1
|
Mngwengwe L, Lugongolo MY, Ombinda-Lemboumba S, Ismail Y, Mthunzi-Kufa P. The effects of low-level laser therapy on severe acute respiratory syndrome coronavirus 2 infection in HEK293/ACE2 cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202300334. [PMID: 38041552 DOI: 10.1002/jbio.202300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
SARS-CoV-2 is a threat to public health due to its ability to undergo crucial mutations, increasing its infectivity and decreasing the vaccine's effectiveness. There is a need to find and introduce alternative and effective methods of controlling SARS-CoV-2. LLLT treats diseases by exposing cells or tissues to low levels of red and near-infrared light. The study aims to investigate for the first time the impact of LLLT on SARS-CoV-2 infected HEK293/ACE2 cells and compare them to uninfected ones. Cells were irradiated at 640 nm, at different fluences. Subsequently, the effects of laser irradiation on the virus and cells were assessed using biological assays. Irradiated uninfected cells showed no changes in cell viability and cytotoxicity, while there were changes in irradiated infected cells. Furthermore, uninfected irradiated cells showed no luciferase activity while laser irradiation reduced luciferase activity in infected cells. Under SEM, there was a clear difference between the infected and uninfected cells.
Collapse
Affiliation(s)
- Luleka Mngwengwe
- Council of Scientific and Industrial Research, National Laser Centre, Pretoria, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, University Road Westville, Durban, South Africa
| | | | | | - Yaseera Ismail
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, University Road Westville, Durban, South Africa
| | - Patience Mthunzi-Kufa
- Council of Scientific and Industrial Research, National Laser Centre, Pretoria, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, University Road Westville, Durban, South Africa
- Biomedical Engineering Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles. Nat Microbiol 2022; 7:1879-1890. [DOI: 10.1038/s41564-022-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
|
3
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
4
|
Comparative study of ten thogotovirus isolates and their distinct in vivo characteristics. J Virol 2022; 96:e0155621. [PMID: 35019718 DOI: 10.1128/jvi.01556-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics and virulence in mammals remain unclear. For the present comparative study, we used a collection of ten different thogotovirus isolates from different geographic areas. Next generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades - the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multi-step passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after ten mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. Importance Since their discovery over sixty years ago, fifteen genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of ten different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.
Collapse
|
5
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
6
|
Caldas LA, Carneiro FA, Higa LM, Monteiro FL, da Silva GP, da Costa LJ, Durigon EL, Tanuri A, de Souza W. Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy. Sci Rep 2020; 10:16099. [PMID: 32999356 PMCID: PMC7528159 DOI: 10.1038/s41598-020-73162-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Here, we investigated the interaction of this new coronavirus with Vero cells using high resolution scanning electron microscopy. Surface morphology, the interior of infected cells and the distribution of viral particles in both environments were observed 2 and 48 h after infection. We showed areas of viral processing, details of vacuole contents, and viral interactions with the cell surface. Intercellular connections were also approached, and viral particles were adhered to these extensions suggesting direct cell-to-cell transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Lucio Ayres Caldas
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Cidade Universitária. Av., Carlos Chagas Filho 373, Prédio CCS, Bloco C, subsolo, CEP: 21941902, Rio de Janeiro, RJ, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia - NUMPEX-BIO, Universidade Federal Do Rio de Janeiro, Campus Duque de Caxias Geraldo Cidade. CEP: 25265-970, Rio de Janeiro, RJ, Brazil.
| | - Fabiana Avila Carneiro
- Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia - NUMPEX-BIO, Universidade Federal Do Rio de Janeiro, Campus Duque de Caxias Geraldo Cidade. CEP: 25265-970, Rio de Janeiro, RJ, Brazil
| | - Luiza Mendonça Higa
- Departamento de Genética, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Luiz Monteiro
- Departamento de Genética, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto da Silva
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edison Luiz Durigon
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Cidade Universitária. Av., Carlos Chagas Filho 373, Prédio CCS, Bloco C, subsolo, CEP: 21941902, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Kordyukova LV, Mintaev RR, Rtishchev AA, Kunda MS, Ryzhova NN, Abramchuk SS, Serebryakova MV, Khrustalev VV, Khrustaleva TA, Poboinev VV, Markushin SG, Voronina OL. Filamentous versus Spherical Morphology: A Case Study of the Recombinant A/WSN/33 (H1N1) Virus. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:297-309. [PMID: 32036809 DOI: 10.1017/s1431927620000069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Influenza A virus is a serious human pathogen that assembles enveloped virions on the plasma membrane of the host cell. The pleiomorphic morphology of influenza A virus, represented by spherical, elongated, or filamentous particles, is important for the spread of the virus in nature. Using fixative protocols for sample preparation and negative staining electron microscopy, we found that the recombinant A/WSN/33 (H1N1) (rWSN) virus, a strain considered to be strictly spherical, may produce filamentous particles when amplified in the allantoic cavity of chicken embryos. In contrast, the laboratory WSN strain and the rWSN virus amplified in Madin-Darby canine kidney cells exhibited a spherical morphology. Next-generation sequencing (NGS) suggested a rare Ser126Cys substitution in the M1 protein of rWSN, which was confirmed by the mass spectrometric analysis. No structurally relevant substitutions were found by NGS in other proteins of rWSN. Bioinformatics algorithms predicted a neutral structural effect of the Ser126Cys mutation. The mrWSN_M1_126S virus generated after the introduction of the reverse Cys126Ser substitution exhibited a similar host-dependent partially filamentous phenotype. We hypothesize that a shortage of some as-yet-undefined cellular components involved in virion budding and membrane scission may result in the appearance of filamentous particles in the case of usually "nonfilamentous" virus strains.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Ramil R Mintaev
- Mechnikov Research Institute of Vaccine and Sera, 105064Moscow, Russia
- Federal State Budgetary Institution «Center for Strategic Planning and Management for Medical and Biological Health Risks», Ministry of Health, 119121Moscow, Russia
| | | | - Marina S Kunda
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Natalia N Ryzhova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| | - Sergei S Abramchuk
- Department of Chemistry, Lomonosov Moscow State University, 119234Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991Moscow, Russia
| | - Vladislav V Khrustalev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | - Tatyana A Khrustaleva
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, 220072Minsk, Belarus
| | - Victor V Poboinev
- Department of General Chemistry, Belarusian State Medical University, 220116Minsk, Belarus
| | | | - Olga L Voronina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health, 123098Moscow, Russia
| |
Collapse
|
8
|
Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl‐Hoffmann C, Nadeau K, O’Hehir RE, O’Mahony L, Pfaar O, Torres MJ, Wang DY, Zhang L, Akdis CA. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy 2019; 74:2293-2311. [PMID: 31056763 PMCID: PMC6973012 DOI: 10.1111/all.13851] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
Abstract
The specialties of allergy and clinical immunology have entered the era of precision medicine with the stratification of diseases into distinct disease subsets, specific diagnoses, and targeted treatment options, including biologicals and small molecules. This article reviews recent developments in research and patient care and future trends in the discipline. The section on basic mechanisms of allergic diseases summarizes the current status and defines research needs in structural biology, type 2 inflammation, immune tolerance, neuroimmune mechanisms, role of the microbiome and diet, environmental factors, and respiratory viral infections. In the section on diagnostic challenges, clinical trials, precision medicine and immune monitoring of allergic diseases, asthma, allergic and nonallergic rhinitis, and new approaches to the diagnosis and treatment of drug hypersensitivity reactions are discussed in further detail. In the third section, unmet needs and future research areas for the treatment of allergic diseases are highlighted with topics on food allergy, biologics, small molecules, and novel therapeutic concepts in allergen‐specific immunotherapy for airway disease. Unknowns and future research needs are discussed at the end of each subsection.
Collapse
Affiliation(s)
- Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital Lund University Lund Sweden
- Department of Respiratory Medicine, First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Thomas Eiwegger
- Division of Immunology and Allergy Food Allergy and Anaphylaxis Program The Department of Pediatrics The Hospital for Sick Children Toronto Ontario Canada
- Research Institute, The Hospital for Sick Children, Translational Medicine Program Toronto Ontario Canada
- Department of Immunology The University of Toronto Toronto Ontario Canada
| | - Wytske J. Fokkens
- Department of Otorhinolaryngology Amsterdam University Medical Centres, Location AMC Amsterdam The Netherlands
| | - Claudia Traidl‐Hoffmann
- Chair and Institute of Environmental Medicine UNIKA‐T, Technical University of Munich and Helmholtz Zentrum München Augsburg Germany
- Christine Kühne Center for Allergy Research and Education Davos Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy & Asthma Research Stanford University Stanford California
| | - Robyn E. O’Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Central Clinical School Monash University Melbourne Victoria Australia
- Allergy, Asthma and Clinical Immunology Service Alfred Health Melbourne Victoria Australia
| | - Liam O’Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland National University of Ireland Cork Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy University Hospital Marburg, Philipps‐Universität Marburg Marburg Germany
| | - Maria J. Torres
- Allergy Unit Regional University Hospital of MalagaIBIMA‐UMA‐ARADyAL Malaga Spain
| | - De Yun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery and Department of Allergy Beijing Tongren Hospital Beijing China
| | - Cezmi A. Akdis
- Christine Kühne Center for Allergy Research and Education Davos Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich Davos Switzerland
| |
Collapse
|
9
|
Tan KS, Yan Y, Koh WLH, Li L, Choi H, Tran T, Sugrue R, Wang DY, Chow VT. Comparative Transcriptomic and Metagenomic Analyses of Influenza Virus-Infected Nasal Epithelial Cells From Multiple Individuals Reveal Specific Nasal-Initiated Signatures. Front Microbiol 2018; 9:2685. [PMID: 30487780 PMCID: PMC6246735 DOI: 10.3389/fmicb.2018.02685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
In vitro and in vivo research based on cell lines and animals are likely to be insufficient in elucidating authentic biological and physiological phenomena mimicking human systems, especially for generating pre-clinical data on targets and biomarkers. There is an obvious need for a model that can further bridge the gap in translating pre-clinical findings into clinical applications. We have previously generated a model of in vitro differentiated human nasal epithelial cells (hNECs) which elucidated the nasal-initiated repertoire of immune responses against respiratory viruses such as influenza A virus and rhinovirus. To assess their clinical utility, we performed a microarray analysis of influenza virus-infected hNECs to elucidate nasal epithelial-initiated responses. This was followed by a metagenomic analysis which revealed transcriptomic changes comparable with clinical influenza datasets. The primary target of influenza infection was observed to be the initiator of innate and adaptive immune genes, leaning toward type-1 inflammatory activation. In addition, the model also elucidated a down-regulation of metabolic processes specific to the nasal epithelium, and not present in other models. Furthermore, the hNEC model detected all 11 gene signatures unique to influenza infection identified from a previous study, thus supporting the utility of nasal-based diagnosis in clinical settings. In conclusion, this study highlights that hNECs can serve as a model for nasal-based clinical translational studies and diagnosis to unravel nasal epithelial responses to influenza in the population, and as a means to identify novel molecular diagnostic markers of severity.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wai Ling Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A∗STAR, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Richard Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore, Singapore
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Ikenouchi J. Roles of membrane lipids in the organization of epithelial cells: Old and new problems. Tissue Barriers 2018; 6:1-8. [PMID: 30156967 DOI: 10.1080/21688370.2018.1502531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial cells have characteristic membrane domains. Identification of membrane proteins playing an important role in these membrane domains has progressed and numerous studies have been performed on the functional analysis of these membrane proteins. On the other hand, the precise roles of membrane lipids in the organization of these membrane domains are largely unknown. Historically, the concept of lipid raft arose from the analysis of lipid composition of the apical membrane, and it can be said that epithelial cells are an optimal experimental model for elucidating the functions of lipids. In this review, I discuss the role of lipids in the formation of epithelial polarity and in the formation of cell membrane structures of epithelial cells such as microvilli in the apical domain, cell-cell adhesion apparatus in the lateral domain and cell-matrix adhesion in the basal domain.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Nishi-ku , Japan.,b AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
11
|
Zscheppang K, Berg J, Hedtrich S, Verheyen L, Wagner DE, Suttorp N, Hippenstiel S, Hocke AC. Human Pulmonary 3D Models For Translational Research. Biotechnol J 2018; 13:1700341. [PMID: 28865134 PMCID: PMC7161817 DOI: 10.1002/biot.201700341] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Lung diseases belong to the major causes of death worldwide. Recent innovative methodological developments now allow more and more for the use of primary human tissue and cells to model such diseases. In this regard, the review covers bronchial air-liquid interface cultures, precision cut lung slices as well as ex vivo cultures of explanted peripheral lung tissue and de-/re-cellularization models. Diseases such as asthma or infections are discussed and an outlook on further areas for development is given. Overall, the progress in ex vivo modeling by using primary human material could make translational research activities more efficient by simultaneously fostering the mechanistic understanding of human lung diseases while reducing animal usage in biomedical research.
Collapse
Affiliation(s)
- Katja Zscheppang
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Johanna Berg
- Department of BiotechnologyTechnical University of BerlinGustav‐Meyer‐Allee 25Berlin 13335Germany
| | - Sarah Hedtrich
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Leonie Verheyen
- Institute for PharmacyPharmacology and ToxicologyFreie Universität BerlinBerlinGermany
| | - Darcy E. Wagner
- Helmholtz Zentrum Munich, Lung Repair and Regeneration Unit, Comprehensive Pneumology CenterMember of the German Center for Lung ResearchMunichGermany
| | - Norbert Suttorp
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Stefan Hippenstiel
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| | - Andreas C. Hocke
- Dept. of Internal Medicine/Infectious and Respiratory DiseasesCharité − Universitätsmedizin BerlinCharitèplatz 1Berlin 10117Germany
| |
Collapse
|
12
|
Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proc Natl Acad Sci U S A 2016; 113:12797-12802. [PMID: 27791106 DOI: 10.1073/pnas.1608821113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.
Collapse
|
13
|
Pohl MO, Lanz C, Stertz S. Late stages of the influenza A virus replication cycle-a tight interplay between virus and host. J Gen Virol 2016; 97:2058-2072. [PMID: 27449792 DOI: 10.1099/jgv.0.000562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Microbiol 2016; 306:174-86. [PMID: 27079856 DOI: 10.1016/j.ijmm.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/24/2022] Open
Abstract
Multiple respiratory infections have a significant impact on health and economy. Pathogenesis of co-infecting viruses and bacteria and their interaction with mucosal surfaces are poorly characterized. In this study we established a co-infection model based on pre-incubation of tracheal organ cultures (TOC) with Mycoplasma (M.) gallisepticum and a subsequent infection with avian influenza virus (AIV). Mycoplasma gallisepticum modified the pathogenesis of AIV as demonstrated in TOC of two different avian species (chickens and turkeys). Co-infection promoted bacterial growth in tracheal epithelium. Depending on the interaction time of M. gallisepticum with the host cells, AIV replication was either promoted or suppressed. M. gallisepticum inhibited the antiviral gene expression and affected AIV attachment to the host cell by desialylation of α-2,3 linked sialic acids. Ultrastructural analysis of co-infected TOC suggests that both pathogens may attach to and possibly infect the same epithelial cell. The obtained results contribute to better understanding of the interaction dynamics between M. gallisepticum and AIV. They highlight the importance of the time interval between infections as well as the biological properties of the involved pathogens as influencing factors in the outcome of respiratory infections.
Collapse
|
15
|
Human nasal epithelial cells derived from multiple subjects exhibit differential responses to H3N2 influenza virus infection in vitro. J Allergy Clin Immunol 2016; 138:276-281.e15. [PMID: 26806046 DOI: 10.1016/j.jaci.2015.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/02/2015] [Accepted: 11/20/2015] [Indexed: 11/22/2022]
|
16
|
Ultrastructural characterization of avian influenza A (H7N9) virus infecting humans in China. Virol Sin 2014; 29:119-22. [PMID: 24752765 PMCID: PMC7102157 DOI: 10.1007/s12250-014-3443-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
Abstract
Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.
Collapse
Affiliation(s)
- B H Janke
- DVM, PhD, Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Zhang Y, Hung T, Song J, He J. Electron microscopy: essentials for viral structure, morphogenesis and rapid diagnosis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:421-30. [PMID: 23633074 PMCID: PMC7089233 DOI: 10.1007/s11427-013-4476-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Electron microscopy (EM) should be used in the front line for detection of agents in emergencies and bioterrorism, on accounts of its speed and accuracy. However, the number of EM diagnostic laboratories has decreased considerably and an increasing number of people encounter difficulties with EM results. Therefore, the research on viral structure and morphologyant in EM diagnostic practice. EM has several technological advantages, and should be a fundamental tool in clinical diagnosis of viruses, particularly when agents are unknown or unsuspected. In this article, we review the historical contribution of EM to virology, and its use in virus differentiation, localization of specific virus antigens, virus-cell interaction, and viral morphogenesis. It is essential that EM investigations are based on clinical and comprehensive pathogenesis data from light or confocal microscopy. Furthermore, avoidance of artifacts or false results is necessary to exploit fully the advantages while minimizing its limitations.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Electron Microscopy Laboratory, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | | | | | | |
Collapse
|