1
|
Ncobeni N, de la Torre BG, Albericio F, Kruger HG, Parboosing R. Active targeting of CD4 +T lymphocytes by PEI-capped, peptide-functionalized gold nanoparticles. NANOTECHNOLOGY 2022; 33:405101. [PMID: 35700711 DOI: 10.1088/1361-6528/ac7885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Active targeting is a promising approach for the treatment of viral infections. In particular, site-specific formulations for the treatment of HIV infection may overcome challenges associated with current ARV regimens. In this study we explored active targeting by synthesizing a gold nanoparticle construct decorated with an anti-CD4 cyclic peptide. The aim was to demonstrate selectivity of the system for the CD4 receptor and to deliver the RNA payload into T-lymphocytes. Colloidal gold nanoparticles functionalized withN-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) were formed by a one-pot synthesis method where thiol modified polyethyleneimine (PEI) was mixed with chloroauric acid. PEI-SPDP AuNPs (gold nanoparticles) were conjugated to an anti-CD4 peptide and loaded with RNA. We measured toxicity and uptake using TZM-bl and HeLa cells. Our findings show that the nanoparticles bind selectively to CD4 + cells. UV-vis characterisation of the nanoparticles revealed a surface plasmon resonance (SPR) peak at 527 nm, corresponding to a 6 nm diameter. HRTEM of the complete nanoparticles visualised circular shaped particles with average diameter of ∼7 nm. The polydispersity index was calculated to be 0.08, indicating monodispersity of complete NPS in solution. Through the pyridine-2-thione assay each nanoparticle was calculated to carry 1.37 × 105SPDP molecules available for peptide binding. Flow cytometry showed that 13.6% of TZM-bl cells, and 0.14% of HeLa cells retained fluorescence after an overnight incubation, an indication of system binding. No internal RNA delivery was demonstrated. Further work is required to improve internalization.
Collapse
Affiliation(s)
- Nomfundo Ncobeni
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz G de la Torre
- KwaZulu Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, E-08028 Barcelona, Spain
| | - Hendrik G Kruger
- Catalysis and Peptide Research Labs, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa
| |
Collapse
|
2
|
Stejskal L, Kalemera MD, Lewis CB, Palor M, Walker L, Daviter T, Lees WD, Moss DS, Kremyda-Vlachou M, Kozlakidis Z, Gallo G, Bailey D, Rosenberg W, Illingworth CJR, Shepherd AJ, Grove J. An entropic safety catch controls hepatitis C virus entry and antibody resistance. eLife 2022; 11:e71854. [PMID: 35796426 PMCID: PMC9333995 DOI: 10.7554/elife.71854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.
Collapse
Affiliation(s)
- Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Charlotte B Lewis
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Lucas Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Tina Daviter
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
- Shared Research Facilities, The Institute of Cancer ResearchLondonUnited Kingdom
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - David S Moss
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health OrganizationLyonFrance
| | | | | | - William Rosenberg
- Division of Medicine, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Christopher JR Illingworth
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Institut für Biologische Physik, Universität zu KölnCologneGermany
- MRC Biostatistics Unit, University of CambridgeCambridgeUnited Kingdom
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
3
|
Safari M, Jayaraman B, Zommer H, Yang S, Smith C, Fernandes JD, Frankel AD. Functional and structural segregation of overlapping helices in HIV-1. eLife 2022; 11:e72482. [PMID: 35511220 PMCID: PMC9119678 DOI: 10.7554/elife.72482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Overlapping coding regions balance selective forces between multiple genes. One possible division of nucleotide sequence is that the predominant selective force on a particular nucleotide can be attributed to just one gene. While this arrangement has been observed in regions in which one gene is structured and the other is disordered, we sought to explore how overlapping genes balance constraints when both protein products are structured over the same sequence. We use a combination of sequence analysis, functional assays, and selection experiments to examine an overlapped region in HIV-1 that encodes helical regions in both Env and Rev. We find that functional segregation occurs even in this overlap, with each protein spacing its functional residues in a manner that allows a mutable non-binding face of one helix to encode important functional residues on a charged face in the other helix. Additionally, our experiments reveal novel and critical functional residues in Env and have implications for the therapeutic targeting of HIV-1.
Collapse
Affiliation(s)
- Maliheh Safari
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henni Zommer
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Shumin Yang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, Tsinghua UniversityBeijingChina
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
4
|
Armario-Najera V, Blanco-Perera A, Shenoy SR, Sun Y, Marfil S, Muñoz-Basagoiti J, Perez-Zsolt D, Blanco J, Izquierdo-Useros N, Capell T, O'Keefe BR, Christou P. Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. PLANT CELL REPORTS 2022; 41:1013-1023. [PMID: 35178612 PMCID: PMC9034974 DOI: 10.1007/s00299-022-02834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.
Collapse
Affiliation(s)
- Victoria Armario-Najera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Amaya Blanco-Perera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Shilpa R Shenoy
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Yi Sun
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
- Chair of AIDS and Related Diseases, University of Vic-Central University of Catalonia, 08500, Vic, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
5
|
Truncation of the Cytoplasmic Tail of Equine Infectious Anemia Virus Increases Virion Production by Improving Env Cleavage and Plasma Membrane Localization. J Virol 2021; 95:e0108721. [PMID: 34495693 PMCID: PMC8577380 DOI: 10.1128/jvi.01087-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Envelope glycoproteins (Envs) of lentiviruses harbor unusually long cytoplasmic tails (CTs). Natural CT truncations always occur in vitro and are accompanied by attenuated virulence, but their effects on viral replication have not been fully elucidated. The Env in equine infectious anemia virus (EIAV) harbors the longest CT in the lentiviral family, and a truncated CT was observed in a live attenuated vaccine. This study demonstrates that CT truncation significantly increased EIAV production, as determined by comparing the virion yields from EIAV infectious clones in the presence and absence of the CT. A significant increase in a cleaved product from the CT-truncated Env precursor, but not the full-length Env, was observed. We further confirmed that the presence of the CT inhibited the cleavage of the Env precursor and found that a functional domain located at the C terminus was responsible for this function. Moreover, CT-truncated Env was mainly localized at the plasma membrane (PM), while full-length Env was mainly localized in the cytoplasm. The CT truncation caused a dramatic reduction in the endocytosis of Env. These results suggest that the CT can modulate the processing and trafficking of EIAV Env and thus regulate EIAV replication. IMPORTANCE The mature lentivirus envelope glycoprotein (Env) is composed of a surface unit (SU) and a transmembrane unit (TM), which are cleaved products of the Env precursor. After mature Env is heterodimerically formed from the cleavage of the Env precursor, it is trafficked to the plasma membrane (PM) for incorporation and virion assembly. Env harbors a long cytoplasmic tail (CT), which has been increasingly found to play multiple roles in the Env biological cycle. Here, we revealed for the first time that the CT of equine infectious anemia virus (EIAV) Env inhibits cleavage of the Env precursor. Simultaneously, the CT promoted Env endocytosis, resulting in weakened Env localization at the PM. We also validated that the CT could significantly decrease EIAV production. These findings suggest that the CT regulates the processing and trafficking of EIAV Env to balance virion production.
Collapse
|
6
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
7
|
Sutar J, Padwal V, Nagar V, Patil P, Patel V, Bandivdekar A. Analysis of sequence diversity and selection pressure in HIV-1 clade C gp41 from India. Virusdisease 2020; 31:277-291. [PMID: 32904888 DOI: 10.1007/s13337-020-00595-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/28/2020] [Indexed: 01/31/2023] Open
Abstract
Evaluation of viral diversity is critical for the rational design of treatment modalities against Human immunodeficiency virus (HIV). Predominated by HIV-1 clade C (HIV-1C), the epidemic in India represents the third largest population infected with HIV-1 globally. Glycoprotein 41 (gp41) is critical for viral replication and is a target for the design of therapeutic strategies. However, documentation of viral diversity of gp41 gene in infected individuals from India remains limited. Present study employed high throughput sequencing to examine variation in gp41 amplicons generated from blood derived viruses in 24 HIV-1C infected individuals from Mumbai, India. Sequence diversity profiles were documented in different functional domains of gp41. Furthermore, through a meta-analysis approach, all reported gp41 sequences from India (N = 70) were compared with those from South Africa (N = 126), country with the largest HIV epidemic globally, also predominated by HIV-1C. A total of 44 positions displayed statistically significant differential (p < 0.05) Shannon entropy in the two regions. This comparison also identified 11 codon sites undergoing distinct selection, 8 of which remained differentially selected in an extended comparison of data from Asia (N = 137) and Africa(N = 383). Assessment of correlated mutation networks associated with differentially selected residues revealed common as well as distinct interaction networks. Furthermore, codon usage analysis revealed 17 differentially selected codons (Mann-Whitney test, p < 0.001) in Asia and Africa. Dissimilar trends in GC content across codon positions were also observed. In depth understanding of these divergent evolutionary signatures through extended analysis with larger data-sets would assist development of effective interventions being considered for HIV-1C.
Collapse
Affiliation(s)
- Jyoti Sutar
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, Grant Government Medical College, Byculla, Mumbai, India
| | - Priya Patil
- Department of Medicine, Grant Government Medical College, Byculla, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| | - Atmaram Bandivdekar
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Parel, Mumbai, India
| |
Collapse
|
8
|
HIV-1 Matrix Trimerization-Impaired Mutants Are Rescued by Matrix Substitutions That Enhance Envelope Glycoprotein Incorporation. J Virol 2019; 94:JVI.01526-19. [PMID: 31619553 DOI: 10.1128/jvi.01526-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation.IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.
Collapse
|
9
|
Skittrall JP, Ingemarsdotter CK, Gog JR, Lever AML. A scale-free analysis of the HIV-1 genome demonstrates multiple conserved regions of structural and functional importance. PLoS Comput Biol 2019; 15:e1007345. [PMID: 31545786 PMCID: PMC6791557 DOI: 10.1371/journal.pcbi.1007345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.
Collapse
Affiliation(s)
- Jordan P. Skittrall
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carin K. Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge, United Kingdom
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Zhou M, Humbert M, Mukhtar MM, Scinto HB, Vyas HK, Lakhashe SK, Byrareddy SN, Maurer G, Thorat S, Owuor J, Lai Z, Chen Y, Griffiths A, Chenine AL, Gumber S, Villinger F, Montefiori D, Ruprecht RM. Adaptation of an R5 Simian-Human Immunodeficiency Virus Encoding an HIV Clade A Envelope with or without Ablation of Adaptive Host Immunity: Differential Selection of Viral Mutants. J Virol 2019; 93:e02267-18. [PMID: 30760566 PMCID: PMC6475780 DOI: 10.1128/jvi.02267-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 11/20/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) infection in rhesus macaques (RMs) resembles human immunodeficiency virus type 1 (HIV-1) infection in humans and serves as a tool to evaluate candidate AIDS vaccines. HIV-1 clade A (HIV-A) predominates in parts of Africa. We constructed an R5 clade A SHIV (SHIV-A; strain SHIV-KNH1144) carrying env from a Kenyan HIV-A. SHIV-A underwent rapid serial passage through six RMs. To allow unbridled replication without adaptive immunity, we simultaneously ablated CD8+ and B cells with cytotoxic monoclonal antibodies in the next RM, resulting in extremely high viremia and CD4+ T-cell loss. Infected blood was then transferred into two non-immune-depleted RMs, where progeny SHIV-A showed increased replicative capacity and caused AIDS. We reisolated SHIV-KNH1144p4, which was replication competent in peripheral blood mononuclear cells (PBMC) of all RMs tested. Next-generation sequencing of early- and late-passage SHIV-A strains identified mutations that arose due to "fitness" virus optimization in the former and mutations exhibiting signatures typical for adaptive host immunity in the latter. "Fitness" mutations are best described as mutations that allow for better fit of the HIV-A Env with SIV-derived virion building blocks or host proteins and mutations in noncoding regions that accelerate virus replication, all of which result in the outgrowth of virus variants in the absence of adaptive T-cell and antibody-mediated host immunity.IMPORTANCE In this study, we constructed a simian-human immunodeficiency virus carrying an R5 Kenyan HIV-1 clade A env (SHIV-A). To bypass host immunity, SHIV-A was rapidly passaged in naive macaques or animals depleted of both CD8+ and B cells. Next-generation sequencing identified different mutations that resulted from optimization of viral replicative fitness either in the absence of adaptive immunity or due to pressure from adaptive immune responses.
Collapse
Affiliation(s)
- Mingkui Zhou
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Humbert
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad M Mukhtar
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanna B Scinto
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hemant K Vyas
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Samir K Lakhashe
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddappa N Byrareddy
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregor Maurer
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- VetCore, Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua Owuor
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Agnès-Laurence Chenine
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
- Military HIV Research Program, Silver Spring, Maryland, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - François Villinger
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, Texas, USA
- Southwest National Primate Research Center, San Antonio, Texas, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
11
|
Dufrasne FE, Lucchetti M, Dessilly G, Ruelle J, Martin A, Kabamba-Mukadi B. Short Communication: An Insertion of Seven Amino Acids in the Envelope Cytoplasmic Tail of HIV-2 Selected During Disease Progression Enhances Viral Replication. AIDS Res Hum Retroviruses 2019; 35:185-190. [PMID: 30229676 DOI: 10.1089/aid.2018.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cytoplasmic tail (CT) of the HIV-2 envelope glycoprotein (Env) includes amino acid (aa) sequences that are similar to lentiviral lytic peptides (LLP) described in other lentiviruses. Within the putative LLP-2 region, we previously observed insertions of 3 or 7 aa in sequences deduced from plasma viral RNA of symptomatic HIV-2-infected individuals. Based on these observations, we reproduced the insertions in a molecular clone to assess their impact on replicative fitness and cell death in vitro. Using a molecular clone of the HIV-2ROD reference strain, site-directed mutagenesis experiments allowed the generation of plasmids with the insertion L791TAI or L791QRALTAI in the Env protein. The clone with 7 aa insertion enhanced viral release 8 to 11 times in infected T cells and cell viability was impaired by more than 20%, compared with the wild-type HIV-2ROD virus. The effect of the 3 aa insertion was milder, with a nonsignificant trend to enhance viral replication and cell death compared with the wild-type virus. Interestingly, the insertions in the Env proteins did not induce a significant increase of viral infectivity, as revealed by the infectivity assay using TZM-bl cells. The insertions in the Env CT observed in vivo from disease progressors may, therefore, be involved in the higher viral load observed in these individuals. This study may open the way to the development of a prognostic marker related to the HIV-2 infection progression.
Collapse
Affiliation(s)
- François E. Dufrasne
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Mara Lucchetti
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Géraldine Dessilly
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Jean Ruelle
- Clinical Laboratories Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Anandi Martin
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Kabamba-Mukadi
- Microbiology Unit (MBLG), AIDS Reference Laboratory (ARL), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Clinical Laboratories Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
12
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) remain a common end-organ manifestation of viral infection. Subclinical and mild symptoms lead to neurocognitive and behavioral abnormalities. These are associated, in part, with viral penetrance and persistence in the central nervous system. Infections of peripheral blood monocytes, macrophages, and microglia are the primary drivers of neuroinflammation and neuronal impairments. While current antiretroviral therapy (ART) has reduced the incidence of HIV-associated dementia, milder forms of HAND continue. Depression, comorbid conditions such as infectious liver disease, drugs of abuse, antiretroviral drugs themselves, age-related neurodegenerative diseases, gastrointestinal maladies, and concurrent social and economic issues can make accurate diagnosis of HAND challenging. Increased life expectancy as a result of ART clearly creates this variety of comorbid conditions that often blur the link between the virus and disease. With the discovery of novel biomarkers, neuropsychologic testing, and imaging techniques to better diagnose HAND, the emergence of brain-penetrant ART, adjunctive therapies, longer life expectancy, and better understanding of disease pathogenesis, disease elimination is perhaps a realistic possibility. This review focuses on HIV-associated disease pathobiology with an eye towards changing trends in the face of widespread availability of ART.
Collapse
|
13
|
Samal S, Das S, Boliar S, Qureshi H, Shrivastava T, Kumar N, Goswami S, Bansal M, Chakrabarti BK. Cell surface ectodomain integrity of a subset of functional HIV-1 envelopes is dependent on a conserved hydrophilic domain containing region in their C-terminal tail. Retrovirology 2018; 15:50. [PMID: 30029604 PMCID: PMC6053805 DOI: 10.1186/s12977-018-0431-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND HIV-1 Env gp160 is cleaved to form gp120 and gp41 and the functional HIV-1 Env is a trimer of non-covalently associated heterodimeric subunits, gp120 and gp41. The cleaved, native, trimeric form of Envs expose only broadly neutralizing antibody (bNAb) epitopes while occluding epitopes targeted by non-neutralizing antibodies (non-NAbs). We and others have previously observed that efficient cleavage of Envs into their constituent subunits co-relates with specific binding to bNAbs and poor binding to non-neutralizing antibodies (non-NAbs). Such Envs have been identified from clades A, B and C which make up a majority of globally circulating HIV-1 strains. Frequently, the C-terminal tail (CT) of Envs is deleted to enhance expression and stabilize soluble Env-based vaccine immunogens. Deletion of CT of efficiently cleaved Indian clade C Env 4-2.J41 results in recognition by both NAbs and non-NAbs. It is to be noted that uncleaved Envs bind to both NAbs and non-NAbs. So we investigated whether altered antigenicity upon CT deletion of efficiently cleaved Envs is due to inefficient cleavage or conformational change as the mechanism by which the CT regulates the ectodomain (ET) integrity is not well understood. RESULTS We studied the effect of CT deletion in four membrane bound efficiently cleaved Envs, A5 (clade A), 4-2.J41 (clade C), JRFL and JRCSF (clade B). Deletion of CT of the Envs, JRCSF and 4-2.J41, but not JRFL and A5 alter their ET antigenicity/conformation without affecting the cleavage efficiency. We carried out a series of deletion mutation in order to determine the region of the CT required for restoring native-like antigenicity/conformation of the ET of 4-2.J41 and JRCSF. Extending the CT up to aa753 in 4-2.J41 and aa759 in JRCSF, which includes a conserved hydrophilic domain (CHD), restores native-like conformation of these Envs on the plasma membrane. However, CT-deletion in 4-2.J41 and JRCSF at the pseudovirus level has either no or only modest effect on neutralization potency. CONCLUSION Here, we report that the CHD in the CT of Env plays an important role in regulating the ET integrity of a subset of efficiently cleaved, functional Envs on the cell surface.
Collapse
Affiliation(s)
- Sweety Samal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Supratik Das
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Saikat Boliar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Huma Qureshi
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Tripti Shrivastava
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Naresh Kumar
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Sandeep Goswami
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Manish Bansal
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India
| | - Bimal K Chakrabarti
- THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, P.O. Box # 04, Faridabad, Haryana, 1221001, India. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA. .,Innovation & Translation, ABL, Inc., 9800 Medical Center Drive, Building D, Rockville, MD, 20850, USA.
| |
Collapse
|
14
|
Beraud C, Lemaire M, Perez Bercoff D. Reassessment of the capacity of the HIV-1 Env cytoplasmic domain to trigger NF-κB activation. Virol J 2018; 15:35. [PMID: 29454367 PMCID: PMC5816530 DOI: 10.1186/s12985-018-0941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic domain of lentiviral Envelopes (EnvCD) ensures Env incorporation into nascent virions and regulates Env trafficking to and from the plasma membrane. It has also been reported to promote transcription from the viral LTR both directly and indirectly. Noticeably, the HIV-1 and SIVmac239 EnvCDs were described to trigger nuclear translocation of NF-κB (Postler, Cell Host Microbes 2012). Given the paramount importance of identifying viral and host factors regulating HIV transcription, cellular signaling pathways and latency, and given that viral replication capacity is dependent on Env, we asked whether HIV EnvCDs from different HIV-1 subtypes differently modulated NF-κB. To that aim, we evaluated the ability of primary HIV-1 Envs from subtypes B and C to activate the NF-κB pathway. Primary subtype B and C Envs all failed to activate the NF-κB pathway. In contrast, when the EnvCD of HIV-1 Envs was fused to the the CD8-α chain, it induced ~ 10-fold increase in NF-κB induction, and this increase was much stronger with a truncated form of the HIV EnvCD lacking the 76 C-terminal residues and containing the proposed TAK-1 binding domain. Our results indicate that the HIV-1 EnvCD is unlikely to trigger the NF-κB pathway in its native trimeric form.
Collapse
Affiliation(s)
- Cyprien Beraud
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Morgane Lemaire
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Danielle Perez Bercoff
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
15
|
Murphy RE, Samal AB, Vlach J, Saad JS. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein. Structure 2017; 25:1708-1718.e5. [PMID: 29056482 DOI: 10.1016/j.str.2017.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/17/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface.
Collapse
Affiliation(s)
- R Elliot Murphy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexandra B Samal
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Klug YA, Rotem E, Schwarzer R, Shai Y. Mapping out the intricate relationship of the HIV envelope protein and the membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:550-560. [PMID: 27793589 DOI: 10.1016/j.bbamem.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
The HIV gp160 envelope fusion protein is situated in the viral membrane and mediates virus entry into its host cell. Increasing evidence suggests that virtually all parts of the HIV envelope are structurally and functionally dependent on membranes. Protein-lipid interactions and membrane properties influence the dynamics of a manifold of gp160 biological activities such as membrane fusion, immune suppression and gp160 incorporation into virions during HIV budding and assembly. In the following we will summarize our current understanding of this interdependence between membrane interaction, structural conformation and functionality of the different gp160 domains. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Etai Rotem
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Roland Schwarzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS One 2016; 11:e0161596. [PMID: 27598717 PMCID: PMC5012655 DOI: 10.1371/journal.pone.0161596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.
Collapse
|
18
|
Identifying possible sites for antibody neutralization escape: Implications for unique functional properties of the C-terminal tail of Human Immunodeficiency Virus Type 1 gp41. Immunol Lett 2016; 175:21-30. [PMID: 27157128 DOI: 10.1016/j.imlet.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
A previous amino acid sequence analyses from our laboratory reported nine potential sites in gp41 glycoprotein of HIV-1 that may contribute to virus escape from antibody neutralization. Besides four sites found outside the membrane of HIV-1 virus, five located in the C-terminal tail of gp41 specifically in the lentivirus lytic peptides motifs (LLPs). To further study the bioinformatical results, the virus infectivity assay and the standard neutralization assay were conducted on conservatively mutated virus. Two sites in the LLP3 domain stood out with the ability to alter the resistance of HIV-1 virus to certain broadly neutralizing antibodies (bNAbs). While the glycoprotein incorporation on the viral membrane and the interaction of the LLP3 domain with the lipid membrane remained unaltered, the increase in neutralization resistance of the mutant virus was associated with the changes on Env conformation. Our findings demonstrate different sensibility of bNAbs to mutations in the C-terminal tail and indicate an unrecognized potential role for even minor sequence variation in the C-terminal tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.
Collapse
|
19
|
Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion. PLoS One 2015; 10:e0136507. [PMID: 26295457 PMCID: PMC4546420 DOI: 10.1371/journal.pone.0136507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
Abstract
The membrane proximal region (MPR, residues 649-683) and transmembrane domain (TMD, residues 684-705) of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM). Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.
Collapse
|
20
|
HIV-1 Cell-Free and Cell-to-Cell Infections Are Differentially Regulated by Distinct Determinants in the Env gp41 Cytoplasmic Tail. J Virol 2015; 89:9324-37. [PMID: 26136566 DOI: 10.1128/jvi.00655-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 envelope (Env) glycoprotein mediates viral entry during both cell-free and cell-to-cell infection of CD4(+) T cells. The highly conserved long cytoplasmic tail (CT) of Env is required in a cell type-dependent manner for optimal infectivity of cell-free virus. To probe the role of the CT in cell-to-cell infection, we tested a panel of mutations in the CT region that maintain or attenuate cell-free infection to investigate whether the functions of the CT are conserved during cell-free and cell-to-cell infection. The mutations tested included truncations of structural motifs in the gp41 CT and two point mutations in lentiviral lytic peptide 3 (LLP-3) previously described as disrupting the infectivity of cell-free virus. We found that small truncations of 28 to 43 amino acids (aa) or two LLP-3 point mutations, YW_SL and LL_RQ, severely impaired single-round cell-free infectivity 10-fold or more relative to wild-type full-length CT. These mutants showed a modest 2-fold reduction in cell-to-cell infection assays. Conversely, large truncations of 93 to 124 aa severely impaired cell-to-cell infectivity 20-fold or more while resulting in a 50% increase in infectivity of cell-free viral particles when produced in 293T cells. Intermediate truncations of 46 to 90 aa showed profound impairment of both modes of infection. Our results show that the abilities of Env to support cell-free and cell-to-cell infection are genetically distinct. These differences are cell type dependent for large-CT-truncation mutants. Additionally, point mutants in LLP-3 can maintain multiround propagation from cell-to-cell in primary CD4(+) T cells. IMPORTANCE The functions of HIV Env gp41 CT remain poorly understood despite being widely studied in the context of cell-free infection. We have identified domains of the gp41 CT responsible for striking selective deficiencies in either cell-free or cell-to-cell infectivity. These differences may reflect a different intrinsic regulatory influence of the CT on cell-associated versus particle-associated Env or differential interaction with host or viral proteins. Our findings provide novel insight into the key regulatory potential of the gp41 CT in cell-free and cell-to-cell HIV-1 infection, particularly for short-truncation mutants of ≤43 amino acids or mutants with point mutations in the LLP-3 helical domain of the CT, which are able to propagate via cell-to-cell infection in the absence of infectious cell-free virus production. These mutants may also serve as tools to further define the contributions of cell-free and cell-to-cell infection in vitro and in vivo.
Collapse
|
21
|
Johnson GT, Autin L, Al-Alusi M, Goodsell DS, Sanner MF, Olson AJ. cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat Methods 2014; 12:85-91. [PMID: 25437435 PMCID: PMC4281296 DOI: 10.1038/nmeth.3204] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 10/06/2014] [Indexed: 01/17/2023]
Abstract
cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is currently available as open source code, with tools for validation of models and with recipes and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators, and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org.
Collapse
Affiliation(s)
- Graham T Johnson
- 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. [3] California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, San Francisco, California, USA
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mostafa Al-Alusi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Michel F Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
22
|
Kyrychenko A, Freites JA, He J, Tobias DJ, Wimley WC, Ladokhin AS. Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41. Biophys J 2014; 106:610-20. [PMID: 24507601 DOI: 10.1016/j.bpj.2013.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/27/2022] Open
Abstract
We use a number of computational and experimental approaches to investigate the membrane topology of the membrane-interacting C-terminal domain of the HIV-1 gp41 fusion protein. Several putative transmembrane regions are identified using hydrophobicity analysis based on the Wimley-White scales, including the membrane-proximal external region (MPER). The MPER region is an important target for neutralizing anti-HIV monoclonal antibodies and is believed to have an interfacial topology in the membrane. To assess the possibility of a transmembrane topology of MPER, we examined the membrane interactions of a peptide corresponding to a 22-residue stretch of the MPER sequence (residues 662-683) using fluorescence spectroscopy and oriented circular dichroism. In addition to the previously reported interfacial location, we identify a stable transmembrane conformation of the peptide in synthetic lipid bilayers. All-atom molecular dynamics simulations of the MPER-derived peptide in a lipid bilayer demonstrate a stable helical structure with an average tilt of 24 degrees, with the five tryptophan residues sampling different environments inside the hydrocarbon core of the lipid bilayer, consistent with the observed spectral properties of intrinsic fluorescence. The degree of lipid bilayer penetration obtained by computer simulation was verified using depth-dependent fluorescence quenching of a selectively attached fluorescence probe. Overall, our data indicate that the MPER sequence can have at least two stable conformations in the lipid bilayer, interfacial and transmembrane, and suggest a possibility that external perturbations can switch the topology during physiological functioning.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, California
| | - Jing He
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California
| | - William C Wimley
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
23
|
Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R. Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 2014; 21:79. [PMID: 25160824 PMCID: PMC4256929 DOI: 10.1186/s12929-014-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background The membrane-proximal external region (MPER) of HIV-1 gp41 is particularly conserved and target for the potent broadly neutralizing monoclonal antibodies (bnMAbs) 2F5, 4E10 and 10E8. Epitope focusing and stabilization present promising strategies to enhance the quality of immune responses to specific epitopes. Results The aim of this work was to design and evaluate novel immunogens based on the gp41 MPER with the potential to elicit cross-clade neutralizing antibodies. For that purpose, gp41 was truncated N-terminally in order to dispose immunodominant, non-neutralizing sites and enhance the exposure of conserved regions. To stabilize a trimeric conformation, heterologous GCN4 and HA2 zipper domains were fused based on an in silico “best-fit” model to the protein’s amino terminus. Cell surface exposure of resulting proteins and their selective binding to bnMAbs 2F5 and 4E10 could be shown by cytometric analyses. Incorporation into VLPs and preservation of antigenic structures were verified by electron microscopy, and the oligomeric state was successfully stabilized by zipper domains. These gp41 immunogens were evaluated for antigenicity in an immunization study in rabbits primed with homologous DNA expression plasmids and boosted with virus-like particle (VLP) proteins. Low titers of anti-MPER antibodies were measured by IgG ELISA, and low neutralizing activity could be detected against a clade C and B viral isolate in sera. Conclusions Thus, although neutralizing titers were very moderate, induction of cross-clade neutralizing antibodies seems possible following immunization with MPER-focusing immunogens. However, further refinement of MPER presentation and immunogenicity is clearly needed to induce substantial neutralization responses to these epitopes. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0079-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralf Wagner
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
24
|
Tedbury PR, Freed EO. The role of matrix in HIV-1 envelope glycoprotein incorporation. Trends Microbiol 2014; 22:372-8. [PMID: 24933691 DOI: 10.1016/j.tim.2014.04.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022]
Abstract
Incorporation of the viral envelope (Env) glycoprotein is a critical requirement for the production of infectious HIV-1 particles. It has long been appreciated that the matrix (MA) domain of the Gag polyprotein and the cytoplasmic tail of Env are central players in the process of Env incorporation, but the precise mechanisms have been elusive. Several recent developments have thrown light on the contributions of both proteins, prompting a re-evaluation of the role of MA during Env incorporation. The two domains appear to play distinct but complementary roles, with the cytoplasmic tail of Env responsible for directing Env to the site of assembly and the matrix domain accommodating the cytoplasmic tail of Env in the Gag lattice.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
25
|
Kuhlmann AS, Steckbeck JD, Sturgeon TJ, Craigo JK, Montelaro RC. Unique functional properties of conserved arginine residues in the lentivirus lytic peptide domains of the C-terminal tail of HIV-1 gp41. J Biol Chem 2014; 289:7630-40. [PMID: 24497632 PMCID: PMC3953275 DOI: 10.1074/jbc.m113.529339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.
Collapse
Affiliation(s)
- Anne-Sophie Kuhlmann
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathan D. Steckbeck
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Jodi K. Craigo
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ronald C. Montelaro
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
26
|
Ladokhin AS. Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2289-95. [PMID: 24593994 DOI: 10.1016/j.bbamem.2014.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Depth-dependent fluorescence quenching by lipid-attached quenchers (e.g., bromine atoms and doxyl groups) is an important tool for determining the penetration of proteins and peptides into lipid bilayers. Extracting quantitative information and accurate calculations of the depth of the fluorophore are complicated by thermal disorder, resulting in broad distributions of the transverse positions of both quenchers and fluorophores. Twenty-one years ago a methodology called distribution analysis (DA) was introduced, based on the emerging view of the complexity of the transverse organization of lipid bilayer structure. The method is aimed at extracting quantitative information on membrane penetration, such as position and width of fluorophore's distribution along the depth coordinate and its exposure to the lipid phase. Here we review recent progress in refining the DA method and illustrate its applications to protein-membrane interactions. We demonstrate how basic assumptions of the DA approach can be validated using molecular dynamics simulations and how the precision of depth determination is improved by applying a new protocol based on a combination of steady-state and time-resolved fluorescence quenching. Using the example of the MPER fragment of the membrane-spanning domain of the HIV-1 gp41 fusion protein, we illustrate how DA applications and computer simulations can be used together to reveal the molecular organization of a protein-membrane complex. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160-7421, USA.
| |
Collapse
|
27
|
Hotop SK, Abd El Wahed A, Beutling U, Jentsch D, Motzkus D, Frank R, Hunsmann G, Stahl-Hennig C, Fritz HJ. Multiple antibody targets on herpes B glycoproteins B and D identified by screening sera of infected rhesus macaques with peptide microarrays. PLoS One 2014; 9:e86857. [PMID: 24497986 PMCID: PMC3908960 DOI: 10.1371/journal.pone.0086857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022] Open
Abstract
Herpes B virus (or Herpesvirus simiae or Macacine herpesvirus 1) is endemic in many populations of macaques, both in the wild and in captivity. The virus elicits only mild clinical symptoms (if any) in monkeys, but can be transmitted by various routes, most commonly via bites, to humans where it causes viral encephalitis with a high mortality rate. Hence, herpes B constitutes a considerable occupational hazard for animal caretakers, veterinarians and laboratory personnel. Efforts are therefore being made to reduce the risk of zoonotic infection and to improve prognosis after accidental exposure. Among the measures envisaged are serological surveillance of monkey colonies and specific diagnosis of herpes B zoonosis against a background of antibodies recognizing the closely related human herpes simplex virus (HSV). 422 pentadecapeptides covering, in an overlapping fashion, the entire amino acid sequences of herpes B proteins gB and gD were synthesized and immobilized on glass slides. Antibodies present in monkey sera that bind to subsets of the peptide collection were detected by microserological techniques. With 42 different rhesus macaque sera, 114 individual responses to 18 different antibody target regions (ATRs) were recorded, 17 of which had not been described earlier. This finding may pave the way for a peptide-based, herpes B specific serological diagnostic test.
Collapse
Affiliation(s)
- Sven-Kevin Hotop
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Ahmed Abd El Wahed
- Department of Virology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Ulrike Beutling
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dieter Jentsch
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Dirk Motzkus
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gerhard Hunsmann
- Department of Virology, University Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
28
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses 2014; 6:284-300. [PMID: 24441863 PMCID: PMC3917443 DOI: 10.3390/v6010284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023] Open
Abstract
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Anne-Sophie Kuhlmann
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Ronald C Montelaro
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Tedbury PR, Ablan SD, Freed EO. Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog 2013; 9:e1003739. [PMID: 24244165 PMCID: PMC3828165 DOI: 10.1371/journal.ppat.1003739] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023] Open
Abstract
The matrix (MA) domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env) glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice. One of the enduring problems in HIV-1 research is the mechanism of incorporation of the viral envelope (Env) glycoprotein into viral particles. Several models have been proposed ranging from an entirely passive process to a requirement for binding of Env by the matrix (MA) domain of the Gag precursor polyprotein. It is clear that specific regions within MA and Env play important roles, as mutations in these domains can prevent Env incorporation. We have identified a point mutation in MA that rescues a broad range of Env-incorporation defective mutations, located both in MA and in Env. Our investigations into the mechanism of rescue have revealed the importance of interactions between MA monomers at a trimeric interface. Our results are consistent with previously published crystallographic models and now provide functional support for the existence of MA trimers in the immature Gag lattice. Furthermore, as the modification of trimer interactions plays a role in the rescue of Env incorporation, we propose that MA trimerization and the organization of the MA lattice may be critical factors in Env incorporation.
Collapse
Affiliation(s)
- Philip R. Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sherimay D. Ablan
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sattentau QJ. Envelope Glycoprotein Trimers as HIV-1 Vaccine Immunogens. Vaccines (Basel) 2013; 1:497-512. [PMID: 26344344 PMCID: PMC4494206 DOI: 10.3390/vaccines1040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 envelope glycoprotein spike is the target of neutralizing antibody attack, and hence represents the only relevant viral antigen for antibody-based vaccine design. Various approaches have been attempted to recapitulate Env in membrane-anchored and soluble forms, and these will be discussed here in the context of recent successes and challenges still to be overcome.
Collapse
Affiliation(s)
- Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford OX13RE, UK.
| |
Collapse
|
31
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
32
|
Uversky VN. The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 2013; 587:1891-901. [PMID: 23665034 DOI: 10.1016/j.febslet.2013.04.042] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 01/29/2023]
Abstract
Many functional proteins do not have well-folded structures in their substantial parts, representing hybrids that possess both ordered and disordered regions. Disorder is unevenly distributed within these hybrid proteins and is typically more common at protein termini. Disordered tails are engaged in a wide range of functions, some of which are unique for termini and cannot be found in other disordered parts of a protein. This review covers some of the key functions of disordered protein termini and emphasizes that these tails are not simple flexible protrusions but are evolved to serve.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|