1
|
Shah PNM, Gilchrist JB, Forsberg BO, Burt A, Howe A, Mosalaganti S, Wan W, Radecke J, Chaban Y, Sutton G, Stuart DI, Boyce M. Characterization of the rotavirus assembly pathway in situ using cryoelectron tomography. Cell Host Microbe 2023; 31:604-615.e4. [PMID: 36996819 PMCID: PMC7615348 DOI: 10.1016/j.chom.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.
Collapse
Affiliation(s)
- Pranav N M Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK.
| | - James B Gilchrist
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Björn O Forsberg
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Alister Burt
- Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Shyamal Mosalaganti
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, PMB 407917, 465 21st Ave S, 5140 MRB3, Nashville, TN, USA
| | - Julika Radecke
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Yuriy Chaban
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Geoff Sutton
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Mark Boyce
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK.
| |
Collapse
|
2
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
3
|
Sadiq A, Bostan N, Yinda KC, Naseem S, Sattar S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev Med Virol 2018; 28:e2003. [PMID: 30156344 DOI: 10.1002/rmv.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/27/2023]
Abstract
Since its discovery 40 years ago, rotavirus (RV) is considered to be a major cause of infant and childhood morbidity and mortality particularly in developing countries. Nearly every child in the world under 5 years of age is at the risk of RV infection. It is estimated that 90% of RV-associated mortalities occur in developing countries of Africa and Asia. Two live oral vaccines, RotaTeq (RV5, Merck) and Rotarix (RV1, GlaxoSmithKline) have been successfully deployed to scale down the disease burden in Europe and America, but they are less effective in Africa and Asia. In April 2009, the World Health Organization recommended the inclusion of RV vaccination in national immunization programs of all countries with great emphasis in developing countries. To date, 86 countries have included RV vaccines into their national immunization programs including 41 Global Alliance for Vaccines and Immunization eligible countries. The predominant RV genotypes circulating all over the world are G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8], while G12[P6] and G12[P8] are emerging genotypes. On account of the segmented genome, RV shows an enormous genetic diversity that leads to the evolution of new genotypes that can influence the efficacy of current vaccines. The current need is for a global RV surveillance program to monitor the prevalence and antigenic variability of new genotypes to formulate future vaccine development planning. In this review, we will summarize the previous and recent insights into RV structure, classification, and epidemiology and current status of RV vaccination around the globe and will also cover the status of RV research and vaccine policy in Pakistan.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kwe Claude Yinda
- Rega Institute, Laboratory of Clinical and Epidemiological Virology, University of Leuven, Leuven, Belgium
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Sattar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Carossino M, Barrandeguy ME, Li Y, Parreño V, Janes J, Loynachan AT, Balasuriya UBR. Detection, molecular characterization and phylogenetic analysis of G3P[12] and G14P[12] equine rotavirus strains co-circulating in central Kentucky. Virus Res 2018; 255:39-54. [PMID: 29864502 DOI: 10.1016/j.virusres.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/18/2022]
Abstract
Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and a major health problem to the equine breeding industry worldwide. The G3P[12] and G14P[12] ERVA genotypes are the most prevalent in foals with diarrhea. Control and prevention strategies include vaccination of pregnant mares with an inactivated vaccine containing a prototype ERVA G3P[12] strain with limited and controversial field efficacy. Here, we performed the molecular characterization of ERVA strains circulating in central Kentucky using fecal samples collected during the 2017 foaling season. The data indicated for the first time that the G14P[12] genotype is predominant in this region in contrast to a previous serotyping study where only G3 genotype strains were reported. Overall, analysis of antigenic sites in the VP7 protein demonstrated the presence of several amino acid substitutions in the epitopes exposed on the surface including a non-conserved N-linked glycosylation site (D123N) in G14P[12] strains, while changes in antigenic sites of VP8* were minor. Also, we report the successful isolation of three ERVA G14P[12] strains which presented a high identity with other G14 strains from around the world. These may constitute ideal reference strains to comparatively study the molecular biology of G3 and G14 strains and perform vaccine efficacy studies following heterologous challenge in the future.
Collapse
Affiliation(s)
- Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Maria E Barrandeguy
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina; Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| | - Yanqiu Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, INTA. Las Cabañas y Los Reseros s/n, 1712, Castelar, Buenos Aires, Argentina
| | - Jennifer Janes
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Busi C, Martella V, Papetti A, Sabelli C, Lelli D, Alborali GL, Gibelli L, Gelmetti D, Lavazza A, Cordioli P, Boniotti MB. Group A Rotavirus Associated with Encephalitis in Red Fox. Emerg Infect Dis 2018; 23:1535-1538. [PMID: 28820385 PMCID: PMC5572894 DOI: 10.3201/eid2309.170158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In 2011, a group A rotavirus was isolated from the brain of a fox with encephalitis and neurologic signs, detected by rabies surveillance in Italy. Intracerebral inoculation of fox brain homogenates into mice was fatal. Genome sequencing revealed a heterologous rotavirus of avian origin, which could provide a model for investigating rotavirus neurovirulence.
Collapse
|
6
|
Busi C, Martella V, Papetti A, Sabelli C, Lelli D, Alborali GL, Gibelli L, Gelmetti D, Lavazza A, Cordioli P, Boniotti MB. Group A Rotavirus Associated with Encephalitis in Red Fox. Emerg Infect Dis 2017. [DOI: 10.3201/eid1032.170158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|