1
|
Dolci M, Colico C, Ambrogi F, Favi E, Signorini L, Perego M, Campioli E, Maina KK, Ferrante P, Ferraresso M, Delbue S. Longitudinal study of human polyomaviruses viruria in kidney transplant recipients. Clin Exp Med 2024; 24:3. [PMID: 38231278 PMCID: PMC10794280 DOI: 10.1007/s10238-023-01290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/03/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Immunosuppression after kidney transplantation (KTx) exposes recipients to Human Polyomaviruses (HPyVs) infections, whose natural history is still misunderstood. METHODS Allograft biopsies, and urine from 58 donor-recipient pairs were collected before KTx (T0) and 1 (T1), 15 (T2), 30 (T3), 60 (T4), 90 (T5), 180 (T6), 270 (T7), 360 (T8), and 540 (T9) days after transplant. Specimens were tested for JC (JCPyV) and BK (BKPyV), by quantitative Real-Time PCR. The course of post-KTx HPyVs viruria, and the association between JCPyV viruria in recipients and donors, were evaluated. RESULTS HPyVs were detected in 3/58 (5.2%) allograft biopsies. HPyVs viruria was present in 29/58 (50%) donors and 41/58 (70.7%) recipients. JCPyV DNA was detected in 26/58 (44.8%) donors and 25/58 recipients (43.1%), 19 of whom received kidney from JCPyV positive donor, whereas BKPyV genome was detected in 3 (5.2%) donors and 22 (37.9%) recipients. The median time of JCPyV, and BKPyV first episode of replication was 1, and 171 days post KTx, respectively. At T0, JCPyV viruria of donors was associated with increased risk of JCPyV replication post-KTx; recipients with JCPyV positive donors showed lower risk of BKPyV replication post-KTx. CONCLUSIONS The results suggested that JCPyV may be transmitted by allograft, and that its replication post KTx might prevent BKPyV reactivation. Future investigation regarding correlation between chronic exposure to immunosuppressive agents and HPyVs urinary replication are warranted.
Collapse
Affiliation(s)
- Maria Dolci
- Laboratory of Molecular Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal 36, 20133, Milan, Italy
| | - Caterina Colico
- Department of Emergency Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia Signorini
- Laboratory of Molecular Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal 36, 20133, Milan, Italy
| | - Marta Perego
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Campioli
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kevin Kamau Maina
- Laboratory of Molecular Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal 36, 20133, Milan, Italy
| | - Pasquale Ferrante
- Laboratory of Molecular Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal 36, 20133, Milan, Italy
| | - Mariano Ferraresso
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Delbue
- Laboratory of Molecular Virology, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal 36, 20133, Milan, Italy.
| |
Collapse
|
2
|
Bellott TR, Luz FB, Silva AKFD, Varella RB, Rochael MC, Pantaleão L. Merkel cell polyomavirus and its etiological relationship with skin tumors. An Bras Dermatol 2023; 98:737-749. [PMID: 37407331 PMCID: PMC10589487 DOI: 10.1016/j.abd.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 07/07/2023] Open
Abstract
Viruses have been frequently identified in several human neoplasms, but the etiological role of these viruses in some tumors is still a matter of controversy. Polyomaviruses stand out among the main viruses with oncogenic capacity, specifically the Merkel cell polyomavirus (MCPyV). Recent revisions in the taxonomy of polyomaviruses have divided the Polyomaviridae family into six genera, including 117 species, with a total of 14 currently known human-infecting species. Although the oncogenicity of polyomaviruses has been widely reported in the literature since 1950, the first description of a polyomavirus as an etiological agent of a neoplasm in humans was made only in 2008 with the description of MCPyV, present in approximately 80% of cases of Merkel cell carcinoma (MCC), with the integration of its genome to that of the tumor cells and tumor-specific mutations, and it is considered the etiological agent of this neoplasm since then. MCPyV has also been detected in keratinocyte carcinomas, such as basal cell carcinoma and squamous cell carcinoma of the skin in individuals with and without immunosuppression. Data on the occurrence of oncogenic viruses potentially involved in oncogenesis, which cause persistence and tissue injury, related to the Merkel cell polyomavirus are still scarce, and the hypothesis that the Merkel cell polyomavirus may play a relevant role in the genesis of other cutaneous carcinomas in addition to MCC remains debatable. Therefore, the present study proposes to explore the current knowledge about the presence of MCPyV in keratinocyte carcinomas.
Collapse
Affiliation(s)
- Thiago Rubim Bellott
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Flávio Barbosa Luz
- Department of Dermatology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Rafael Brandão Varella
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mayra Carrijo Rochael
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luciana Pantaleão
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
3
|
Kamminga S, van der Meijden E, Pesavento P, Buck CB, Feltkamp MCW. Serology Identifies LIPyV as a Feline Rather than a Human Polyomavirus. Viruses 2023; 15:1546. [PMID: 37515232 PMCID: PMC10384086 DOI: 10.3390/v15071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The number of identified human polyomaviruses (HPyVs) has increased steadily over the last decade. Some of the novel HPyVs have been shown to cause disease in immunocompromised individuals. The Lyon-IARC polyomavirus (LIPyV) belonging to species Alphapolyomavirus quardecihominis was identified in 2017 in skin and saliva samples from healthy individuals. Since its initial discovery, LIPyV has rarely been detected in human clinical samples but has been detected in faeces from cats with diarrhoea. Serological studies show low LIPyV seroprevalence in human populations. To investigate the possibility that LIPyV is a feline rather than a human polyomavirus, we compared serum IgG responses against the VP1 major capsid protein of LIPyV and 13 other HPyVs among cats (n = 40), dogs (n = 38) and humans (n = 87) using an in-house immunoassay. Seropositivity among cats was very high (92.5%) compared to dogs (31.6%) and humans (2.3%). Furthermore, the median antibody titres against LIPyV were 100-10,000x higher in cats compared to dogs and humans. In conclusion, the high prevalence and intensity of measured seroresponses suggest LIPyV to be a feline rather than a human polyomavirus. Whether LIPyV infection induces diarrhoea or other symptoms in cats remains to be established.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Patricia Pesavento
- Department of Pathology, Microbiology & Immunology, University California Davis Veterinary Medicine, 5323 Vet Med 3A, Davis, CA 95616, USA
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Donor Medicine Research, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Lučiūnaitė A, Dalgėdienė I, Vasiliūnaitė E, Norkienė M, Kučinskaitė-Kodzė I, Žvirblienė A, Gedvilaitė A. Immunogenic Properties and Antigenic Similarity of Virus-like Particles Derived from Human Polyomaviruses. Int J Mol Sci 2023; 24:ijms24054907. [PMID: 36902338 PMCID: PMC10003412 DOI: 10.3390/ijms24054907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polyomaviruses (PyVs) are highly prevalent in humans and animals. PyVs cause mild illness, however, they can also elicit severe diseases. Some PyVs are potentially zoonotic, such as simian virus 40 (SV40). However, data are still lacking about their biology, infectivity, and host interaction with different PyVs. We investigated the immunogenic properties of virus-like particles (VLPs) derived from viral protein 1 (VP1) of human PyVs. We immunised mice with recombinant HPyV VP1 VLPs mimicking the structure of viruses and compared their immunogenicity and cross-reactivity of antisera using a broad spectrum of VP1 VLPs derived from the PyVs of humans and animals. We demonstrated a strong immunogenicity of studied VLPs and a high degree of antigenic similarity between VP1 VLPs of different PyVs. PyV-specific monoclonal antibodies were generated and applied for investigation of VLPs phagocytosis. This study demonstrated that HPyV VLPs are highly immunogenic and interact with phagocytes. Data on the cross-reactivity of VP1 VLP-specific antisera revealed antigenic similarities among VP1 VLPs of particular human and animal PyVs and suggested possible cross-immunity. As the VP1 capsid protein is the major viral antigen involved in virus-host interaction, an approach based on the use of recombinant VLPs is relevant for studying PyV biology regarding PyV interaction with the host immune system.
Collapse
|
5
|
Linthorst J, Welkers MRA, Sistermans EA. Clinically relevant DNA viruses in pregnancy. Prenat Diagn 2022; 43:457-466. [PMID: 35170055 DOI: 10.1002/pd.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Abstract
Infections by DNA viruses during pregnancy are associated with increased health risks to both mother and fetus. Although not all DNA viruses are related to an increased risk of complications during pregnancy, several can directly infect the fetus and/or cause placental dysfunction. During NIPT analysis, the presence of viral DNA can be detected, theoretically allowing screening early in pregnancy. Although treatment options are currently limited, this might rapidly change in the near future. It is therefore important to be aware of the potential impact of these viruses on feto-maternal health. In this manuscript we provide a brief introduction into the most commonly detected DNA viruses in human cell-free DNA sequencing experiments and their pathogenic potential during pregnancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasper Linthorst
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Dept of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| |
Collapse
|
6
|
Bopp L, Wieland U, Hellmich M, Kreuter A, Pfister H, Silling S. Natural History of Cutaneous Human Polyomavirus Infection in Healthy Individuals. Front Microbiol 2021; 12:740947. [PMID: 34733257 PMCID: PMC8558461 DOI: 10.3389/fmicb.2021.740947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Several human polyomaviruses (HPyVs) were recently discovered. Merkel cell polyomavirus (MCPyV) induces Merkel cell carcinoma. HPyV6, HPyV7, and TSPyV have been associated with rare skin lesions in immunosuppressed patients. HPyV9, HPyV10, and Saint Louis Polyomavirus (STLPyV) have not been convincingly associated with any disease. The aim of this prospective study was to evaluate the cutaneous prevalence, persistence and viral load of HPyVs in healthy individuals. Eight hundred seventy forehead and hand swabs were collected from 109 volunteers 4-6 weeks apart (collection period-1). Fifty-nine participants were available for follow-up a decade later (collection period-2). HPyV-DNA prevalence and viral loads of MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, and STLPyV were determined by virus-specific real-time PCRs. Risk factors for HPyV prevalence, short- and long-term persistence were explored by logistic regression analyses. Baseline prevalence rates were similar for forehead and hand: MCPyV 67.9/67.0%, HPyV6 31.2/25.7%, HPyV7 13.8/11.0%, HPyV10 11.9/15.6%, STLPyV 7.3/8.3%, TSPyV 0.9/0.9%, and HPyV9 0.9/0.9%. Short-term persistence in period-1 was found in 59.6% (MCPyV), 23.9% (HPyV6), 10.1% (HPyV7), 6.4% (HPyV10), 5.5% (STLPyV), and 0% (TSPyV and HPyV9) on the forehead, with similar values for the hand. Long-term persistence for 9-12 years occurred only for MCPyV (forehead/hand 39.0%/44.1% of volunteers), HPyV6 (16.9%/11.9%), and HPyV7 (3.4%/5.1%). Individuals with short-term persistence had significantly higher viral loads at baseline compared to those with transient DNA-positivity (p < 0.001 for MCPyV, HPyV6, HPyV7, and HPyV10, respectively). This was also true for median viral loads in period-1 of MCPyV, HPyV6, and HPyV7 of volunteers with long-term persistence. Multiplicity (two or more different HPyVs) was a risk factor for prevalence and persistence for most HPyVs. Further risk factors were older age for HPyV6 and male sex for MCPyV on the forehead. Smoking was not a risk factor. In contrast to MCPyV, HPyV6, HPyV7, and rarely STLPyV, polyomaviruses TSPyV, HPyV9, and HPyV10 do not seem to be long-term constituents of the human skin virome of healthy individuals. Furthermore, this study showed that higher viral loads are associated with both short- and long-term persistence of HPyVs on the skin. HPyV multiplicity is a risk factor for prevalence, short-term and/or long-term persistence of MCPyV, HPyV6, HPyV7, and HPyV10.
Collapse
Affiliation(s)
- Luisa Bopp
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, University of Cologne, Cologne, Germany
| | - Ulrike Wieland
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology, and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten-Herdecke, Witten, Germany
| | - Herbert Pfister
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Abade Dos Santos FA, Portela SJ, Nogueira T, Carvalho CL, de Sousa R, Duarte MD. Harmless or Threatening? Interpreting the Results of Molecular Diagnosis in the Context of Virus-Host Relationships. Front Microbiol 2021; 12:647730. [PMID: 34093464 PMCID: PMC8175621 DOI: 10.3389/fmicb.2021.647730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Molecular methods, established in the 1980s, expanded and delivered tools for the detection of vestigial quantities of nucleic acids in biological samples. Nucleotide sequencing of these molecules reveals the identity of the organism it belongs to. However, the implications of such detection are often misinterpreted as pathogenic, even in the absence of corroborating clinical evidence. This is particularly significant in the field of virology where the concepts of commensalism, and other benign or neutral relationships, are still very new. In this manuscript, we review some fundamental microbiological concepts including commensalism, mutualism, pathogenicity, and infection, giving special emphasis to their application in virology, in order to clarify the difference between detection and infection. We also propose a system for the correct attribution of terminology in this context.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Sara J Portela
- Harrogate District Hospital NHS Foundation Trust, Harrogate, United Kingdom
| | - Teresa Nogueira
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carina L Carvalho
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
| | - Rita de Sousa
- National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Margarida D Duarte
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Dolci M, Signorini L, Toumi W, Basile G, D'Alessandro S, Ferrante P, Delbue S. Human polyomaviruses genomes in clinical specimens of colon cancer patients. J Med Virol 2021; 93:6333-6339. [PMID: 33547809 DOI: 10.1002/jmv.26851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 11/11/2022]
Abstract
Colon cancer is the third cause of cancer death in the developed countries. Some environmental factors are involved in its pathogenesis, including viral infections. The possible involvement of human polyomaviruses (HPyVs) in colon cancer pathogenesis has been previously reported, leading to inconsistent conclusions. Clinical specimens were collected from 125 colon cancer patients. Specifically, 110 tumor tissues, 55 negative surgical margins, and 39 peripheral blood samples were analyzed for the presence of six HPyVs: JC polyomavirus (JCPyV), BK polyomavirus (BKPyV), Merkel cell PyV (MCPyV), HPyV -6, -7, and -9 by means of DNA isolation and subsequent duplex Real Time quantitative polymerase chain reaction. HPyVs genome was detected in 33/204 samples (16.2%): the significant higher positivity was found in tumor tissues (26/110, 23.6%), followed by negative surgical margins (3/55, 5.5%, p < .05), and peripheral blood mononuclear cells (PBMCs) (4/39; 10.3%). HPyVs load was statistically higher only in the tumor tissues compared to negative surgical margins (p < .05). Specifically, MCPyV was detected in 19.1% (21/110) of tumor tissues, 3.6% (2/55) of negative surgical margins (p < .05), and 7.7% (3/39) of PBMCs; HPyV-6 in 2.7% (3/110) of tumor tissues, and 1.8% (1/55) of negative surgical margins; one tumor tissue (1/110, 0.9%) and one PBMCs sample (1/39, 2.6%) were positive for BKPyV; JCPyV was present in 0.9% (1/110) of tumor tissues. HPyV-7 and 9 were not detected in any sample. High prevalence and load of MCPyV genome in the tumor tissues might be indicative of a relevant rather than bystander role of the virus in the colon tumorigenesis.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Wafa Toumi
- Viral and Molecular Tumor Diagnostics Unit, Laboratory Services, Habib Thameur Hospital, Tunis, Tunisia
| | - Giuseppe Basile
- Service of Legal Medicine, San Siro Clinical Insitute, Milan, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Signorini L, Dolci M, Favi E, Colico C, Ferraresso M, Ticozzi R, Basile G, Ferrante P, Delbue S. Viral Genomic Characterization and Replication Pattern of Human Polyomaviruses in Kidney Transplant Recipients. Viruses 2020; 12:1280. [PMID: 33182443 PMCID: PMC7696855 DOI: 10.3390/v12111280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Human Polyomavirus (HPyV) infections are common, ranging from 60% to 100%. In kidney transplant (KTx) recipients, HPyVs have been associated with allograft nephropathy, progressive multifocal leukoencephalopathy, and skin cancer. Whether such complications are caused by viral reactivation or primary infection transmitted by the donor remains debated. This study aimed to investigate the replication pattern and genomic characterization of BK Polyomavirus (BKPyV), JC Polyomavirus (JCPyV), and Merkel Cell Polyomavirus (MCPyV) infections in KTx. Urine samples from 57 KTx donor/recipient pairs were collected immediately before organ retrieval/transplant and periodically up to post-operative day 540. Specimens were tested for the presence of BKPyV, JCPyV, and MCPyV genome by virus-specific Real-Time PCR and molecularly characterized. HPyVs genome was detected in 49.1% of donors and 77.2% of recipients. Sequences analysis revealed the archetypal strain for JCPyV, TU and Dunlop strains for BKPyV, and IIa-2 strain for MCPyV. VP1 genotyping showed a high frequency for JCPyV genotype 1 and BKPyV genotype I. Our experience demonstrates that after KTx, HPyVs genome remains stable over time with no emergence of quasi-species. HPyVs strains isolated in donor/recipient pairs are mostly identical, suggesting that viruses detected in the recipient may be transmitted by the allograft.
Collapse
Affiliation(s)
- Lucia Signorini
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Maria Dolci
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Evaldo Favi
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Caterina Colico
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Mariano Ferraresso
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy; (E.F.); (M.F.)
- Kidney Transplantation, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Rosalia Ticozzi
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Giuseppe Basile
- Service of Legal Medicine, San Siro Clinical Institute, 20148 Milano, Italy;
| | - Pasquale Ferrante
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| | - Serena Delbue
- Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milano, Italy; (M.D.); (R.T.); (P.F.); (S.D.)
| |
Collapse
|
10
|
Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae. Virol J 2020; 17:42. [PMID: 32220234 PMCID: PMC7099801 DOI: 10.1186/s12985-020-01310-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.
Collapse
|
11
|
Evolution and molecular epidemiology of polyomaviruses. INFECTION GENETICS AND EVOLUTION 2019; 79:104150. [PMID: 31870972 DOI: 10.1016/j.meegid.2019.104150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Polyomaviruses (PyVs) are small DNA viruses that infect several species, including mammals, birds and fishes. Their study gained momentum after the report of previously unidentified viral species in the past decade, and especially, since the description of the first polyomavirus clearly oncogenic for humans. The aim of this work was to review the most relevant aspects of the evolution and molecular epidemiology of polyomaviruses, allowing to reveal general evolutionary patterns and to identify some unaddressed issues and future challenges. The main points analysed included: 1) the species and genera assignation criteria; 2) the hypotheses, mechanisms and timescale of the ancient and recent evolutionary history of polyomaviruses; and 3) the molecular epidemiology of human viruses, with special attention to JC, BK and Merkel cell polyomaviruses.
Collapse
|
12
|
Human Polyomaviruses in the Cerebrospinal Fluid of Neurological Patients. Microorganisms 2019; 8:microorganisms8010016. [PMID: 31861837 PMCID: PMC7022863 DOI: 10.3390/microorganisms8010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) infections by human polyomaviruses (HPyVs), with the exception of JC (JCPyV), have been poorly studied. METHODS In total, 234 cerebrospinal fluid (CSF) samples were collected from patients affected with neurological disorders. DNA was isolated and subjected to quantitative real-time PCR (Q-PCR) for the detection of six HPyVs: JCPyV, BKPyV, Merkel cell PyV (MCPyV), HPyV6, HPyV7, and HPyV9. Where possible, the molecular characterization of the viral strains was carried out by nested PCR and automated sequencing. RESULTS JCPyV was detected in 3/234 (1.3%), BKPyV in 15/234 (6.4%), MCPyV in 22/234 (9.4%), and HPyV6 in 1/234 (0.4%) CSF samples. JCPyV was detected at the highest (p < 0.05) mean load (3.7 × 107 copies/mL), followed by BKPyV (1.9 × 106 copies/mL), MCPyV (1.9 × 105 copies/mL), and HPyV6 (3.3 × 104 copies/mL). The noncoding control regions (NCCRs) of the sequenced viral strains were rearranged. CONCLUSIONS HPyVs other than JCPyV were found in the CSF of patients affected with different neurological diseases, probably as bystanders, rather than etiological agents of the disease. However, the fact that they can be latent in the CNS should be considered, especially in immunosuppressed patients.
Collapse
|
13
|
Human polyomaviruses 10 and 11 in faecal samples from Brazilian children. Braz J Microbiol 2019; 51:585-591. [PMID: 31667802 DOI: 10.1007/s42770-019-00166-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
The human polyomaviruses (HPyVs) 10 and 11 have been detected in faecal material and are tentatively associated with diarrhoeal disease. However, to date, there are insufficient data to confirm or rule out this association, or even to provide basic information about these viruses, such as how they are distributed in the population, the persistence sites and their pathogenesis. In this study, we analysed stool specimens from Brazilian children with and without acute diarrhoea to investigate the excretion of HPyV10 and HPyV11 as well as their possible associations with diarrhoea. A total of 460 stool specimens were obtained from children with acute diarrhoea of unknown aetiology, and 106 stool specimens were obtained from healthy asymptomatic children under 10 years old. Samples were collected during the periods of 1999-2006, 2010-2012 and 2016-2017, and found previously to be negative for other enteric viruses and bacteria. The specimens were screened for HPyV10 and HPyV11 DNA by the polymerase chain reaction (PCR). Randomly selected positive samples were sequenced to confirm the presence of HPyV10 and HPyV11. The sequenced strains showed a percent of nucleotide identity of 93.4-99.6% and 85.5-98.9% with the reference HPyV10 and HPyV11 strains, respectively, confirming the PCR results. HPyV10 and HPyV11 were detected in 7.2% and 4.7% of the stool specimens from children with and without diarrhoea, respectively. The prevalence of both viruses was the same among children with diarrhoea and healthy children. There was also no difference between boys and girls or the degree of disease (severe, moderate or mild) among groups. Phylogenetic analysis showed that all of the genotypes described so far for HPyV10 and HPyV11 circulate in Rio de Janeiro. Our results do not support an association between HPyV10 and HPyV11 in stool samples and paediatric gastroenteritis. Nevertheless, the excretion of HPyV10 and HPyV11 in faeces indicates that faecal-oral transmission is possible.
Collapse
|
14
|
Wang Y, Strassl R, Helanterä I, Aberle SW, Bond G, Hedman K, Weseslindtner L. Multiplex analysis of Human Polyomavirus diversity in kidney transplant recipients with BK virus replication. J Clin Virol 2019; 120:6-11. [DOI: 10.1016/j.jcv.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
15
|
Shahzad N, Hussain I, Gilani US, Tayyeb A, Aslam MA, Khurshid M, Hassan U, Tasneem F, Umer M, Rashid N. Merkel cell polyomavirus DNA sequences in the blood of healthy population of Pakistan. Future Microbiol 2019; 14:599-608. [PMID: 30864465 DOI: 10.2217/fmb-2018-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: This study aimed at detecting and quantifying Merkel cell polyomavirus (MCPyV) viral loads in the peripheral blood of healthy Pakistani individuals. Patients & methods: A total of 221 whole blood samples obtained from healthy individuals were examined by qPCR. Results & conclusion: MCPyV was detected in the peripheral blood of 31.2% healthy individuals. The rate of MCPyV positivity decreased from young (36%), to middle (33.7%) and elder (25.3%) age groups. Our data revealed higher prevalence of MCPyV in women (43.93%) than men (25.80%). The MCPyV viral load was calculated in the range of 0.06 -11 copies/ng of isolated DNA. The MCPyV viral load increased from young (median = 3.35) to elder (median = 5.66) age groups. The MCPyV circulate at a higher frequency by residing dormant in certain blood cells, which might act as potential vehicles for the spread of MCPyV infection among general population.
Collapse
Affiliation(s)
- Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Iqra Hussain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Usman S Gilani
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad A Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Khurshid
- Institute of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Umair Hassan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammd Umer
- Queensland Micro- & Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
16
|
Kourieh A, Combes JD, Tommasino M, Dalstein V, Clifford GM, Lacau St Guily J, Clavel C, Franceschi S, Gheit T, For The Split Study Group. Prevalence and risk factors of human polyomavirus infections in non-malignant tonsils and gargles: the SPLIT study. J Gen Virol 2018; 99:1686-1698. [PMID: 30407150 DOI: 10.1099/jgv.0.001156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of 13 polyomaviruses (PyVs) in the tonsil brushings and gargles of immunocompetent children and adults was assessed. Patients undergoing tonsillectomy for benign indications were recruited in 19 centres in France. After resection, the entire outer surface of the right and left halves of the tonsils was brushed extensively. Gargles were also collected prior to surgery in selected adults. A species-specific multiplex assay was used to detect the DNA of 13 PyVs. In tonsil brushings (n=689), human PyV 6 (HPyV6) and Merkel cell PyV (MCPyV) were the most prevalent (≈15 %), followed by trichodysplasia spinulosa-associated PyV (TSPyV), BKPyV, Washington University PyV (WUPyV) and human PyV 9 (HPyV9) (1 to 5 %), and human PyV 7 (HPyV7), John Cunningham PyV (JCPyV) and Simian virus 40 (SV40) (<1 %), while no Karolinska Institute PyV (KIPyV), Malawi PyV (MWPyV), human PyV 12 (HPyV12) or Lyon IARC PyV (LIPyV) were detected. The prevalence of TSPyV and BKPyV was significantly higher in children versus adults, whereas for HPyV6 the opposite was found. HPyV6 and WUPyV were significantly more prevalent in men versus women. In gargles (n=139), MCPyV was the most prevalent (≈40 %), followed by HPyV6, HPyV9 and LIPyV (2 to 4 %), and then BKPyV (≈1 %), while other PyVs were not detected. MCPyV and LIPyV were significantly more prevalent in gargles compared to tonsil brushings, in contrast to HPyV6. We described differing patterns of individual PyV infections in tonsils and gargles in a large age-stratified population. Comparison of the spectrum of PyVs in paired tonsil samples and gargles adds to the current knowledge on PyV epidemiology, contributing towards a better understanding of PyV acquisition and transmission and its potential role in head and neck diseases.
Collapse
Affiliation(s)
- Aboud Kourieh
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean-Damien Combes
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Massimo Tommasino
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Véronique Dalstein
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Gary M Clifford
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | - Jean Lacau St Guily
- 5Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Sorbonne University, Paris, France
- 6Tenon Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christine Clavel
- 2CHU Reims, Hôpital Maison Blanche, Laboratoire Biopathologie, 51092 Reims, France
- 3INSERM, UMR-S 1250, 51092 Reims, France
- 4Faculté de Médecine, Université de Reims Champagne-Ardenne, 51095 Reims, France
| | - Silvia Franceschi
- 7Aviano Cancer Centre, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Tarik Gheit
- 1International Agency for Research on Cancer, 69372 Lyon Cedex 08, France
| | | |
Collapse
|
17
|
Kamminga S, van der Meijden E, Feltkamp MCW, Zaaijer HL. Seroprevalence of fourteen human polyomaviruses determined in blood donors. PLoS One 2018; 13:e0206273. [PMID: 30352098 PMCID: PMC6198985 DOI: 10.1371/journal.pone.0206273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022] Open
Abstract
The polyomavirus family currently includes thirteen human polyomavirus (HPyV) species. In immunocompromised and elderly persons HPyVs are known to cause disease, such as progressive multifocal leukoencephalopathy (JCPyV), haemorrhagic cystitis and nephropathy (BKPyV), Merkel cell carcinoma (MCPyV), and trichodysplasia spinulosa (TSPyV). Some recently discovered polyomaviruses are of still unknown prevalence and pathogenic potential. Because HPyVs infections persist and might be transferred by blood components to immunocompromised patients, we studied the seroprevalence of fourteen polyomaviruses in adult Dutch blood donors. For most polyomaviruses the observed seroprevalence was high (60–100%), sometimes slightly increasing or decreasing with age. Seroreactivity increased with age for JCPyV, HPyV6 and HPyV7 and decreased for BKPyV and TSPyV. The most recently identified polyomaviruses HPyV12, NJPyV and LIPyV showed low overall seroprevalence (~5%) and low seroreactivity, questioning their human tropism. Altogether, HPyV infections are common in Dutch blood donors, with an average of nine polyomaviruses per subject.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L. Zaaijer
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Purdie KJ, Proby CM, Rizvi H, Griffin H, Doorbar J, Sommerlad M, Feltkamp MC, der Meijden EV, Inman GJ, South AP, Leigh IM, Harwood CA. The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Front Microbiol 2018; 9:1806. [PMID: 30154763 PMCID: PMC6102365 DOI: 10.3389/fmicb.2018.01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies.
Collapse
Affiliation(s)
- Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Hasan Rizvi
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Heather Griffin
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mary Sommerlad
- Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| | - Mariet C Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irene M Leigh
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
19
|
Development and Evaluation of a Broad Bead-Based Multiplex Immunoassay To Measure IgG Seroreactivity against Human Polyomaviruses. J Clin Microbiol 2018; 56:JCM.01566-17. [PMID: 29305551 DOI: 10.1128/jcm.01566-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023] Open
Abstract
The family of polyomaviruses, which cause severe disease in immunocompromised hosts, has expanded substantially in recent years. To accommodate measurement of IgG seroresponses against all currently known human polyomaviruses (HPyVs), including the Lyon IARC polyomavirus (LIPyV), we extended our custom multiplex bead-based HPyV immunoassay and evaluated the performance of this pan-HPyV immunoassay. The VP1 proteins of 15 HPyVs belonging to 13 Polyomavirus species were expressed as recombinant glutathione S-transferase (GST) fusion proteins and coupled to fluorescent Luminex beads. Sera from healthy blood donors and immunocompromised kidney transplant recipients were used to analyze seroreactivity against the different HPyVs. For BK polyomavirus (BKPyV), the GST-VP1 fusion protein-directed seroresponses were compared to those obtained against BKPyV VP1 virus-like particles (VLP). Seroreactivity against most HPyVs was common and generally high in both test populations. Low seroreactivity against HPyV9, HPyV12, New Jersey PyV, and LIPyV was observed. The assay was reproducible (Pearson's r2 > 0.84, P < 0.001) and specific. Weak but consistent cross-reactivity between the related viruses HPyV6 and HPyV7 was observed. The seroresponses measured by the GST-VP1-based immunoassay and a VP1 VLP-based enzyme-linked immunosorbent assay were highly correlated (Spearman's ρ = 0.823, P < 0.001). The bead-based pan-HPyV multiplex immunoassay is a reliable tool to determine HPyV-specific seroresponses with high reproducibility and specificity and is suitable for use in seroepidemiological studies.
Collapse
|
20
|
Van Doorslaer K, Kraberger S, Austin C, Farkas K, Bergeman M, Paunil E, Davison W, Varsani A. Fish polyomaviruses belong to two distinct evolutionary lineages. J Gen Virol 2018. [PMID: 29517483 PMCID: PMC5982132 DOI: 10.1099/jgv.0.001041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, Bio5 Institute, and the University of Arizona Cancer Center University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,School of Environment, Natural Resources and Geography Bangor University Bangor, LL57 2UW, UK
| | - Melissa Bergeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Emma Paunil
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
21
|
Fajfr M, Pliskova L, Kutova R, Matyskova-Kubisova M, Navratil P, Radocha J, Valenta Z, Dusilova-Sulkova S. Human polyomavirus 9 in immunocompromised patients in the University Hospital in Hradec Kralove, Czech Republic. J Med Virol 2017; 89:2230-2234. [DOI: 10.1002/jmv.24892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/21/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Miroslav Fajfr
- Institute of Clinical Microbiology; University Hospital; Hradec Kralove Czech Republic
- Faculty of Medicine in Hradec Kralove; Charles University; Prague Czech Republic
| | - Lenka Pliskova
- Department of Molecular Biology; Institute of Clinical Biochemistry and Diagnostics; University Hospital; Hradec Kralove Czech Republic
| | - Radka Kutova
- Department of Molecular Biology; Institute of Clinical Biochemistry and Diagnostics; University Hospital; Hradec Kralove Czech Republic
| | - Michaela Matyskova-Kubisova
- University Hospital; Haemodialysis Centre; Hradec Kralove Czech Republic
- Faculty of Medicine in Hradec Kralove; Charles University; Prague Czech Republic
| | - Pavel Navratil
- Faculty of Medicine in Hradec Kralove; Charles University; Prague Czech Republic
- Transplantation Centre of Urological Clinic; University Hospital; Hradec Kralove Czech Republic
| | - Jakub Radocha
- Faculty of Medicine in Hradec Kralove; Charles University; Prague Czech Republic
- 4th Department of Internal Medicine-Haematology; Charles University; University Hospital; Hradec Kralove Czech Republic
| | - Zbynek Valenta
- Department of Epidemiology; Faculty of Military Health Science; University of Defence; Hradec Kralove Czech Republic
| | - Sylvie Dusilova-Sulkova
- University Hospital; Haemodialysis Centre; Hradec Kralove Czech Republic
- Faculty of Medicine in Hradec Kralove; Charles University; Prague Czech Republic
| |
Collapse
|
22
|
Hussain I, Tasneem F, Umer M, Pervaiz A, Raza M, Arshad MI, Shahzad N. Specific and quantitative detection of Human polyomaviruses BKPyV and JCPyV in the healthy Pakistani population. Virol J 2017; 14:86. [PMID: 28438210 PMCID: PMC5404684 DOI: 10.1186/s12985-017-0752-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The BK Polyomavirus (BKPyV) and JC polyomavirus (JCPyV) infections are widespread in human population and have been associated with severe kidney and brain disorders, respectively. The viruses remain latent primarily in reno-urinary tract, reactivating only in case of a compromised immune system. The seroepidemiology and molecular prevalence of BKPyV and JCPyV have been widely studied both in healthy and immunocompromised patients worldwide. However, data regarding the prevalence of these viruses in the immunocompetent or apparently healthy Pakistani population is lacking. Herein, we present the first ever report on quantitative prevalence of BKPyV and JCPyV in the peripheral blood of a randomly selected cohort of healthy Pakistani population. METHODS A total of 266 whole blood samples were examined. The subjects were divided into three age groups: ≤ 25 years (young), 26-50 years (middle) and ≥ 51 years (elder). Absolute real time PCR assay was designed to quantify the BKPyV and JCPyV viral copy numbers in the range of 106 to 100 copies/mL. RESULTS Overall, BKPyV was detected in 27.1% (72/266) individuals while JCPyV in 11.6% (31/266) indicating significant difference (p < 0.005) in the distribution of these two viruses. The prevalence of BKPyV significantly decreased from 51% (49/96) in young age group to 8.2% (7/85) in eldest age group. Whereas, JCPyV positivity rate slightly increased from 8.3% (8/96) in young age group to 11.8% (10/85) in elder age group. The median viral load was calculated as 6.2 log and 3.38 log copies/mL of blood for BKPyV and JCPyV, respectively. Notably, no significant difference in viral load of either of the subtypes was found between different age groups. CONCLUSION The current study provides an important baseline data on the prevalence and viral load of circulating BKPyV and JCPyV in Pakistani population. The prevalence and viral load of BKPyV was comparatively higher than JCPyV. The prevalence of BKPyV significantly decreased with increase in age while JCPyV positivity rate slightly increased with increasing age. Viral load of both BKPyV and JCPyV was not correlated with the individual ages.
Collapse
Affiliation(s)
- Iqra Hussain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammed Umer
- National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan
| | - Ayesha Pervaiz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muslim Raza
- Department of Mathematics and Statistics, Virtual University of Pakistan, Lahore, Pakistan
| | | | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
23
|
Herberhold S, Hellmich M, Panning M, Bartok E, Silling S, Akgül B, Wieland U. Human polyomavirus and human papillomavirus prevalence and viral load in non-malignant tonsillar tissue and tonsillar carcinoma. Med Microbiol Immunol 2016; 206:93-103. [PMID: 27832373 DOI: 10.1007/s00430-016-0486-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Human papillomaviruses (HPVs) are an acknowledged cause of a subset of oropharyngeal cancers, especially of tonsillar cancer. Similar to HPV, some human polyomaviruses (HPyVs), such as Merkel cell polyomavirus (MCPyV), have an oncogenic potential. Recently, several novel HPyVs have been discovered. The aim of our study was to determine viral DNA prevalence and viral DNA load of 13 different HPyVs in benign and malignant tonsillar tissue and to compare the data with those found for HPV. A total of 78 biopsies of palatine tonsils with a histologic diagnosis of non-malignant disease (chronic tonsillitis, tonsillar hyperplasia, n = 40) or tonsillar squamous cell carcinoma (n = 38) were included in the study. HPyV DNA prevalence and viral load were determined by virus-specific quantitative real-time PCRs. JCPyV (1/40, 2.5%) and WUPyV (3/40, 7.5%) were only found in non-malignant tonsillar tissue. HPyV7 and HPyV10 were only detected in one (2.6%) and seven (18.4%) of the 38 cancer biopsies, respectively. Both MCPyV (8/38, 21.1 vs. 4/40, 10.0%) and HPyV6 (2/38, 5.3 vs. 1/40, 2.5%) were found more frequently in cancer samples than in non-malignant tissue, but the differences were not significant. BKPyV, KIPyV, TSPyV, HPyV9, STLPyV, HPyV12 and NJPyV were not discovered in any of the samples. HPyV loads found in HPyV DNA-positive biopsies were very low with no difference between non-malignant and malignant samples (median load <0.0001 HPyV DNA copies per beta-globin gene copy, respectively). In contrast to HPyV, high-risk HPV types (HPV16/HPV18) were found significantly more frequently in tonsillar cancers than in non-malignant tonsillar tissue (17/38, 44.7 vs. 2/40, 5.0%, p < 0.001). Furthermore, high-risk HPV DNA loads were significantly higher in the cancer compared to the non-malignant samples (median load 11.861 vs. 7 × 10-6 HPV DNA copies per beta-globin gene copy, p = 0.012). While both HPV and HPyV may persist in tonsillar tissue, our data on HPyV DNA prevalence and load do not support a role of HPyV in tonsillar carcinogenesis, neither alone nor as co-infecting agents of HPV.
Collapse
Affiliation(s)
- Stephan Herberhold
- ENT Department, Head and Neck Surgery, University of Bonn, Bonn, Germany.,ENT Department, Johanniter-Kliniken Bonn, Bonn, Germany
| | - Martin Hellmich
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Marcus Panning
- Institute for Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Steffi Silling
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany.
| | - Ulrike Wieland
- Institute of Virology, National Reference Center for Papilloma- and Polyomaviruses, University of Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| |
Collapse
|
24
|
Barth H, Solis M, Lepiller Q, Sueur C, Soulier E, Caillard S, Stoll-Keller F, Fafi-Kremer S. 45 years after the discovery of human polyomaviruses BK and JC: Time to speed up the understanding of associated diseases and treatment approaches. Crit Rev Microbiol 2016; 43:178-195. [DOI: 10.1080/1040841x.2016.1189873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Heidi Barth
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Morgane Solis
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Quentin Lepiller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Charlotte Sueur
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Eric Soulier
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sophie Caillard
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Françoise Stoll-Keller
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Samira Fafi-Kremer
- Laboratoire de Virologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- INSERM UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes. J Virol 2016; 90:8531-41. [PMID: 27440885 DOI: 10.1128/jvi.00247-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. IMPORTANCE The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years.
Collapse
|
26
|
Concurrence of Iridovirus, Polyomavirus, and a Unique Member of a New Group of Fish Papillomaviruses in Lymphocystis Disease-Affected Gilthead Sea Bream. J Virol 2016; 90:8768-79. [PMID: 27440877 DOI: 10.1128/jvi.01369-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Lymphocystis disease is a geographically widespread disease affecting more than 150 different species of marine and freshwater fish. The disease, provoked by the iridovirus lymphocystis disease virus (LCDV), is characterized by the appearance of papillomalike lesions on the skin of affected animals that usually self-resolve over time. Development of the disease is usually associated with several environmental factors and, more frequently, with stress conditions provoked by the intensive culture conditions present in fish farms. In gilthead sea bream (Sparus aurata), an economically important cultured fish species in the Mediterranean area, a distinct LCDV has been identified but not yet completely characterized. We have used direct sequencing of the virome of lymphocystis lesions from affected S. aurata fish to obtain the complete genome of a new LCDV-Sa species that is the largest vertebrate iridovirus sequenced to date. Importantly, this approach allowed us to assemble the full-length circular genome sequence of two previously unknown viruses belonging to the papillomaviruses and polyomaviruses, termed Sparus aurata papillomavirus 1 (SaPV1) and Sparus aurata polyomavirus 1 (SaPyV1), respectively. Epidemiological surveys showed that lymphocystis disease was frequently associated with the concurrent appearance of one or both of the new viruses. SaPV1 has unique characteristics, such as an intron within the L1 gene, and as the first member of the Papillomaviridae family described in fish, provides evidence for a more ancient origin of this family than previously thought. IMPORTANCE Lymphocystis disease affects marine and freshwater fish species worldwide. It is characterized by the appearance of papillomalike lesions on the skin that contain heavily enlarged cells (lymphocysts). The causative agent is the lymphocystis disease virus (LCDV), a large icosahedral virus of the family Iridoviridae In the Mediterranean area, the gilthead sea bream (Sparus aurata), an important farmed fish, is frequently affected. Using next-generation sequencing, we have identified within S. aurata lymphocystis lesions the concurrent presence of an additional LCDV species (LCDV-Sa) as well as two novel viruses. These are members of polyomavirus and papillomavirus families, and here we report them to be frequently associated with the presence of lymphocysts in affected fish. Because papillomaviruses have not been described in fish before, these findings support a more ancient origin of this virus family than previously thought and evolutionary implications are discussed.
Collapse
|
27
|
Bialasiewicz S, Rockett RJ, Barraclough KA, Leary D, Dudley KJ, Isbel NM, Sloots TP. Detection of Recently Discovered Human Polyomaviruses in a Longitudinal Kidney Transplant Cohort. Am J Transplant 2016; 16:2734-40. [PMID: 27000433 PMCID: PMC7159543 DOI: 10.1111/ajt.13799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 01/25/2023]
Abstract
A large number of human polyomaviruses have been discovered in the last 7 years. However, little is known about the clinical impact on vulnerable immunosuppressed patient populations. Blood, urine, and respiratory swabs collected from a prospective, longitudinal adult kidney transplant cohort (n = 167) generally pre-operatively, at day 4, months 1, 3, and 6 posttransplant, and at BK viremic episodes within the first year were screened for 12 human polyomaviruses using real-time polymerase chain reaction. Newly discovered polyomaviruses were most commonly detected in the respiratory tract, with persistent shedding seen for up to 6 months posttransplant. Merkel cell polyomavirus was the most common detection, but was not associated with clinical symptoms or subsequent development of skin cancer or other skin abnormalities. In contrast, KI polyomavirus was associated with respiratory disease in a subset of patients. Human polyomavirus 9, Malawi polyomavirus, and human polyomavirus 12 were not detected in any patient samples.
Collapse
Affiliation(s)
- S. Bialasiewicz
- Centre for Children's Health ResearchChildren's Health QueenslandBrisbaneAustralia,Child Health Research CentreThe University of QueenslandBrisbaneAustralia
| | - R. J. Rockett
- Child Health Research CentreThe University of QueenslandBrisbaneAustralia,Institute of Clinical Pathology and Medical ResearchWestmead HospitalSydneyAustralia
| | - K. A. Barraclough
- Department of Renal MedicineRoyal Melbourne HospitalMelbourneAustralia
| | - D. Leary
- Department of Renal MedicinePrincess Alexandra HospitalBrisbaneAustralia
| | - K. J. Dudley
- Institute for Future EnvironmentsCentral Analytical Research FacilityQueensland University of TechnologyBrisbaneAustralia
| | - N. M. Isbel
- Department of Renal MedicinePrincess Alexandra HospitalBrisbaneAustralia
| | - T. P. Sloots
- Centre for Children's Health ResearchChildren's Health QueenslandBrisbaneAustralia,Child Health Research CentreThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
28
|
Papa N, Zanotta N, Knowles A, Orzan E, Comar M. Detection of Malawi polyomavirus sequences in secondary lymphoid tissues from Italian healthy children: a transient site of infection. Virol J 2016; 13:97. [PMID: 27287743 PMCID: PMC4901423 DOI: 10.1186/s12985-016-0553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023] Open
Abstract
Background The novel Malawi polyomavirus (MWPyV) was initially detected in stool specimens from healthy children and children with gastrointestinal symptoms, mostly diarrhea, indicating that MWPyV might play a role in human gastroenteric diseases. Recently, MWPyV sequences were additionally identified in respiratory secretions from both healthy and acutely ill children suggesting that MWPyV may have a tropism for different human tissues. This study was designed to investigate the possible sites of latency/persistence for MWPyV in a cohort of healthy Italian children. Methods Specimens (n° 500) of tonsils, adenoids, blood, urines and feces, from 200 healthy and immunocompetent children (age range: 1–15 years) were tested for the amplification of the MWPyV LT antigen sequence by quantitative real-time PCR. Samples (n° 80) of blood and urines from 40 age-matched children with autoimmune diseases, were screened for comparison. Polyomaviruses JC/BK and Epstein-Barr Virus (EBV) were also tested as markers of infection in all samples using the same molecular technique. Results In our series of healthy children, MWPyV was detected only in the lymphoid tissues showing a prevalence of 6 % in tonsils and 1 % in adenoids, although with a low viral load. No JCPyV or BKPyV co-infection was found in MWPyV positive samples, while EBV showed a similar percentage of both in tonsils and adenoids (38 and 37 %). Conversely, no MWPyV DNA was detected in stool from babies with gastroenteric syndrome. With regards to autoimmune children, neither MWPyV nor BKPyV were detected in blood, while JCPyV viremia was observed in 15 % (6/40) of children treated with Infliximab. Urinary BKPyV shedding was observed in 12.5 % (5/40) while JCPyV in 100 % of the samples. Conclusions The detection of MWPyV sequences in tonsils and adenoids of healthy children suggests that secondary lymphoid tissues can harbour MWPyV probably as transient sites of persistence rather than actual sites of latency.
Collapse
Affiliation(s)
- N Papa
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - N Zanotta
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - A Knowles
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - E Orzan
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy
| | - M Comar
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65, 34137, Trieste, Italy. .,Medical Sciences Department, University of Trieste, Piazzale Europa 1, 34128, Trieste, Italy.
| |
Collapse
|
29
|
Buck CB, Van Doorslaer K, Peretti A, Geoghegan EM, Tisza MJ, An P, Katz JP, Pipas JM, McBride AA, Camus AC, McDermott AJ, Dill JA, Delwart E, Ng TFF, Farkas K, Austin C, Kraberger S, Davison W, Pastrana DV, Varsani A. The Ancient Evolutionary History of Polyomaviruses. PLoS Pathog 2016; 12:e1005574. [PMID: 27093155 PMCID: PMC4836724 DOI: 10.1371/journal.ppat.1005574] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. Polyomaviruses are a family of DNA-based viruses that are known to infect various terrestrial vertebrates, including humans. In this report, we describe our discovery of highly divergent polyomaviruses associated with various marine fish. Searches of public deep sequencing databases unexpectedly revealed the existence of polyomavirus-like sequences in scorpion and spider datasets. Our analysis of these new sequences suggests that polyomaviruses have slowly co-evolved with individual host animal lineages through an established mechanism known as intrahost divergence. The proposed model is similar to the mechanisms through with other DNA viruses, such as papillomaviruses, are thought to have evolved. Our analysis also suggests that distantly related polyomaviruses sometimes recombine to produce new chimeric lineages. We propose a possible taxonomic scheme that can account for these inferred ancient recombination events.
Collapse
Affiliation(s)
- Christopher B. Buck
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | | | - Alberto Peretti
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Eileen M. Geoghegan
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua P. Katz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison A. McBride
- Lab of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alvin C. Camus
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Alexa J. McDermott
- Animal Health Department, Georgia Aquarium, Inc., Atlanta, Georgia, United States of America
| | - Jennifer A. Dill
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Terry F. F. Ng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Diana V. Pastrana
- Lab of Cellular Oncology, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
30
|
A taxonomy update for the family Polyomaviridae. Arch Virol 2016; 161:1739-50. [PMID: 26923930 DOI: 10.1007/s00705-016-2794-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
Abstract
Many distinct polyomaviruses infecting a variety of vertebrate hosts have recently been discovered, and their complete genome sequence could often be determined. To accommodate this fast-growing diversity, the International Committee on Taxonomy of Viruses (ICTV) Polyomaviridae Study Group designed a host- and sequence-based rationale for an updated taxonomy of the family Polyomaviridae. Applying this resulted in numerous recommendations of taxonomical revisions, which were accepted by the Executive Committee of the ICTV in December 2015. New criteria for definition and creation of polyomavirus species were established that were based on the observed distance between large T antigen coding sequences. Four genera (Alpha-, Beta, Gamma- and Deltapolyomavirus) were delineated that together include 73 species. Species naming was made as systematic as possible - most species names now consist of the binomial name of the host species followed by polyomavirus and a number reflecting the order of discovery. It is hoped that this important update of the family taxonomy will serve as a stable basis for future taxonomical developments.
Collapse
|
31
|
Kazem S, Lauber C, van der Meijden E, Kooijman S, Kravchenko AA, Feltkamp MC, Gorbalenya AE. Limited variation during circulation of a polyomavirus in the human population involves the COCO-VA toggling site of Middle and Alternative T-antigen(s). Virology 2016; 487:129-40. [DOI: 10.1016/j.virol.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/26/2022]
|
32
|
Ward M, Ward A, Johansson O. Does the mosquito have more of a role in certain cancers than is currently appreciated? – The mosquito cocktail hypothesis. Med Hypotheses 2016; 86:85-91. [DOI: 10.1016/j.mehy.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/01/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
33
|
Chantziantoniou N, Joudeh AA, Hamed RMA, Al-Abbadi MA. Significance, cytomorphology of decoy cells in polyomavirus-associated nephropathy: Review of clinical, histopathological, and virological correlates with commentary. J Am Soc Cytopathol 2016; 5:71-85. [PMID: 31042494 DOI: 10.1016/j.jasc.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023]
Abstract
Human polyomaviruses (PyV) are ubiquitous, remaining predominantly inactive hence asymptomatic in the healthy, immunocompetent population. BK and JC PyV potentially infect pan-urinary tract epithelial cells. With reactivation, PyV disrupt cell cycling mechanisms, facilitating viral replication leading to cell necrosis, exfoliation, and, infrequently, carcinogenesis. Exfoliated PyV-infected cells pose diagnostic pitfalls, hence they are termed "decoy cells" as they may mimic high-grade urothelial carcinoma cells. BK polyomavirus-associated-nephropathy (BKVAN) is an inflammatory disease causing interstitial fibrosis with tubular atrophy in renal transplant recipients, increasing risk of graft loss. BKVAN is confirmed by renal biopsy, and managed by immunosuppression modulation. As voided urine may provide pan-reno-urinary tract sampling, cytopathology may serve a critical diagnostic purpose coupled with decoy cell quantification and indirect BK PyV load gauging. Thus, identification of decoy cells and differentiation from high-grade urothelial carcinoma cells, and degenerated, benign urothelial cells, is clinically essential. PyV virology and pathobiology in the context of renal transplantation, immuno-suppression and BKVAN, and, decoy cell cytomorphology and cytopreparation with commentary are highlighted. Decoy cell overall characteristics: variable degeneration; cytomegaly; comet-like shapes; angular cytoplasmic extensions; eccentric, polar nuclear placements; moderate anisocytosis; typically single cells with high N:C ratios. Cytoplasmic features: moderate-abundance; granular, blue-gray monochromatism. Nuclear features: karyomegaly; haphazardly-scattered chromatin densities; smudged, homogeneous, basophilic ground glass masses displacing chromatin alongside inner periphery of regular, symmetrical nuclear envelopes. Background features: granular cellular debris; inflammatory cells; intact and lyzed erythrocytes. Decoy cells lack coarse chromatin as in high-grade urothelial carcinoma cells. Benign urothelial cells exhibit low N:C ratios with fine chromatin distribution and euchromasia.
Collapse
Affiliation(s)
| | - Amani A Joudeh
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Radi M A Hamed
- Department of Pediatrics, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mousa A Al-Abbadi
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
34
|
Wu JH, Nguyen HP, Rady PL, Tyring SK. Molecular insight into the viral biology and clinical features of trichodysplasia spinulosa. Br J Dermatol 2015; 174:490-8. [PMID: 26479880 DOI: 10.1111/bjd.14239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2015] [Indexed: 02/03/2023]
Abstract
Trichodysplasia spinulosa (TS) is a disfiguring skin disease that occurs most frequently in patients receiving immunosuppressive therapies, and is thus frequently associated with organ transplantation. TS is characterized clinically by folliculocentric papular eruption, keratin spine formation and development of leonine face; and histologically by expansion of the inner root sheath epithelium and high expression of the proliferative marker Ki-67. Recent discovery of the TS-associated polyomavirus (TSPyV) and emerging studies demonstrating the role of TSPyV tumour antigens in cell proliferation pathways have opened a new corridor for research on TS. In this brief review, we summarize the clinical and histological features of TS and evaluate the current options for therapy. Furthermore, we address the viral aetiology of the disease and explore the mechanisms by which TSPyV may influence TS development and progression. As reports of TS continue to rise, clinician recognition of TS, as well as accompanying research on its underlying pathogenesis and therapeutic options, is becoming increasingly important. It is our hope that heightened clinical suspicion for TS will increase rates of diagnosis and will galvanize both molecular and clinical interest in this disease.
Collapse
Affiliation(s)
- J H Wu
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A.,Baylor College of Medicine, Houston, TX, U.S.A
| | - H P Nguyen
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A.,Baylor College of Medicine, Houston, TX, U.S.A
| | - P L Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A
| | - S K Tyring
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX, U.S.A
| |
Collapse
|
35
|
Nainys J, Timinskas A, Schneider J, Ulrich RG, Gedvilaite A. Identification of Two Novel Members of the Tentative Genus Wukipolyomavirus in Wild Rodents. PLoS One 2015; 10:e0140916. [PMID: 26474048 PMCID: PMC4608572 DOI: 10.1371/journal.pone.0140916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Two novel polyomaviruses (PyVs) were identified in kidney and chest-cavity fluid samples of wild bank voles (Myodes glareolus) and common voles (Microtus arvalis) collected in Germany. All cloned and sequenced genomes had the typical PyV genome organization, including putative open reading frames for early regulatory proteins large T antigen and small T antigen on one strand and for structural late proteins (VP1, VP2 and VP3) on the other strand. Virus-like particles (VLPs) were generated by yeast expression of the VP1 protein of both PyVs. VLP-based ELISA and large T-antigen sequence-targeted polymerase-chain reaction investigations demonstrated signs of infection of these novel PyVs in about 42% of bank voles and 18% of common voles. In most cases only viral DNA, but not VP1-specific antibodies were detected. In additional animals exclusively VP1-specific antibodies, but no viral DNA was detected, indicative for virus clearance. Phylogenetic and clustering analysis including all known PyV genomes placed novel bank vole and common vole PyVs amongst members of the tentative Wukipolymavirus genus. The other known four rodent PyVs, Murine PyV and Hamster PyV, and Murine pneumotropic virus and Mastomys PyV belong to different phylogenetic clades, tentatively named Orthopolyomavirus I and Orthopolyomavirus II, respectively. In conclusion, the finding of novel vole-borne PyVs may suggest an evolutionary origin of ancient wukipolyomaviruses in rodents and may offer the possibility to develop a vole-based animal model for human wukipolyomaviruses.
Collapse
Affiliation(s)
- Juozas Nainys
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Julia Schneider
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alma Gedvilaite
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
36
|
Rockett RJ, Bialasiewicz S, Mhango L, Gaydon J, Holding R, Whiley DM, Lambert SB, Ware RS, Nissen MD, Grimwood K, Sloots TP. Acquisition of human polyomaviruses in the first 18 months of life. Emerg Infect Dis 2015; 21:365-7. [PMID: 25626138 PMCID: PMC4313659 DOI: 10.3201/eid2102.141429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated the presence of 4 human polyomaviruses (PyVs) (WU, KI, Merkel cell, and Malawi) in respiratory specimens from a community-based birth cohort. These viruses typically were acquired when children were ≈1 year of age. We provide evidence that WU, KI, and Malawi, but not Merkel cell PyVs, might have a role in respiratory infections.
Collapse
|
37
|
Norkiene M, Stonyte J, Ziogiene D, Mazeike E, Sasnauskas K, Gedvilaite A. Production of recombinant VP1-derived virus-like particles from novel human polyomaviruses in yeast. BMC Biotechnol 2015; 15:68. [PMID: 26239840 PMCID: PMC4523907 DOI: 10.1186/s12896-015-0187-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eleven new human polyomaviruses (HPyVs) have been identified in the last decade. Serological studies show that these novel HPyVs sub-clinically infect humans at an early age. The routes of infection, entry pathways, and cell tropism of new HPyVs remain unknown. VP1 proteins of polyomaviruses can assembly into virus-like particles (VLPs). As cell culturing systems for HPyV are currently not available, VP1-derived VLPs may be useful tools in basic research and biotechnological applications. RESULTS Recombinant VP1-derived VLPs from 11 newly identified HPyVs were efficiently expressed in yeast. VP1 proteins derived from Merkel cell polyomavirus (MCPyV), trichodysplasia spinulosa-associated polyomavirus (TSPyV), and New Jersey polyomavirus (NJPyV) self-assembled into homogeneous similarly-sized VLPs. Karolinska Institutet polyomavirus (KIPyV), HPyV7, HPyV9, HPyV10, and St. Louis polyomavirus (STLPyV) VP1 proteins formed VLPs that varied in size with diameters ranging from 20 to 60 nm. Smaller-sized VLPs (25-35 nm in diameter) predominated in preparations from Washington University polyomavirus (WUPyV) and HPyV6. Attempts to express recombinant HPyV12 VP1-derived VLPs in yeast indicate that translation of VP1 might start at the second of two potential translation initiation sites in the VP1-encoding open reading frame (ORF). This translation resulted in a 364-amino acid-long VP1 protein, which efficiently self-assembled into typical PyV VLPs. MCPyV-, KIPyV-, TSPyV-, HPyV9-, HPyV10-, and HPyV12-derived VLPs showed hemagglutination (HA) assay activity in guinea pig erythrocytes, whereas WUPyV-, HPyV6-, HPyV7-, STLPyV- and NJPyV-derived VP1 VLPs did not. CONCLUSIONS The yeast expression system was successfully utilized for high-throughput production of recombinant VP1-derived VLPs from 11 newly identified HPyVs. HPyV12 VP1-derived VLPs were generated from the second of two potential translation initiation sites in the VP1-encoding ORF. Recombinant VLPs produced in yeast originated from different HPyVs demonstrated distinct HA activities and may be useful in virus diagnostics, capsid structure studies, or investigation of entry pathways and cell tropism of HPyVs until cell culture systems for new HPyVs are developed.
Collapse
Affiliation(s)
- Milda Norkiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Jomante Stonyte
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Danguole Ziogiene
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Egle Mazeike
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Kestutis Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| | - Alma Gedvilaite
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania.
| |
Collapse
|
38
|
Characterization of T Antigens, Including Middle T and Alternative T, Expressed by the Human Polyomavirus Associated with Trichodysplasia Spinulosa. J Virol 2015; 89:9427-39. [PMID: 26136575 DOI: 10.1128/jvi.00911-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The polyomavirus tumor (T) antigens play crucial roles in viral replication, transcription, and cellular transformation. They are encoded by partially overlapping open reading frames (ORFs) located in the early region through alternative mRNA splicing. The T expression pattern of the trichodysplasia spinulosa-associated polyomavirus (TSPyV) has not been established yet, hampering further study of its pathogenic mechanisms and taxonomic relationship. Here, we characterized TSPyV T antigen expression in human cell lines transfected with the TSPyV early region. Sequencing of T antigen-encoded reverse transcription-PCR (RT-PCR) products revealed three splice donor and acceptor sites creating six mRNA splice products that potentially encode the antigens small T (ST), middle T (MT), large T (LT), tiny T, 21kT, and alternative T (ALTO). Except for 21kT, these splice products were also detected in skin of TSPyV-infected patients. At least three splice products were confirmed by Northern blotting, likely encoding LT, MT, ST, 21kT, and ALTO. Protein expression was demonstrated for LT, ALTO, and possibly MT, with LT detected in the nucleus and ALTO in the cytoplasm of transfected cells. Splice site and start codon mutations indicated that ALTO is encoded by the same splice product that encodes LT and uses internal start codons for initiation. The genuineness of ALTO was indicated by the identification of acetylated N-terminal ALTO peptides by mass spectrometry. Summarizing, TSPyV exhibits an expression pattern characterized by both MT and ALTO expression, combining features of rodent and human polyomaviruses. This unique expression pattern provides important leads for further study of polyomavirus-related disease and for an understanding of polyomavirus evolution. IMPORTANCE The human trichodysplasia spinulosa-associated polyomavirus (TSPyV) is distinguished among polyomaviruses for combining productive infection with cell-transforming properties. In the research presented here, we further substantiate this unique position by indicating expression of both middle T antigen (MT) and alternative T antigen (ALTO) in TSPyV. So far, none of the human polyomaviruses was shown to express MT, which is considered the most important viral oncoprotein of rodent polyomaviruses. Coexpression of ALTO and MT, which involves a conserved, recently recognized overlapping ORF subject to positive selection, has not been observed before for any polyomavirus. As a result of our findings, this study provides valuable new insights into polyomavirus T gene use and expression. Obviously, these insights will be instrumental in further study and gaining an understanding of TSPyV pathogenicity. More importantly, however, they provide important leads with regard to the interrelationship, functionality, and evolution of polyomaviruses as a whole, indicating that TSPyV is a suitable model virus to study these entities further.
Collapse
|
39
|
Lauber C, Kazem S, Kravchenko AA, Feltkamp MCW, Gorbalenya AE. Interspecific adaptation by binary choice at de novo polyomavirus T antigen site through accelerated codon-constrained Val-Ala toggling within an intrinsically disordered region. Nucleic Acids Res 2015; 43:4800-13. [PMID: 25904630 PMCID: PMC4446436 DOI: 10.1093/nar/gkv378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 11/30/2022] Open
Abstract
It is common knowledge that conserved residues evolve slowly. We challenge generality of this central tenet of molecular biology by describing the fast evolution of a conserved nucleotide position that is located in the overlap of two open reading frames (ORFs) of polyomaviruses. The de novo ORF is expressed through either the ALTO protein or the Middle T antigen (MT/ALTO), while the ancestral ORF encodes the N-terminal domain of helicase-containing Large T (LT) antigen. In the latter domain the conserved Cys codon of the LXCXE pRB-binding motif constrains codon evolution in the overlapping MT/ALTO ORF to a binary choice between Val and Ala codons, termed here as codon-constrained Val-Ala (COCO-VA) toggling. We found the rate of COCO-VA toggling to approach the speciation rate and to be significantly accelerated compared to the baseline rate of chance substitution in a large monophyletic lineage including all viruses encoding MT/ALTO and three others. Importantly, the COCO-VA site is located in a short linear motif (SLiM) of an intrinsically disordered region, a typical characteristic of adaptive responders. These findings provide evidence that the COCO-VA toggling is under positive selection in many polyomaviruses, implying its critical role in interspecific adaptation, which is unprecedented for conserved residues.
Collapse
Affiliation(s)
- Chris Lauber
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Siamaque Kazem
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands
| | - Alexander A Kravchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, 2300-RC Leiden, The Netherlands Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
40
|
Li K, Zhang C, Zhao R, Xue Y, Yang J, Peng J, Jin Q. The prevalence of STL polyomavirus in stool samples from Chinese children. J Clin Virol 2015; 66:19-23. [PMID: 25866330 DOI: 10.1016/j.jcv.2015.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 02/25/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Over the past 7 years, eleven novel human polyomaviruses (HPyVs) have been identified. The frequent discovery of human polyomaviruses (HPyVs) in the gastrointestinal tract and stool samples suggests a potential involvement in gastroenteritis. OBJECTIVE In this study we want to explore the prevalence of STL polyomavirus (STLPyV) in China and delineate the clinical role played by STLPyV. STUDY DESIGN Stool samples from 508 hospitalized children with diarrhea and 271 healthy children were screened to detect STLPyV. Human polyomavirus 12(HPyV12), New Jersey polyomavirus (NJPyV-2013) and six common enteric viruses (including rotaviruses, adenovirus, norovirus GI and GII, astrovirus and sapovirus) were also screened in this study. RESULTS 348 of the 508 (68.5%) specimens from the hospitalized children with diarrhea contained at least 1 common enteric virus. STLPyV was identified in 11 specimens in the case group (2.2%), among which 4 specimens were negative for those common enteric viruses. STLPyV was not more prevalent among the case group than the control group (2.2% versus 3.0%; p = 0.50, χ(2) test). In case group, when common enteric viruses' positive and negative groups were compared, the difference in detection rate of STLPyV was not statistically significant (2.5% versus 2.0%; p = 0.98, χ(2) test). Two whole genome sequences of STLPyV were obtained. CONCLUSIONS We are the first to report the prevalence of STLPyV in Chinese children and obtained whole genome sequences of STLPyV strains isolated in China. Our results of phylogenetic analysis support the hypothesis that STLPyV is geographically widespread.
Collapse
Affiliation(s)
- Ke Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Chi Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Rong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Ying Xue
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Junping Peng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
41
|
Kluba J, Linnenweber-Held S, Heim A, Ang AM, Raggub L, Broecker V, Becker JU, Schulz TF, Schwarz A, Ganzenmueller T. A rolling circle amplification screen for polyomaviruses other than BKPyV in renal transplant recipients confirms high prevalence of urinary JCPyV shedding. Intervirology 2015; 58:88-94. [PMID: 25677461 DOI: 10.1159/000369210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multiple novel human polyomaviruses (HPyVs) have been discovered in the last few years. These or other, unknown, nephrotropic HPyVs may potentially be shed in urine. METHODS To search for known and unknown HPyVs we investigated BKPyV-negative urine samples from 105 renal transplant recipients (RTR) by rolling circle amplification (RCA) analysis and quantitative JCPyV PCR. Clinical data was analysed to identify risk factors for urinary polyomavirus shedding. RESULTS In 10% (11/105) of the urine samples RCA with subsequent sequencing revealed JCPyV, but no other HPyV sequences. Using quantitative JCPyV PCR, 24% (25/105) of the samples tested positive. Overall sensitivities of RCA of 44% (11/25) in detecting JCPyV in JCPyV DNA-positive urine and 67% (10/15) for samples with JCPyV loads >10,000 copies/ml can be assumed. Despite frequent detectable urinary shedding of JCPyV in our cohort, this could not be correlated with clinical risk factors. CONCLUSION Routine urinary JCPyV monitoring in BKPyV-negative RTR without suspected polyomavirus-associated nephropathy might be of limited diagnostic value. As RCA works in a sequence-independent manner, detection of novel and known polyomaviruses shed in sufficient quantities is feasible. High-level shedding of HPyVs other than BKPyV or JCPyV in the urine of RTR is unlikely to occur.
Collapse
Affiliation(s)
- Jeanette Kluba
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Andrei G, Topalis D, De Schutter T, Snoeck R. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyoma- and papillomaviruses and non-viral induced neoplasia. Antiviral Res 2014; 114:21-46. [PMID: 25446403 DOI: 10.1016/j.antiviral.2014.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
Abstract
Acyclic nucleoside phosphonates (ANPs) are well-known for their antiviral properties, three of them being approved for the treatment of human immunodeficiency virus infection (tenofovir), chronic hepatitis B (tenofovir and adefovir) or human cytomegalovirus retinitis (cidofovir). In addition, cidofovir is mostly used off-label for the treatment of infections caused by several DNA viruses other than cytomegalovirus, including papilloma- and polyomaviruses, which do not encode their own DNA polymerases. There is considerable interest in understanding why cidofovir is effective against these small DNA tumor viruses. Considering that papilloma- and polyomaviruses cause diseases associated either with productive infection (characterized by high production of infectious virus) or transformation (where only a limited number of viral proteins are expressed without synthesis of viral particles), it can be envisaged that cidofovir may act as antiviral and/or antiproliferative agent. The aim of this review is to discuss the advances in recent years in understanding the mode of action of ANPs as antiproliferative agents, given the fact that current data suggest that their use can be extended to the treatment of non-viral related malignancies.
Collapse
Affiliation(s)
- G Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium.
| | - D Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - T De Schutter
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - R Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
44
|
Polyomavirus-associated Trichodysplasia spinulosa involves hyperproliferation, pRB phosphorylation and upregulation of p16 and p21. PLoS One 2014; 9:e108947. [PMID: 25291363 PMCID: PMC4188587 DOI: 10.1371/journal.pone.0108947] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/26/2014] [Indexed: 01/26/2023] Open
Abstract
Trichodysplasia spinulosa (TS) is a proliferative skin disease observed in severely immunocompromized patients. It is characterized by papule and trichohyalin-rich spicule formation, epidermal acanthosis and distention of dysmorphic hair follicles overpopulated by inner root sheath cells (IRS). TS probably results from active infection with the TS-associated polyomavirus (TSPyV), as indicated by high viral-load, virus protein expression and particle formation. The underlying pathogenic mechanism imposed by TSPyV infection has not been solved yet. By analogy with other polyomaviruses, such as the Merkel cell polyomavirus associated with Merkel cell carcinoma, we hypothesized that TSPyV T-antigen promotes proliferation of infected IRS cells. Therefore, we analyzed TS biopsy sections for markers of cell proliferation (Ki-67) and cell cycle regulation (p16ink4a, p21waf, pRB, phosphorylated pRB), and the putatively transforming TSPyV early large tumor (LT) antigen. Intense Ki-67 staining was detected especially in the margins of TS hair follicles, which colocalized with TSPyV LT-antigen detection. In this area, staining was also noted for pRB and particularly phosphorylated pRB, as well as p16ink4a and p21waf. Healthy control hair follicles did not or hardly stained for these markers. Trichohyalin was particularly detected in the center of TS follicles that stained negative for Ki-67 and TSPyV LT-antigen. In summary, we provide evidence for clustering of TSPyV LT-antigen-expressing and proliferating cells in the follicle margins that overproduce negative cell cycle regulatory proteins. These data are compatible with a scenario of TSPyV T-antigen-mediated cell cycle progression, potentially creating a pool of proliferating cells that enable viral DNA replication and drive papule and spicule formation.
Collapse
|
45
|
Abstract
Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Raymond Welsh
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| | - Eva Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, AS9-2051, Worcester, MA 01605
| |
Collapse
|
46
|
Structure analysis of the major capsid proteins of human polyomaviruses 6 and 7 reveals an obstructed sialic acid binding site. J Virol 2014; 88:10831-9. [PMID: 25008942 DOI: 10.1128/jvi.01084-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Human polyomavirus 6 (HPyV6) and HPyV7 are commonly found on human skin. We have determined the X-ray structures of their major capsid protein, VP1, at resolutions of 1.8 and 1.7 Å, respectively. In polyomaviruses, VP1 commonly determines antigenicity as well as cell-surface receptor specificity, and the protein is therefore linked to attachment, tropism, and ultimately, viral pathogenicity. The structures of HPyV6 and HPyV7 VP1 reveal uniquely elongated loops that cover the bulk of the outer virion surfaces, obstructing a groove that binds sialylated glycan receptors in many other polyomaviruses. In support of this structural observation, interactions of VP1 with α2,3- and α2,6-linked sialic acids could not be detected in solution by nuclear magnetic resonance spectroscopy. Single-cell binding studies indicate that sialylated glycans are likely not required for initial attachment to cultured human cells. Our findings establish distinct antigenic properties of HPyV6 and HPyV7 capsids and indicate that these two viruses engage nonsialylated receptors. IMPORTANCE Eleven new human polyomaviruses, including the skin viruses HPyV6 and HPyV7, have been identified during the last decade. In contrast to better-studied polyomaviruses, the routes of infection, cell tropism, and entry pathways of many of these new viruses remain largely mysterious. Our high-resolution X-ray structures of major capsid proteins VP1 from HPyV6 and from HPyV7 reveal critical differences in surface morphology from those of all other known polyomavirus structures. A groove that engages specific sialic acid-containing glycan receptors in related polyomaviruses is obstructed, and VP1 of HPyV6 and HPyV7 does not interact with sialylated compounds in solution or on cultured human cells. A comprehensive comparison with other structurally characterized polyomavirus VP1 proteins enhances our understanding of molecular determinants that underlie receptor specificity, antigenicity, and, ultimately, pathogenicity within the polyomavirus family and highlight the need for structure-based analysis to better define phylogenetic relationships within the growing polyomavirus family and perhaps also for other viruses.
Collapse
|
47
|
Wieland U, Silling S, Hellmich M, Potthoff A, Pfister H, Kreuter A. Human polyomaviruses 6, 7, 9, 10 and Trichodysplasia spinulosa-associated polyomavirus in HIV-infected men. J Gen Virol 2014; 95:928-932. [DOI: 10.1099/vir.0.061259-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, several novel human polyomaviruses (HPyVs) have been detected. HPyV6, 7, 9 and 10 are not associated with any disease so far. Trichodysplasia spinulosa (TS)-associated polyomavirus (TSPyV) can cause the rare skin disease TS. We have evaluated cutaneous DNA prevalence and viral loads of five HPyVs in HIV-infected men compared to healthy male controls. 449 forehead swabs were analysed by HPyV-specific real-time PCR. HPyV6, HPyV7, TSPyV and HPyV10 were found significantly more frequently on the skin of 210 HIV-infected compared to 239 HIV-negative men (HPyV6, 39.0 vs 27.6 %; HPyV7, 21.0 vs 13.4 %; TSPyV, 3.8 vs 0.8 %; HPyV10, 9.3 vs 3.4 %; P<0.05, respectively). HPyV9 was not detected. Multiple infections were more frequent in HIV-positive men, but HPyV-DNA loads did not differ significantly in both groups. In contrast to HPyV6, 7 and 10, TSPyV and HPyV9 do not seem to be a regular part of the human skin microbiome.
Collapse
Affiliation(s)
- Ulrike Wieland
- Institute of Virology, University of Cologne, 50935 Koeln, Germany
| | - Steffi Silling
- Institute of Virology, University of Cologne, 50935 Koeln, Germany
| | - Martin Hellmich
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, 50937 Koeln, Germany
| | - Anja Potthoff
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, 44791 Bochum, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, 50935 Koeln, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, 44791 Bochum, Germany
| |
Collapse
|
48
|
Molecular epidemiology of merkel cell polyomavirus: evidence for geographically related variant genotypes. J Clin Microbiol 2014; 52:1687-90. [PMID: 24523477 DOI: 10.1128/jcm.02348-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is linked to a cutaneous cancer mainly occurring in Caucasians. DNA from skin swabs of 255 adults, originating from the 5 continents, were subjected to MCPyV PCRs. Phylogenetic analyses demonstrate the existence of 5 major geographically related MCPyV genotypes (Europe/North America, Africa [sub-Saharan], Oceania, South America, and Asia/Japan).
Collapse
|
49
|
Different serologic behavior of MCPyV, TSPyV, HPyV6, HPyV7 and HPyV9 polyomaviruses found on the skin. PLoS One 2013; 8:e81078. [PMID: 24278381 PMCID: PMC3836759 DOI: 10.1371/journal.pone.0081078] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022] Open
Abstract
The polyomavirus family is rapidly expanding with twelve new human viruses identified since 2007. A significant number of the new human polyomaviruses (HPyV) has been found on the skin. Whether these viruses share biological properties and should be grouped together is unknown. Here we investigated the serological behavior of cutaneous HPyVs in a general population. 799 sera from immunocompetent Australian individuals aged between 0-87 were analyzed with a Luminex xMAP technology-based immunoassay for the presence of VP1-directed IgG antibodies against MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, and BKPyV as a control. Except for HPyV9, overall seropositivity was high for the cutanous polyomaviruses (66-81% in adults), and gradually increased with age. Children below 6 months displayed seropositivity rates comparable to the adults, indicative of maternal antibodies. TSPyV seroreactivity levels strongly increased after age 2 and waned later in life comparable to BKPyV, whereas MCPyV, HPyV6 and HPyV7 seroreactivity remained rather stable throughout. Based on the identified serologic profiles, MCPyV seems to cluster with HPyV6 and HPyV7, and TSPyV and HPyV9 by themselves. These profiles indicate heterogeneity among cutaneous polyomaviruses and probably reflect differences in exposure and pathogenic behavior of these viruses.
Collapse
|
50
|
Abstract
The seroprevalence of the recently discovered human Malawi polyomavirus (MWPyV) was determined by virus-like particle-based enzyme-linked immunosorbent assay (ELISA) in age-stratified Italian subjects. The findings indicated that MWPyV infection occurs early in life, and seroprevalence was shown to reach 42% in adulthood.
Collapse
|