Z, Smith MK, Thackray LB, Tresnan DB, Wentworth DE, Wessner DR, Williams RK, Miura TA. Kathryn V. Holmes: A Career of Contributions to the Coronavirus Field. Viruses 2022; 14:v14071573. [PMID: 35891553 PMCID: PMC9315735 DOI: 10.3390/v14071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two years, scientific research has moved at an unprecedented rate in response to the COVID-19 pandemic. The rapid development of effective vaccines and therapeutics would not have been possible without extensive background knowledge on coronaviruses developed over decades by researchers, including Kathryn (Kay) Holmes. Kay’s research team discovered the first coronavirus receptors for mouse hepatitis virus and human coronavirus 229E and contributed a wealth of information on coronaviral spike glycoproteins and receptor interactions that are critical determinants of host and tissue specificity. She collaborated with several research laboratories to contribute knowledge in additional areas, including coronaviral pathogenesis, epidemiology, and evolution. Throughout her career, Kay was an extremely dedicated and thoughtful mentor to numerous graduate students and post-doctoral fellows. This article provides a review of her contributions to the coronavirus field and her exemplary mentoring.
Collapse
Affiliation(s)
- Aurelio Bonavia
- Vaccine Development, Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139, USA;
| | - Samuel R. Dominguez
- Department of Pediatrics-Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Sara Gagneten
- Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Megan Howard
- Battelle Memorial Institute, Columbus, OH 43201, USA;
| | | | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100050, China;
| | | | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dina B. Tresnan
- Safety Surveillance and Risk Management, Worldwide Safety, Pfizer, Groton, CT 06340, USA;
| | - David E. Wentworth
- COVID-19 Emergency Response, Virology Surveillance and Diagnosis Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA;
| | - David R. Wessner
- Departments of Biology and Public Health, Davidson College, Davidson, NC 28035, USA;
| | | | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence: ; Tel.: +1-208-885-4940
| |
Collapse
|
4
|
Pollett S, Conte MA, Sanborn M, Jarman RG, Lidl GM, Modjarrad K, Maljkovic Berry I. A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic. Sci Rep 2021; 11:17365. [PMID: 34462471 PMCID: PMC8405798 DOI: 10.1038/s41598-021-96626-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
The SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.
Collapse
Affiliation(s)
- Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mark Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Grace M Lidl
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
5
|
Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J 2021; 18:166. [PMID: 34389034 PMCID: PMC8361246 DOI: 10.1186/s12985-021-01633-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Collapse
Affiliation(s)
- Jalen Singh
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Karen Mossman
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
6
|
Nchioua R, Kmiec D, Müller JA, Conzelmann C, Groß R, Swanson CM, Neil SJD, Stenger S, Sauter D, Münch J, Sparrer KMJ, Kirchhoff F. SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. mBio 2020; 11:e01930-20. [PMID: 33067384 PMCID: PMC7569149 DOI: 10.1128/mbio.01930-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Recent evidence shows that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sensitive to interferons (IFNs). However, the most effective types of IFNs and the underlying antiviral effectors remain to be defined. Here, we show that zinc finger antiviral protein (ZAP), which preferentially targets CpG dinucleotides in viral RNA sequences, restricts SARS-CoV-2. We further demonstrate that ZAP and its cofactors KHNYN and TRIM25 are expressed in human lung cells. Type I, II, and III IFNs all strongly inhibited SARS-CoV-2 and further induced ZAP expression. Comprehensive sequence analyses revealed that SARS-CoV-2 and its closest relatives from horseshoe bats showed the strongest CpG suppression among all known human and bat coronaviruses, respectively. Nevertheless, endogenous ZAP expression restricted SARS-CoV-2 replication in human lung cells, particularly upon treatment with IFN-α or IFN-γ. Both the long and the short isoforms of human ZAP reduced SARS-CoV-2 RNA expression levels, but the former did so with greater efficiency. Finally, we show that the ability to restrict SARS-CoV-2 is conserved in ZAP orthologues of the reservoir bat and potential intermediate pangolin hosts of human coronaviruses. Altogether, our results show that ZAP is an important effector of the innate response against SARS-CoV-2, although this pandemic pathogen emerged from zoonosis of a coronavirus that was preadapted to the low-CpG environment in humans.IMPORTANCE Although interferons inhibit SARS-CoV-2 and have been evaluated for treatment of coronavirus disease 2019 (COVID-19), the most effective types and antiviral effectors remain to be defined. Here, we show that IFN-γ is particularly potent in restricting SARS-CoV-2 and in inducing expression of the antiviral factor ZAP in human lung cells. Knockdown experiments revealed that endogenous ZAP significantly restricts SARS-CoV-2. We further show that CpG dinucleotides which are specifically targeted by ZAP are strongly suppressed in the SARS-CoV-2 genome and that the two closest horseshoe bat relatives of SARS-CoV-2 show the lowest genomic CpG content of all coronavirus sequences available from this reservoir host. Nonetheless, both the short and long isoforms of human ZAP reduced SARS-CoV-2 RNA levels, and this activity was conserved in horseshoe bat and pangolin ZAP orthologues. Our findings indicating that type II interferon is particularly efficient against SARS-CoV-2 and that ZAP restricts this pandemic viral pathogen might promote the development of effective immune therapies against COVID-19.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Abstract
Wild mammalian species, including bats, constitute the natural reservoir of betacoronavirus (including SARS, MERS, and the deadly SARS-CoV-2). Different hosts or host tissues provide different cellular environments, especially different antiviral and RNA modification activities that can alter RNA modification signatures observed in the viral RNA genome. The zinc finger antiviral protein (ZAP) binds specifically to CpG dinucleotides and recruits other proteins to degrade a variety of viral RNA genomes. Many mammalian RNA viruses have evolved CpG deficiency. Increasing CpG dinucleotides in these low-CpG viral genomes in the presence of ZAP consistently leads to decreased viral replication and virulence. Because ZAP exhibits tissue-specific expression, viruses infecting different tissues are expected to have different CpG signatures, suggesting a means to identify viral tissue-switching events. The author shows that SARS-CoV-2 has the most extreme CpG deficiency in all known betacoronavirus genomes. This suggests that SARS-CoV-2 may have evolved in a new host (or new host tissue) with high ZAP expression. A survey of CpG deficiency in viral genomes identified a virulent canine coronavirus (alphacoronavirus) as possessing the most extreme CpG deficiency, comparable with that observed in SARS-CoV-2. This suggests that the canine tissue infected by the canine coronavirus may provide a cellular environment strongly selecting against CpG. Thus, viral surveys focused on decreasing CpG in viral RNA genomes may provide important clues about the selective environments and viral defenses in the original hosts.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Wang Y, Li X, Liu W, Gan M, Zhang L, Wang J, Zhang Z, Zhu A, Li F, Sun J, Zhang G, Zhuang Z, Luo J, Chen D, Qiu S, Zhang L, Xu D, Mok CKP, Zhang F, Zhao J, Zhou R, Zhao J. Discovery of a subgenotype of human coronavirus NL63 associated with severe lower respiratory tract infection in China, 2018. Emerg Microbes Infect 2020; 9:246-255. [PMID: 31996093 PMCID: PMC7034077 DOI: 10.1080/22221751.2020.1717999] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is primarily associated with common cold in children, elderly and immunocompromised individuals. Outbreaks caused by HCoV-NL63 are rare. Here we report a cluster of HCoV-NL63 cases with severe lower respiratory tract infection that arose in Guangzhou, China, in 2018. Twenty-three hospitalized children were confirmed to be HCoV-NL63 positive, and most of whom were hospitalized with severe pneumonia or acute bronchitis. Whole genomes of HCoV-NL63 were obtained using next-generation sequencing. Phylogenetic and single amino acid polymorphism analyses showed that this outbreak was associated with two subgenotypes (C3 and B) of HCoV-NL63. Half of patients were identified to be related to a new subgenotype C3. One unique amino acid mutation at I507 L in spike protein receptor binding domain (RBD) was detected, which segregated this subgenotype C3 from other known subgenotypes. Pseudotyped virus bearing the I507 L mutation in RBD showed enhanced entry into host cells as compared to the prototype virus. This study proved that HCoV-NL63 was undergoing continuous mutation and has the potential to cause severe lower respiratory disease in humans.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guoxian Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiaying Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dehui Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Duo Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Fuchun Zhang
- Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Institute of Infectious disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 678] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
10
|
Genome Sequences of Human Coronavirus OC43 and NL63, Associated with Respiratory Infections in Kilifi, Kenya. Microbiol Resour Announc 2019; 8:8/46/e00730-19. [PMID: 31727697 PMCID: PMC6856263 DOI: 10.1128/mra.00730-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coding-complete genomes of two human coronavirus OC43 strains and one NL63 strain were obtained by metagenomic sequencing of clinical samples collected in 2017 and 2018 in Kilifi, Kenya. Maximum likelihood phylogenies showed that the OC43 strains were genetically dissimilar and that the NL63 strain was closely related to NL63 genotype B viruses. Coding-complete genomes of two human coronavirus OC43 strains and one NL63 strain were obtained by metagenomic sequencing of clinical samples collected in 2017 and 2018 in Kilifi, Kenya. Maximum likelihood phylogenies showed that the OC43 strains were genetically dissimilar and that the NL63 strain was closely related to NL63 genotype B viruses.
Collapse
|
11
|
Ar Gouilh M, Puechmaille SJ, Diancourt L, Vandenbogaert M, Serra-Cobo J, Lopez Roïg M, Brown P, Moutou F, Caro V, Vabret A, Manuguerra JC. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology 2018; 517:88-97. [PMID: 29482919 PMCID: PMC7112086 DOI: 10.1016/j.virol.2018.01.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022]
Abstract
The emergence of SARS-CoV and MERS-CoV, triggered the discovery of a high diversity of coronaviruses in bats. Studies from Europe have shown that coronaviruses circulate in bats in France but this reflects only a fraction of the whole diversity. In the current study the diversity of coronaviruses circulating in western Europe was extensively explored. Ten alphacoronaviruses in eleven bat species belonging to the Miniopteridae, Vespertilionidae and Rhinolophidae families and, a SARS-CoV-related Betacoronavirus in Rhinolophus ferrumequinum were identified. The diversity and prevalence of bat coronaviruses presently reported from western Europe is much higher than previously described and includes a SARS-CoV sister group. This diversity demonstrates the dynamic evolution and circulation of coronaviruses in this species. That said, the identified coronaviruses were consistently associated with a particular bat species or genus, and these relationships were maintained no matter the geographic location. The observed phylogenetic grouping of coronaviruses from the same species in Europe and Asia, emphasizes the role of host/pathogen coevolution in this group.
Collapse
Affiliation(s)
- Meriadeg Ar Gouilh
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France; Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, 14000, Caen, France.
| | - Sébastien J Puechmaille
- Greifswald University, 17489, Greifswald, Germany; University College Dublin, Belfield, Dublin 4, Ireland; Chauves-souris Aveyron, 12310, Vimenet, France
| | - Laure Diancourt
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Mathias Vandenbogaert
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Jordi Serra-Cobo
- IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Marc Lopez Roïg
- IRBIO & Departament de de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paul Brown
- French Agency for Food, Environmental and Occupational Health Safety (ANSES), Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), Université Européenne de Bretagne, Ploufragan/Plouzané laboratory, 22440, Ploufragan, France
| | - François Moutou
- Ecole Nationale Vétérinaire d'Alfort, 94704, Maison-Alfort, France
| | - Valérie Caro
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | - Astrid Vabret
- Normandie Université, EA2656, Groupe de Recherche sur l'Adaptation Microbienne, 14000, Caen, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Unité Environnement et Risques Infectieux, CIBU, Infection et Epidemiologie, 75015, Paris, France
| | | |
Collapse
|
12
|
Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, Kong SK, Loo JFC, Gu D, Hu L. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virol J 2017; 14:230. [PMID: 29166910 PMCID: PMC5700739 DOI: 10.1186/s12985-017-0896-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Background More than a decade after the outbreak of human coronaviruses (HCoVs) SARS in Guangdong province and Hong Kong SAR of China in 2002, there is still no reoccurrence, but the evolution and recombination of the coronaviruses in this region are still unknown. Therefore, surveillance on the prevalence and the virus variation of HCoVs circulation in this region is conducted. Methods A total of 3298 nasopharyngeal swabs samples were collected from cross-border children (<6 years, crossing border between Southern China and Hong Kong SAR) showing symptoms of respiratory tract infection, such as fever (body temperature > 37.5 °C), from 2014 May to 2015 Dec. Viral nucleic acids were analyzed and sequenced to study the prevalence and genetic diversity of the four human coronaviruses. The statistical significance of the data was evaluated with Fisher chi-square test. Results 78 (2.37%; 95%CI 1.8-2.8%) out of 3298 nasopharyngeal swabs specimens were found to be positive for OC43 (36;1.09%), HKU1 (34; 1.03%), NL63 (6; 0.18%) and 229E (2;0.01%). None of SARS or MERS was detected. The HCoVs predominant circulating season was in transition of winter to spring, especially January and February and NL63 detected only in summer and fall. Complex population with an abundant genetic diversity of coronaviruses was circulating and they shared homology with the published strains (99-100%). Besides, phylogenetic evolutionary analysis indicated that OC43 coronaviruses were clustered into three clades (B,D,E), HKU1 clustered into two clades(A,B) and NL63 clustered into two clades(A,B). Moreover, several novel mutations including nucleotides substitution and the insertion of spike of the glycoprotein on the viral surface were discovered. Conclusions The detection rate and epidemic trend of coronaviruses were stable and no obvious fluctuations were found. The detected coronaviruses shared a conserved gene sequences in S and RdRp. However, mutants of the epidemic strains were detected, suggesting continuous monitoring of the human coronaviruses is in need among cross-border children, who are more likely to get infected and transmit the viruses across the border easily, in addition to the general public.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Health Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.,Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China
| | - Lei Shi
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China
| | - Wei Zhang
- Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, People's Republic of China
| | - Jianan He
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China
| | - Chunxiao Liu
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China
| | - Chunzhong Zhao
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jacky Fong Chuen Loo
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China. .,Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| | - Dayong Gu
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China. .,Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518010, People's Republic of China.
| | - Longfei Hu
- Central Laboratory of Health quarantine, Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, 518033, People's Republic of China. .,Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518010, People's Republic of China.
| |
Collapse
|
13
|
Ge XY, Yang WH, Zhou JH, Li B, Zhang W, Shi ZL, Zhang YZ. Detection of alpha- and betacoronaviruses in rodents from Yunnan, China. Virol J 2017; 14:98. [PMID: 28549438 PMCID: PMC5446729 DOI: 10.1186/s12985-017-0766-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background Rodents represent the most diverse mammals on the planet and are important reservoirs of human pathogens. Coronaviruses infect various animals, but to date, relatively few coronaviruses have been identified in rodents worldwide. The evolution and ecology of coronaviruses in rodent have not been fully investigated. Results In this study, we collected 177 intestinal samples from thress species of rodents in Jianchuan County, Yunnan Province, China. Alphacoronavirus and betacoronavirus were detected in 23 rodent samples from three species, namely Apodemus chevrieri (21/98), Eothenomys fidelis (1/62), and Apodemus ilex (1/17). We further characterized the full-length genome of an alphacoronavirus from the A. chevrieri rat and named it as AcCoV-JC34. The AcCoV-JC34 genome was 27,649 nucleotides long and showed a structure similar to the HKU2 bat coronavirus. Comparing the normal transcription regulatory sequence (TRS), 3 variant TRS sequences upstream the spike (S), ORF3, and ORF8 genes were found in the genome of AcCoV-JC34. In the conserved replicase domains, AcCoV-JC34 was most closely related to Rattus norvegicus coronavirus LNRV but diverged from other alphacoronaviruses, indicating that AcCoV-JC34 and LNRV may represent a novel alphacoronavirus species. However, the S and nucleocapsid proteins showed low similarity to those of LRNV, with 66.5 and 77.4% identities, respectively. Phylogenetic analysis revealed that the S genes of AcCoV-JC34, LRNV, and HKU2 formed a distinct lineage with all known coronaviruses. Conclusions Both alphacoronaviruses and betacoronaviruses were detected in Apodemus chevrieri in the Yunnan Province of China, indicating that Apodemus chevrieri is an important host for coronavirus. Several new features were identified in the genome of an Apodemus chevrieri coronavirus. The phylogenetic distance to other coronaviruses suggests a variable origin and evolutionary route of the S genes of AcCoV-JC34, LRNV, and HKU2. These results indicate that the diversity of rodent coronaviruses is much higher than previously expected. Further surveillance and functional studies of these coronaviruses will help to better understand the importance of rodent as host for coronaviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0766-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing-Yi Ge
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Biology, Hunan University, Changsha, 410082, China
| | - Wei-Hong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China. .,School of Public Health, Dali University, Dali, 671000, China.
| |
Collapse
|
14
|
Assiri AM, Midgley CM, Abedi GR, Bin Saeed A, Almasri MM, Lu X, Al-Abdely HM, Abdalla O, Mohammed M, Algarni HS, Alhakeem RF, Sakthivel SK, Nooh R, Alshayab Z, Alessa M, Srinivasamoorthy G, AlQahtani SY, Kheyami A, HajOmar WH, Banaser TM, Esmaeel A, Hall AJ, Curns AT, Tamin A, Alsharef AA, Erdman D, Watson JT, Gerber SI. Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia. J Infect Dis 2016; 214:712-21. [PMID: 27302191 PMCID: PMC5712457 DOI: 10.1093/infdis/jiw236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
Background. Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans. Fundamental questions about circulating viruses and transmission routes remain. Methods. We assessed routinely collected epidemiologic data for MERS-CoV cases reported in Saudi Arabia during 1 January–30 June 2015 and conducted a more detailed investigation of cases reported during February 2015. Available respiratory specimens were obtained for sequencing. Results. During the study period, 216 MERS-CoV cases were reported. Full genome (n = 17) or spike gene sequences (n = 82) were obtained from 99 individuals. Most sequences (72 of 99 [73%]) formed a discrete, novel recombinant subclade (NRC-2015), which was detected in 6 regions and became predominant by June 2015. No clinical differences were noted between clades. Among 87 cases reported during February 2015, 13 had no recognized risks for secondary acquisition; 12 of these 13 also denied camel contact. Most viruses (8 of 9) from these 13 individuals belonged to NRC-2015. Discussions. Our findings document the spread and eventual predominance of NRC-2015 in humans in Saudi Arabia during the first half of 2015. Our identification of cases without recognized risk factors but with similar virus sequences indicates the need for better understanding of risk factors for MERS-CoV transmission.
Collapse
Affiliation(s)
| | - Claire M Midgley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Glen R Abedi
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - Abdulaziz Bin Saeed
- Ministry of Health Department of Family and Community Medicine, King Saud Medical City
| | | | - Xiaoyan Lu
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | | | | | | | | | | | | | - Randa Nooh
- Ministry of Health Field Epidemiology Training Program, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Zainab Alshayab
- Ministry of Health Field Epidemiology Training Program, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Alessa
- Ministry of Health Field Epidemiology Training Program, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - Aaron T Curns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - Azaibi Tamin
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | | | - Dean Erdman
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - John T Watson
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases
| |
Collapse
|
15
|
Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. Sci Rep 2016; 6:22677. [PMID: 26948040 PMCID: PMC4780191 DOI: 10.1038/srep22677] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (M(pro)), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, M(pro) has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 M(pro) in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with M(pro)s from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 M(pro) provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs.
Collapse
|
16
|
Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, Hanafi NS, Kamarulzaman A, Tee KK. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia. Am J Trop Med Hyg 2016; 94:1058-64. [PMID: 26928836 DOI: 10.4269/ajtmh.15-0810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
Abstract
The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.
Collapse
Affiliation(s)
- Maryam Nabiel Al-Khannaq
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim Tien Ng
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Xiang Yong Oong
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yong Kek Pang
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yutaka Takebe
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jack Bee Chook
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nik Sherina Hanafi
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; School of Medicine, Yokohama City University, Kanagawa, Japan; Department of Health Sciences, Faculty of Health and Life Sciences, Management and Science University, Selangor, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Genetic drift of human coronavirus OC43 spike gene during adaptive evolution. Sci Rep 2015; 5:11451. [PMID: 26099036 PMCID: PMC4476415 DOI: 10.1038/srep11451] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022] Open
Abstract
Coronaviruses (CoVs) continuously threaten human health. However, to date, the evolutionary mechanisms that govern CoV strain persistence in human populations have not been fully understood. In this study, we characterized the evolution of the major antigen-spike (S) gene in the most prevalent human coronavirus (HCoV) OC43 using phylogenetic and phylodynamic analysis. Among the five known HCoV-OC43 genotypes (A to E), higher substitution rates and dN/dS values as well as more positive selection sites were detected in the S gene of genotype D, corresponding to the most dominant HCoV epidemic in recent years. Further analysis showed that the majority of substitutions were located in the S1 subunit. Among them, seven positive selection sites were chronologically traced in the temporal evolution routes of genotype D, and six were located around the critical sugar binding region in the N-terminal domain (NTD) of S protein, an important sugar binding domain of CoV. These findings suggest that the genetic drift of the S gene may play an important role in genotype persistence in human populations, providing insights into the mechanisms of HCoV-OC43 adaptive evolution.
Collapse
|
18
|
Kin N, Miszczak F, Lin W, Ar Gouilh M, Vabret A. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s) Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes. Viruses 2015; 7:2358-77. [PMID: 26008694 PMCID: PMC4452910 DOI: 10.3390/v7052358] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 01/19/2023] Open
Abstract
Human coronavirus OC43 (HCoV-OC43) is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses.
Collapse
Affiliation(s)
- Nathalie Kin
- Normandie Université, 14032 Caen, France; E-Mails: (F.M.); (M.A.G.); (A.V.)
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-0-2-31-27-25-54
| | - Fabien Miszczak
- Normandie Université, 14032 Caen, France; E-Mails: (F.M.); (M.A.G.); (A.V.)
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
- Department of Virology, University Hospital of Caen, F-14033 Caen, France
| | - Wei Lin
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
| | - Meriadeg Ar Gouilh
- Normandie Université, 14032 Caen, France; E-Mails: (F.M.); (M.A.G.); (A.V.)
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, F-75015 Paris, France
| | - Astrid Vabret
- Normandie Université, 14032 Caen, France; E-Mails: (F.M.); (M.A.G.); (A.V.)
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
- Department of Virology, University Hospital of Caen, F-14033 Caen, France
| | - Epicorem Consortium
- Université de Caen, Unité de Recherche Risques Microbiens (U2RM), F-14000 Caen, France; E-Mails: (W.L.); (E.C.)
| |
Collapse
|
19
|
Zhang Y, Li J, Xiao Y, Zhang J, Wang Y, Chen L, Paranhos-Baccalà G, Ren L, Wang J. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J Infect 2014; 70:641-50. [PMID: 25530469 PMCID: PMC7112537 DOI: 10.1016/j.jinf.2014.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/29/2014] [Accepted: 12/14/2014] [Indexed: 11/30/2022]
Abstract
Background Human coronavirus (HCoV) OC43 is the most prevalent HCoV in respiratory tract infections. Its molecular epidemiological characterization, particularly the genotyping, was poorly addressed. Methods The full-length spike (S), RNA-dependent RNA polymerase (RdRp), and nucleocapsid (N) genes were amplified from each respiratory sample collected from 65 HCoV-OC43-positive patients between 2005 and 2012. Genotypes were determined by phylogenetic analysis. Recombination was analyzed based on full-length viral genome sequences. Clinical manifestations of each HCoV genotype infection were compared by reviewing clinical records. Results Sixty of these 65 samples belong to genotypes B, C and D. The remaining five strains had incongruent positions in the phylogenetic trees of the S, RdRp and N genes, suggesting a novel genotype emerging, designated as genotype E. Whole genome sequencing and bootscan analysis indicated that genotype E is generated by recombination between genotypes B, C and D. Temporal analysis revealed a sequential genotype replacement of C, B, D and E over the study period with genotype D being the dominant genotype since 2007. The novel genotype E was only detected in children younger than three years suffering from lower respiratory tract infections. Conclusions Our results suggest that HCoV-OC43 genotypes are evolving. Such genotype shift may be an adapting mechanism for HCoV-OC43 maintaining its epidemic. Temporal shift of multiple human coronavirus OC43 genotypes. Emergence of a novel genotype E by natural recombination. Genotype D dominated HCoV-OC43 epidemic in China in recent years. Genotype evolving plays an important role in HCoV-OC43 epidemic.
Collapse
Affiliation(s)
- Yue Zhang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | - Jianguo Li
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | - Yan Xiao
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | - Jing Zhang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | - Ying Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | - Lan Chen
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China
| | | | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China.
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
20
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
21
|
Human coronaviruses associated with upper respiratory tract infections in three rural areas of Ghana. PLoS One 2014; 9:e99782. [PMID: 25080241 PMCID: PMC4117488 DOI: 10.1371/journal.pone.0099782] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/19/2014] [Indexed: 01/07/2023] Open
Abstract
Background Acute respiratory tract infections (ARI) are the leading cause of morbidity and mortality in developing countries, especially in Africa. This study sought to determine whether human coronaviruses (HCoVs) are associated with upper respiratory tract infections among older children and adults in Ghana. Methods We conducted a case control study among older children and adults in three rural areas of Ghana using asymptomatic subjects as controls. Nasal/Nasopharyngeal swabs were tested for Middle East respiratory syndrome coronavirus (MERS-CoV), HCoV-22E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 using Reverse Transcriptase Real-Time Polymerase Chain Reaction. Results Out of 1,213 subjects recruited, 150 (12.4%) were positive for one or more viruses. Of these, single virus detections occurred in 146 subjects (12.0%) and multiple detections occurred in 4 (0.3%). Compared with control subjects, infections with HCoV-229E (OR = 5.15, 95%CI = 2.24–11.78), HCoV-OC43 (OR = 6.16, 95%CI = 1.77–21.65) and combine HCoVs (OR = 2.36, 95%CI = 1.5 = 3.72) were associated with upper respiratory tract infections. HCoVs were found to be seasonally dependent with significant detections in the harmattan season (mainly HCoV-229E) and wet season (mainly HCoV-NL63). A comparison of the obtained sequences resulted in no differences to sequences already published in GenBank. Conclusion HCoVs could play significant role in causing upper respiratory tract infections among adults and older children in rural areas of Ghana.
Collapse
|
22
|
Dominguez SR, Shrivastava S, Berglund A, Qian Z, Góes LGB, Halpin RA, Fedorova N, Ransier A, Weston PA, Durigon EL, Jerez JA, Robinson CC, Town CD, Holmes KV. Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. J Gen Virol 2014; 95:836-848. [PMID: 24394697 DOI: 10.1099/vir.0.059832-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children's Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4-15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal-bronchial epithelial cells cultured at the air-liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses.
Collapse
Affiliation(s)
- Samuel R Dominguez
- Departments of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA.,Departments of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| | - Susmita Shrivastava
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Andrew Berglund
- Departments of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| | - Zhaohui Qian
- Departments of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| | - Luiz Gustavo Bentim Góes
- Interdisciplinary Graduate Program in Biotechnology, University of São Paulo, Av Prof. Lineu Prestes, 2415, ICB-III, Cidade Universitária, CEP: 05508-900, São Paulo, SP - Brazil.,J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Rebecca A Halpin
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Nadia Fedorova
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Amy Ransier
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Philip A Weston
- Departments of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| | - Edison Luiz Durigon
- Interdisciplinary Graduate Program in Biotechnology, University of São Paulo, Av Prof. Lineu Prestes, 2415, ICB-III, Cidade Universitária, CEP: 05508-900, São Paulo, SP - Brazil.,J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - José Antonio Jerez
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av Prof. Lineu Prestes 1374, ICB-II, Cidade Universitária, CEP: 05580-900, São Paulo, SP - Brazil.,J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Christine C Robinson
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP: 05508-270, Sao Paulo, SP - Brazil
| | - Christopher D Town
- Department of Pathology and Clinical Medicine, Children's Hospital Colorado, 13123 E 16th Ave, Aurora, CO 80045, USA
| | - Kathryn V Holmes
- Departments of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Room P18-9403B, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Human coronavirus HKU1 infection of primary human type II alveolar epithelial cells: cytopathic effects and innate immune response. PLoS One 2013; 8:e70129. [PMID: 23894604 PMCID: PMC3722178 DOI: 10.1371/journal.pone.0070129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/08/2023] Open
Abstract
Because they are the natural target for respiratory pathogens, primary human respiratory epithelial cells provide the ideal in vitro system for isolation and study of human respiratory viruses, which display a high degree of cell, tissue, and host specificity. Human coronavirus HKU1, first discovered in 2005, has a worldwide prevalence and is associated with both upper and lower respiratory tract disease in both children and adults. Research on HCoV-HKU1 has been difficult because of its inability to be cultured on continuous cell lines and only recently it was isolated from clinical specimens using primary human, ciliated airway epithelial cells. Here we demonstrate that HCoV-HKU1 can infect and be serially propagated in primary human alveolar type II cells at the air-liquid interface. We were not able to infect alveolar type I-like cells or alveolar macrophages. Type II alveolar cells infected with HCoV-HKU1 demonstrated formation of large syncytium. At 72 hours post inoculation, HCoV-HKU1 infection of type II cells induced increased levels of mRNAs encoding IL29,CXCL10, CCL5, and IL-6 with no significant increases in the levels of IFNβ. These studies demonstrate that type II cells are a target cell for HCoV-HKU1 infection in the lower respiratory tract, that type II alveolar cells are immune-competent in response to infection exhibiting a type III interferon and proinflammatory chemokine response, and that cell to cell spread may be a major factor for spread of infection. Furthermore, these studies demonstrate that human alveolar cells can be used to isolate and study novel human respiratory viruses that cause lower respiratory tract disease.
Collapse
|
24
|
Lednicky JA, Waltzek TB, McGeehan E, Loeb JC, Hamilton SB, Luetke MC. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol J 2013; 10:213. [PMID: 23805916 PMCID: PMC3716658 DOI: 10.1186/1743-422x-10-213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022] Open
Abstract
Background Cryopreserved primary human renal proximal tubule epithelial cells (RPTEC) were obtained from a commercial supplier for studies of Simian virus 40 (SV40). Within twelve hrs after cell cultures were initiated, cytoplasmic vacuoles appeared in many of the RPTEC. The RPTEC henceforth deteriorated rapidly. Since SV40 induces the formation of cytoplasmic vacuoles, this batch of RPTEC was rejected for the SV40 study. Nevertheless, we sought the likely cause(s) of the deterioration of the RPTEC as part of our technology development efforts. Methods Adventitious viruses in the RPTEC were isolated and/or detected and identified by isolation in various indicator cell lines, observation of cytopathology, an immunoflurorescence assay, electron microscopy, PCR, and sequencing. Results Cytomegalovirus (CMV) was detected in some RPTEC by cytology, an immunofluorescence assay, and PCR. Human Herpesvirus 6B was detected by PCR of DNA extracted from the RPTEC, but was not isolated. Human coronavirus NL63 was isolated and identified by RT-PCR and sequencing, and its replication in a fresh batch of RPTEC and another type of primary human kidney cells was confirmed. Conclusions At least 3 different adventitious viruses were present in the batch of contaminated RPTEC. Whereas we are unable to determine whether the original RPTEC were pre-infected prior to their separation from other kidney cells, or had gotten contaminated with HCoV-NL63 from an ill laboratory worker during their preparation for commercial sale, our findings are a reminder that human-derived biologicals should always be considered as potential sources of infectious agents. Importantly, HCoV-NL63 replicates to high titers in some primary human kidney cells.
Collapse
Affiliation(s)
- John A Lednicky
- Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Box 100188, Gainesville, FL 32610-0188, USA.
| | | | | | | | | | | |
Collapse
|