1
|
Zhang Y, Zhao K, Liu Y, Xu J, Zhang H, Yin Z, Xu P, Jiang Z, Wang S, Mao H, Xu X, Hu C. An oral probiotic vaccine loaded by Lactobacillus casei effectively increases defense against GCRV infection in grass carp. Vaccine 2025; 45:126660. [PMID: 39729770 DOI: 10.1016/j.vaccine.2024.126660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
For a long time, grass carp culture in China has been severely affected by Grass Carp hemorrhagic disease caused by Grass Carp Reovirus (GCRV). At present, vaccines have been widely used for protecting aquatic organisms against infectious diseases, among which oral immunization with Lactobacillus casei is safe and highly effective. This vaccination route has the advantages of easy administration and noninvasive delivery. In this study, the recombinant LC-pVE5523-VP5 was constructed by using the outer capsid protein VP5 of GCRV as the immunogen and pVE5523 as the secretory expression vector. The bacterial powder was prepared from fermented broth by using the vacuum freeze-drying technology. The dried bacterial powder was subsequently mixed with feed and then pressed to pellets. After oral administration of the feed mixed with the recombinant L.casei powder, the expression of the immune-related genes (IFN I, IgM et al.) in grass carp was upregulated significantly. With the increased duration of oral immunization period, serum IgM level was also increased in grass carp. The survival analysis was carried out on the basis of grass carp in response to GCRV challenge. The result showed that the survival rate in the immunized group (74 %) was significantly higher than that in the control group (35 %). The amount of virus replication was also investigated in vaccine-treated fish. The result suggested that the virus content in fish tissue was also significantly less than that of the non-immunized group. The LC-pVE5523-VP5 was still present in the fish intestines 15 days after vaccination. These results indicated that the oral LC-pVE5523-VP5 can effectively protect grass carps from GCRV infection.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Kaiwen Zhao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jingen Xu
- Jiujiang Academy of Agriculture Sciences, Jiujiang 332000, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zijia Yin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengxia Xu
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, China; Chongqing Research Institute of Nanchang University 402660, China.
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Zhang C, Wu H, Feng H, Zhang YA, Tu J. Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication. iScience 2024; 27:108684. [PMID: 38188516 PMCID: PMC10767200 DOI: 10.1016/j.isci.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Viral inclusion bodies (VIBs) are subcellular structures required for efficient viral replication. How type II grass carp reovirus (GCRV-II), the mainly prevalent strain, forms VIBs is unknown. In this study, we found that GCRV-II infection induced punctate VIBs in grass carp ovary (GCO) cells and that non-structural protein 38 (NS38) functioned as a participant in VIB formation. Furthermore, VP56 and VP35 induced VIBs and recruited other viral proteins via the N-terminal of VP56 and the middle domain of VP35. Additionally, we found that the newly synthesized viral RNAs co-localized with VP56 and VP35 in VIBs during infection. Taken together, VP56 and VP35 induce VIB formation and recruit other viral proteins and viral RNAs to the VIBs for viral replication, which helps identify new targets for developing anti-GCRV-II drugs to disrupt viral replication.
Collapse
Affiliation(s)
- Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Kong W, Ding G, Yang P, Li Y, Cheng G, Cai C, Xiao J, Feng H, Xu Z. Comparative Transcriptomic Analysis Revealed Potential Differential Mechanisms of Grass Carp Reovirus Pathogenicity. Int J Mol Sci 2023; 24:15501. [PMID: 37958486 PMCID: PMC10649309 DOI: 10.3390/ijms242115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.
Collapse
Affiliation(s)
- Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Guangyi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Peng Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Yuqing Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Chang Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China; (J.X.); (H.F.)
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (W.K.); (G.D.); (P.Y.); (Y.L.); (G.C.); (C.C.)
| |
Collapse
|
4
|
Li J, Wu H, Xu W, Wang Y, Wang H, Wang Y, Li Y, Shi C, Bergmann SM, Mo X, Wang Q, Yin J. Development of a rapid and sensitive reverse transcription real-time quantitative PCR assay for detection and quantification of grass carp reovirus II. J Virol Methods 2023; 312:114663. [PMID: 36455690 DOI: 10.1016/j.jviromet.2022.114663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
Hemorrhagic disease of grass carp, which is induced by grass carp reovirus II (GCRV-II), leads to mass mortality in grass carp culture and causes enormous economic loss. However, there is currently no quantitative analysis method for the detection of GCRV-II, which is greatly restricted the etiological and epidemiological study of the disease. In this study a reverse transcription TaqMan PCR (RT-qPCR) assay was developed for the quantitative detection of GCRV-II. The probe and primers targeted location is the segment 6 (S6) region of the GCRV-II genome which is highly conserved. Standard curves were drawn and criteria were confirmed after the determination of the optimum reaction conditions. The species-specific assay showed that the method is highly specific and has no cross reactions with other pathogens. The assay was sufficiently sensitive to detect as low as 10 copies of virus RNA. Moreover, the method has a very good repeatability for batches and inter-batches sample detection. Then the method was applied to detect the virus in tissue samples from clinically infected grass carp, compared with conventional RT-seminested PCR, the RT-qPCR represents a specific value for detection rate of positive samples. In summary, the RT-qPCR was applied and achieved high sensitivity and specificity for GCRV-II detection.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Huiliang Wu
- College of Veterinary Medicine, South China Agricultural University, China
| | - Wei Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yajun Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Zhang F, Sun D, Fang Q. Molecular Characterization of Outer Capsid Proteins VP5 and VP7 of Grass Carp Reovirus. Viruses 2022; 14:v14051032. [PMID: 35632773 PMCID: PMC9148132 DOI: 10.3390/v14051032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Aquareovirus, which is a member of the Reoviridae family, was isolated from aquatic animals. A close molecular evolutionary relationship between aquareoviruses and mammalian orthoreoviruses was revealed. However, the functions of the aquareovirus genome-encoded proteins are poorly understood. We investigated the molecular characteristics of the outer capsid proteins, namely, VP5 and VP7, of grass carp reovirus (GCRV). The peptides VP5 and VP7 were determined using in-gel tryptic digestion and mass spectrometry. Recovered peptides represented 76% and 66% of the full-length VP5 and VP7 sequences, respectively. Significantly, two-lysine acetylation, as well as two-serine and two-threonine phosphorylation modifications, were first revealed in VP5. We found that the initial amino acid in VP5 was Pro43, suggesting that a lower amount of VP5 remained uncleaved in virions at the autocleavage site (Asn42-Pro43). Further biochemical evidence showed that the cleaved VP5N/VP5C conformation was the major constituent of the particles. Moreover, early cleavage fragments of VP7 and enhanced infectivity were detected after limited tryptic digestion of GCRV, indicating that stepwise VP7 cleavage is essential for VP5 conformational rearrangement. Our results provide insights into the roles of posttranslational modifications in VP5 and its association with VP7 in the viral life cycle.
Collapse
Affiliation(s)
- Fuxian Zhang
- College of Animal Science, Yangtze University, Jingzhou 430023, China; (F.Z.); (D.S.)
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Diangang Sun
- College of Animal Science, Yangtze University, Jingzhou 430023, China; (F.Z.); (D.S.)
| | - Qin Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: ; Tel.: +86-27-8719-8551
| |
Collapse
|
6
|
Xu C, Yang J, Cao J, Jiang N, Zhou Y, Zeng L, Zhong Q, Fan Y. The quantitative proteomic analysis of rare minnow, Gobiocypris rarus, infected with virulent and attenuated isolates of grass carp reovirus genotype Ⅱ. FISH & SHELLFISH IMMUNOLOGY 2022; 123:142-151. [PMID: 35219830 DOI: 10.1016/j.fsi.2022.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Grass carp reovirus genotype Ⅱ (GCRV II) causes severe hemorrhagic disease in grass carp and affects the aquaculture industry in China. GCRV Ⅱ isolates have been collected from different epidemic areas in China, and these isolates can lead to different degrees of hemorrhagic symptoms in grass carp. Rare minnow (Gobiocypris rarus) is widely used as a model fish to study the mechanism of hemorrhagic disease because of its high sensitivity to GCRV. In this study, the protein levels in the spleen of rare minnow after infection with GCRV virulent isolate JZ809 and attenuated isolate XT422 were investigated using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics. 109 and 50 differentially expressed proteins (DEPs) in the virulent and attenuated infection groups were obtained, respectively, among which 40 DEPs were identified in both groups. Combining protein expression profiling with gene ontology (GO) annotation, the responses of rare minnow to the two genotypes GCRV Ⅱ in terms of upregulated proteins were similar, focusing on ATP synthesis, in which ATP can serve as a "danger" signal to activate an immunoreaction in eukaryotes. Meanwhile, the virulent genotype JZ809 induced more immunoproteins and increased the levels of ubiquitin-proteasome system members to adapt to virus infection. However, together with a persistent and excessive inflammatory response and declining carbon metabolism, rare minnow presented more severe hemorrhagic disease and mortality after infection with virulent JZ809 than with attenuated XT422. The results provide a valuable information that will increase our understanding of the pathogenesis of viruses with different levels of virulence and the mechanism of interaction between the virus and host. Furthermore, the 6 proteins that were only significantly upregulated in the XT422 infection group all belonged to cluster 2, and 28 of 30 proteins that were only upregulated in JZ809 infection group were clustered into cluster 1. For the downregulated proteins, all DEPs in the XT422 infection group were clustered into cluster 4, and 25 of 39 proteins that were only significantly downregulated in the JZ809 infection group belonged to cluster 3. The results indicated that the DEPs in the attenuated XT422 infection group might be sensitive and their abundance changed more quickly when fish experienced virus infection.
Collapse
Affiliation(s)
- Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Jie Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - JiaJia Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Qiwang Zhong
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Evidence for a non-fusogenic aquareovirus encoding a transmembrane protein. Arch Virol 2022; 167:571-575. [PMID: 34997319 DOI: 10.1007/s00705-021-05297-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Fusogenic aquareoviruses can induce host cell-cell fusion, forming syncytia via a fusion-associated transmembrane protein. However, there have been very few reports on non-fusogenic aquareoviruses encoding a membrane-associated protein. Previously, sequence-based analysis has indicated that grass carp reovirus strain 104 (GCRV-104), a non-fusogenic aquareovirus, encodes the proteins VP8 (nt 36-263) and VP15 (nt 400-822) in its genome segment S11. Here, we employed a liquid chromatography-tandem mass spectrometry assay to experimentally annotate small coding genes in the GCRV-104 genome and confirmed that segment S11 indeed functions as bicistronic mRNA. Notably, some additional polypeptides were identified that are encoded upstream of the VP15 open reading frame (ORF), which suggests that the virus uses a novel ORF with a non-AUG initiator codon, tentatively named VP15L (nt 274-822), which is longer than the previous putative VP15 ORF. Furthermore, a transmembrane domain was identified at the N-terminus of VP15L, but its function is unclear. Thus, the aquareovirus GCRV-104 potentially encodes a transmembrane protein, which opens a new perspective on the properties of viral proteins and the pathogenesis of this non-fusogenic reovirus.
Collapse
|
8
|
Gao Y, Huo X, Wang Z, Yuan G, Liu X, Ai T, Su J. Oral Administration of Bacillus subtilis Subunit Vaccine Significantly Enhances the Immune Protection of Grass Carp against GCRV-II Infection. Viruses 2021; 14:v14010030. [PMID: 35062234 PMCID: PMC8779733 DOI: 10.3390/v14010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Grass carp reovirus (GCRV) is a severe virus that causes great losses to grass carp culture every year, and GCRV-II is the current popular and fatal strain. VP56, fibrin on the outer surface of GCRV-II, mediates cell attachment. In this study, we firstly divided the VP56 gene into four fragments to screen the optimal antigen by enzyme-linked immunosorbent assay and neutralizing antibody methods. The second fragment VP56-2 demonstrates the optimal efficiency and was employed as an antigen in the following experiments. Bacillus subtilis were used as a carrier, and VP56-2 was expressed on the surface of the spores. Then, we performed the oral immunization for grass carp and the challenge with GCRV-II. The survival rate was remarkably raised, and mRNA expressions of IgM were significantly up-regulated in spleen and head kidney tissues in the B. s-CotC-VP56-2 group. Three crucial immune indexes (complement C3, lysozyme and total superoxide dismutase) in the sera were also significantly enhanced. mRNA expressions of four important genes (TNF-α, IL-1β, IFN1 and MHC-II) were significantly strengthened. Tissue lesions were obviously attenuated by histopathological slide examination in trunk kidney and spleen tissues. Tissue viral burdens were significantly reduced post-viral challenge. These results indicated that the oral recombinant B. subtilis VP56-2 subunit vaccine is effective for controlling GCRV infection and provides a feasible strategy for the control of fish virus diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd., Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-87282227
| |
Collapse
|
9
|
Zeng W, Bergmannc SM, Dong H, Yang Y, Wu M, Liu H, Chen Y, Li H. Identification, Virulence, and Molecular Characterization of a Recombinant Isolate of Grass Carp Reovirus Genotype I. Viruses 2021; 13:807. [PMID: 33946252 PMCID: PMC8146692 DOI: 10.3390/v13050807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The hemorrhagic disease of grass carp (HDGC) caused by grass carp reovirus (GCRV) still poses a great threat to the grass carp industry. Isolation and identification of the GCRV genotype I (GCRV-I) has been rarely reported in the past decade. In this study, a new GCRV was isolated from diseased fish with severe symptoms of enteritis and mild hemorrhages on the body surface. The isolate was further identified by cell culture, transmission electron, indirect immunofluorescence, and SDS-PAGE electrophoretic pattern analysis of genomic RNA. The results were consistent with the new isolate as a GCRV-I member and tentatively named GCRV-GZ1208. Both grass carp and rare minnow infected by the GCRV-GZ1208 have no obvious hemorrhagic symptoms, and the final mortality rate was ≤10%, indicating that it may be a low virulent isolate. GZ1208 possessed highest genomic homology to 873/GCHV (GCRV-I) and golden shiner reovirus (GSRV). Additionally, it was found a 90.7-98.3% nucleotide identity, a 96.4-100% amino acid identity, and <50% identity with GCRV-II and III genotypes. Interestingly, the sequences of some segments of GZ1208 were similar to GCRV-8733/GCHV, whereas the remaining segments were more closely related to GSRV, suggesting that a recombination event had occurred. Bootscan analysis of the complete genomic sequence confirmed this hypothesis, and recombination events between 873/GCHV and other GSRV-like viruses were also accompanied by gene mutations.
Collapse
Affiliation(s)
- Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Sven M. Bergmannc
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Hanxu Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China;
| | - Hong Liu
- Inspection and Quarantine Academy of Science, Shenzhen 518045, China;
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528231, China; (H.D.); (Y.Y.); (Y.C.); (H.L.)
| |
Collapse
|
10
|
Isolation, Identification, and Genomic Analysis of a Novel Reovirus from Healthy Grass Carp and Its Dynamic Proliferation In Vitro and In Vivo. Viruses 2021; 13:v13040690. [PMID: 33923543 PMCID: PMC8073260 DOI: 10.3390/v13040690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
A new grass carp reovirus (GCRV), healthy grass carp reovirus (HGCRV), was isolated from grass carp in 2019. Its complete genome sequence was determined and contained 11 dsRNAs with a total size of 23,688 bp and 57.2 mol% G+C content, encoding 12 proteins. All segments had conserved 5' and 3' termini. Sequence comparisons showed that HGCRV was closely related to GCRV-873 (GCRV-I; 69.57-96.71% protein sequence identity) but shared only 22.65-45.85% and 23.37-43.39% identities with GCRV-HZ08 and Hubei grass carp disease reovirus (HGDRV), respectively. RNA-dependent RNA-polymerase (RdRp) protein-based phylogenetic analysis showed that HGCRV clustered with Aquareovirus-C (AqRV-C) prior to joining a branch common with other aquareoviruses. Further analysis using VP6 amino acid sequences from Chinese GCRV strains showed that HGCRV was in the same evolutionary cluster as GCRV-I. Thus, HGCRV could be a new GCRV isolate of GCRV-I but is distantly related to other known GCRVs. Grass carp infected with HGCRV did not exhibit signs of hemorrhage. Interestingly, the isolate induced a typical cytopathic effect in fish cell lines, such as infected cell shrank, apoptosis, and plague-like syncytia. Further analysis showed that HGCRV could proliferate in grass carp liver (L28824), gibel carp brain (GiCB), and other fish cell lines, reaching a titer of up to 7.5 × 104 copies/μL.
Collapse
|
11
|
Isolation and characterization of hirame aquareovirus (HAqRV): A new Aquareovirus isolated from diseased hirame Paralichthys olivaceus. Virology 2021; 559:120-130. [PMID: 33865075 DOI: 10.1016/j.virol.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
We isolated a novel Aquareovirus (hirame aquareovirus: HAqRV) from Japanese flounder Paralichthys olivaceus suffering from reovirus-like infection. In electron microscopy, the spherical virion (75 nm in diameter) was observed with multi-layered capsid structure. The viral genome consisted of 11 segments and regions encoding 7 virion structural proteins and 5 non-structural proteins were predicted. The deduced amino acid sequences of those proteins were highly similar to those of the aquareoviruses. However, the similarity of complete genome sequence between the HAqRV and other aquareoviruses was less than 60%. Phylogenetic analyses based on the deduced amino acid sequences suggested that the HAqRV is not classified into the known species of Aquareovirus. Pathogenicity of HAqRV was clearly demonstrated in accordance with Koch's postulates by experimental infection using Japanese flounder. The results suggest that the HAqRV is a new Aquareovirus species which is highly virulent for the Japanese flounder at early life stages.
Collapse
|
12
|
Liu W, Zhang Y, Ma J, Jiang N, Fan Y, Zhou Y, Cain K, Yi M, Jia K, Wen H, Liu W, Guan W, Zeng L. Determination of a novel parvovirus pathogen associated with massive mortality in adult tilapia. PLoS Pathog 2020; 16:e1008765. [PMID: 32970777 PMCID: PMC7588064 DOI: 10.1371/journal.ppat.1008765] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/26/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022] Open
Abstract
Tilapia is one of the most important economic and fastest-growing species in aquaculture worldwide. In 2015, an epidemic associated with severe mortality occurred in adult tilapia in Hubei, China. The causative pathogen was identified as Tilapia parvovirus (TiPV) by virus isolation, electron microscopy, experimental challenge, In situ hybridization (ISH), indirect immunofluorescence (IFA), and viral gene sequencing. Electron microscopy revealed large numbers of parvovirus particles in the organs of diseased fish, including kidney, spleen, liver, heart, brain, gill, intestine, etc. The virions were spherical in shape, non-enveloped and approximately 30nm in diameter. The TiPV was isolated and propagated in tilapia brain cells (TiB) and induced a typical cytopathic effect (CPE) after 3 days post-infection (dpi). This virus was used to experimentally infect adult tilapia and clinical disease symptoms similar to those observed naturally were replicated. Additionally, the results of ISH and IFA showed positive signals in kidney and spleen tissues from TiPV-infected fish. To identify TiPV-specific sequences, the near complete genome of TiPV was obtained and determined to be 4269 bp in size. Phylogenetic analysis of the NS1 sequence revealed that TiPV is a novel parvovirus, forms a separate branch in proposed genus Chapparvovirus of Parvoviridae. Results presented here confirm that TiPV is a novel parvovirus pathogen that can cause massive mortality in adult tilapia. This provides a basis for the further studies to define the epidemiology, pathology, diagnosis, prevention and treatment of this emerging viral disease. A novel parvovirus isolated from adult tilapia causes substantial morbidity and mortality. Using a SISPA-PCR and RACE, we identified and characterized 4269 nucleotides of this parvovirus. Tentatively named Tilapia parvovirus (TiPV), this is to our knowledge the first putative member of the family Parvoviridae shown to infect a teleost host. We found that a nucleotide sequence similarity search by BLASTX had no significant matches with other viruses, while amino acid sequence comparison indicated approximately 34.6% ~ 50.0% amino acids (aa) homology with other parvoviruses. Similarities between the genomes of parvoviruses infecting hosts in different phyla or divisions indicate a need to update previously suggested hypotheses on the origins of parvovirus. Our findings may represent new avenues to explain viral evolution and suggest a need to further study parvovirus pathogenesis.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yecheng Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Ma
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, Idaho, United States of America
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Kenneth Cain
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, Idaho, United States of America
| | - Meisheng Yi
- Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Kuntong Jia
- Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: ; (WG); (LZ)
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
- * E-mail: ; (WG); (LZ)
| |
Collapse
|
13
|
Mordecai GJ, Di Cicco E, Günther OP, Schulze AD, Kaukinen KH, Li S, Tabata A, Ming TJ, Ferguson HW, Suttle CA, Miller KM. Discovery and surveillance of viruses from salmon in British Columbia using viral immune-response biomarkers, metatranscriptomics, and high-throughput RT-PCR. Virus Evol 2020; 7:veaa069. [PMID: 33623707 PMCID: PMC7887441 DOI: 10.1093/ve/veaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied in situ hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor Vancouver, BC Canada V5Z 1M9, Canada
- Corresponding author: E-mail:
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC V6J 4S6, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC, V6T 2G6, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Hugh W Ferguson
- School of Veterinary Medicine, St George’s University, True Blue, GrenadaWest Indies
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall Vancouver, British Columbia Canada V6T 1Z3
- Department of Botany, University of British Columbia, 3156-6270 University Blvd. Vancouver, BC Canada V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
14
|
Wang L, Yu F, Xu N, Lu L. Grass carp reovirus capsid protein interacts with cellular proteasome subunit beta-type 7: Evidence for the involvement of host proteasome during aquareovirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:77-86. [PMID: 31846778 DOI: 10.1016/j.fsi.2019.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The eukaryotic proteasome is a large multi-subunit complex that plays an important role in a wide range of fundamental cellular functions by degrading un-needed or damaged proteins, which also can be inverted or manipulated by viruses to favor viral infection. In this study, we demonstrated that proteasome subunit beta-type 7 (PSMB7), a proteasome-constitutive protein that is important for proteasome assembly, interacts with grass carp reovirus (GCRV) capsid proteins. Yeast 2-hybrid assay indicates that capsid protein VP38 of genotype Ⅲ GCRV could bind PSMB7, and this mutual interaction was further confirmed by pull-down, co-immunoprecipitation and subcellular co-localization assays. Furthermore, VP38 homologous proteins, VP7 from genotype I and VP35 from genotype II GCRV, can also interact with host PSMB7 in similar protein-protein interaction assays. Finally, PSMB7 expression level remains stable during GCRV infection, while, psmb7 gene transcription was repressed upon GCRV challenge; interaction with PSMB7 doesn't result in protein degradation of either VP7 or VP38 during viral infection. Thus, the interaction between host PSMB7 and viral capsid protein might suggest that interfering with PSMB7-mediated proteasome assembly should be involved in efficient aquareovirus infection.
Collapse
Affiliation(s)
- Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Ning Xu
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
15
|
Wang H, Zhou S, Wen J, Sun M, Jiang Y, Lu L, Xie J. A real-time reverse-transcription isothermal recombinase polymerase amplification assay for the rapid detection of genotype III grass carp (Ctenopharyngodon idella) reovirus. J Virol Methods 2019; 277:113802. [PMID: 31843672 DOI: 10.1016/j.jviromet.2019.113802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 11/06/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, which is characterized by external and internal hemorrhage, is a serious infectious disease affecting grass carp production. Strains of the causative agent, grass carp reovirus (GCRV), are divided into genotypes I, II and III, which are represented by the isolates GCRV-873, GCRV-HZ08 and GCRV-104, respectively. In this study, a real-time reverse-transcription recombinase polymerase amplification (real-time RT-RPA) assay was developed to detect the genotype III grass carp reovirus GCRV-104. The assay was based on the detection of the vp55 gene which encodes the outer fiber protein of the virus. A portable ESE-Quant Tube scanner, with a dimension of 17.4 × 18.8 cm, weighing about 1 kg, and equipped with temperature settings to amplify the DNA isothermally and spectral devices to detect the amplified products using fluorescence, was used to complete the assay. Under the optimal conditions, the assay took approximately 10 min to complete at 37 °C and showed no cross-reactions with other aquatic viruses. Consequently, this rapid real-time RT-RPA assay is a useful method for the simple, rapid and reliable detection of genotype III GCRV strains in resource-limited diagnostic laboratories.
Collapse
Affiliation(s)
- Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| | - Shuting Zhou
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China; Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jinxuan Wen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Meng Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China
| | - Yousheng Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture Shanghai Ocean University, Shanghai, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, PR China.
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
16
|
Tang Y, Zeng W, Wang Y, Wang Q, Yin J, Li Y, Wang C, Bergmann SM, Gao C, Hu H. Comparison of the blood parameters and histopathology between grass carp infected with a virulent and avirulent isolates of genotype II grass carp reovirus. Microb Pathog 2019; 139:103859. [PMID: 31707078 DOI: 10.1016/j.micpath.2019.103859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Grass carp hemorrhagic disease caused by grass carp reovirus (GCRV) is the most important disease for grass carp aquaculture. Its typical clinical symptom is haemorrhaging, although the mechanism was remained unclear. In this study, we investigated the differences in blood parameters and histopathological features between grass carp infected with a virulent and avirulent isolates of genotype II GCRV. Infection with the virulent isolate resulted in increases in 8 routine blood and 2 serum biochemical parameters (P < 0.05); while 9 routine blood and 5 biochemical parameters were significantly decreased (P < 0.05) compared with fish infected with the avirulent isolate. The majority of these alterations were related to hemorrhage, inflammatory reactions and organic damage. The histopathologic changes were primarily vasodilation and hyperaemia in multiple organs, lymphocyte and macrophage infiltration as well as severe vacuolar degeneration in spleen, kidney and liver. The histopathology changes in fish infected with the avirulent isolate were minimal. These results indicated that the pathogenicity of GCRV was primarily reflected in destruction of the blood circulatory system and parenchymatous organs. This study lays the foundation for further research on the pathogenesis of bleeding caused by GCRV infection and the use of blood parameters and histopathology as tools for disease diagnosis.
Collapse
Affiliation(s)
- Yafang Tang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, People's Republic of China
| | - Weiwei Zeng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China.
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, People's Republic of China
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-InselRiems, Germany
| | - Caixia Gao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China; College of Fisheries, Tianjin Agriculural University, Tianjin, People's Republic of China
| | - Huzi Hu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, People's Republic of China; College of Fisheries, Tianjin Agriculural University, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Huang HW, Huang CH, Wen CM. Complete genome sequence and phylogenetic analysis of a novel aquareovirus isolated from a diseased marbled eel (Anguilla marmorata). Arch Virol 2019; 164:2585-2592. [PMID: 31377889 DOI: 10.1007/s00705-019-04365-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/07/2019] [Indexed: 11/25/2022]
Abstract
Marbled eel reovirus (MERV) is an aquareovirus (AQRV) isolated from diseased marbled eels (Anguilla marmorata) with petechial skin hemorrhage. In this study, we propagated MERV in a cell line derived from the brain of Aequidens rivulatus and purified viral particles by using a discontinuous cesium chloride gradient. Genomic RNA sequences were obtained through next-generation sequencing. MERV, similar to most other AQRVs, showed the presence of 11 double-stranded RNA segments encoding 12 proteins; however, the genome sequence displayed very little similarity to known AQRV sequences. Furthermore, the structural proteins of MERV were most closely related to American grass carp reovirus with sequence identity values of no more than 64.89%. Phylogenetic analysis based on the sequences of structural proteins indicated that MERV shows an evolutionary history between AQRV-B and -G, which belong to the saline and freshwater environment subgroups, respectively. We also observed that MERV showed a closer relationship to orthoreoviruses based on the protein sequences of NS38 and NS73. In summary, MERV is a novel AQRV that could be classified as a member of the new proposed AQRV species "Aquareovirus H". The taxonomic assignments and evolution of AQRVs thus warrant further investigation.
Collapse
Affiliation(s)
- Hui-Wen Huang
- Department of Life Sciences, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung, 81148, Taiwan
| | - Chiao-Hsuan Huang
- Department of Life Sciences, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung, 81148, Taiwan
| | - Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
18
|
Pei C, Gao Y, Sun X, Li L, Kong X. A developed subunit vaccine based on fiber protein VP56 of grass carp reovirus providing immune protection against grass carp hemorrhagic disease. FISH & SHELLFISH IMMUNOLOGY 2019; 90:12-19. [PMID: 31015064 DOI: 10.1016/j.fsi.2019.04.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Grass carp reovirus (GCRV) is the main viral pathogen that endangers grass carp seriously. Application of vaccine has been considered to be the most effective way to prevent virus infection. VP56 is a protein encoded by gene segment 7 of grass carp reovirus, and is predicted to share homology with fiber protein of mammalian reovirus (MRV). In our study, the immunogenicity of VP56 was evaluated by neutralization test. GCRV was incubated with mouse anti-VP56 antibody, and then was injected into grass carp. Results showed that disease progress and death occurrence was hindered in the experimental group compared with the control group. For further study, the recombinant VP56 protein (rVP56) expressed by pET-32a (+) vector was purified, and was used as subunit vaccine to immunize grass carp. After each fish (15 ± 1.5 g) was injected with 30 μg purified rVP56 intraperitoneally, the immune protective efficacy of recombinant VP56 protein was assessed by a series of immune parameters. The population of red blood cells in immunized fish increased significantly after 5 d post injection (dpi), and reached a peak with (2.98 ± 0.17) × 109/ml at 7 dpi (p < 0.05). The numbers of white blood cells peaked with (8.42 ± 1.01) × 107/ml at 7 dpi (p < 0.05). Additionally, the percentage of monocytes and neutrophils rose to a peak with (9.05 ± 0.92)% and (25.93 ± 2.60)% respectively at 5 dpi (p < 0.05 or p < 0.01), whereas lymphocytes reached the highest value of (85.81 ± 2.73) % at 14 dpi (p < 0.01). Serum antibody titer in the vaccinated fish increased significantly and reached a peak at 21 dpi (p < 0.01). The mRNA expression levels of type I interferon (IFN1), major histocompatibility complex class I (MHC I), Toll-like receptor 22 (TLR22), and immunoglobulin M (IgM) were significantly up-regulated in head kidney and spleen (p < 0.05 or p < 0.01). The GCRV challenge test showed that the relative survival rate in immunized group was 71%-75%. Collectively, the results indicated that rVP56 protein can induce immune protection in grass carp, and can be consider as a candidate vaccine against GCRV infection.
Collapse
Affiliation(s)
- Chao Pei
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yan Gao
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoying Sun
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
19
|
Identification of a potential transcriptional regulator encoded by grass carp reovirus. Arch Virol 2019; 164:1393-1404. [DOI: 10.1007/s00705-019-04204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/09/2019] [Indexed: 01/26/2023]
|
20
|
Wang L, Yu F, Sun H, Lu L. Characterization of the interaction between outer-fiber protein VP55 of genotype III grass carp reovirus and Fibulin-4 of grass carp. FISH & SHELLFISH IMMUNOLOGY 2019; 86:355-360. [PMID: 30502460 DOI: 10.1016/j.fsi.2018.11.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Genotype III grass carp reovirus (GCRV; representative strain, GCRV-104) belongs to the subfamily Spinareovirinae and encodes an outer-fiber protein, VP55, responsible for mediating the infection of target tissues by the virus and assisting the virus into cells. Fibulin-4/EFEMP2 protein was previously identified as a putative binding partner for VP55 in a yeast two-hybrid screening. Here, we have further characterized the association between Fibulin-4 and VP55 by using protein interaction assays. An intracellular co-localization assay showed that RFP-Fibulin-4 co-localized with GFP-VP55 in grass carp ovary (GCO) cells. Bacterially expressed GST-tagged Fibulin-4 was shown to associate with baculovirus-expressed His-tagged VP55 in a dot-blot overlay assay; moreover, baculovirus-expressed His-tagged VP55 was able to pull down GFP-Fibulin-4 expressed in the GCO cells. We performed real-time PCR and immunoblotting analysis and showed that endogenous Fibulin-4, although suppressed to a lower level in the late infection phase, is present throughout the infection course of GCRV-104 in CIK cells. In conclusion, our results indicate that grass carp Fibulin-4 interacts with VP55. The presence of Fibulin-4, a well-known secreted protein, during the infection course of GCRV-104 in grass carp cells implies its potential role during viral egression through interaction with VP55.
Collapse
Affiliation(s)
- Longlong Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Fei Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Hao Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, PR China; National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, PR China.
| |
Collapse
|
21
|
Su H, Su J. Cyprinid viral diseases and vaccine development. FISH & SHELLFISH IMMUNOLOGY 2018; 83:84-95. [PMID: 30195914 PMCID: PMC7118463 DOI: 10.1016/j.fsi.2018.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 05/15/2023]
Abstract
In the past decades, global freshwater fish production has been rapidly growing, while cyprinid takes the largest portion. Along with the rapid rise of novel forms of intensive aquaculture, increased global aquatic animal movement and various anthropogenic stress to aquatic ecosystems during the past century, freshwater fish farming industry encounter the emergence and breakout of many diseases, especially viral diseases. Because of the ability to safely and effectively prevent aquaculture diseases, vaccines have become the mainstream technology for prevention and control of aquatic diseases in the world. In this review, authors summarized six major cyprinid viral diseases, including koi herpesvirus disease (KHVD), spring viraemia of carp (SVC), grass carp hemorrhagic disease (GCHD), koi sleepy disease (KSD), carp pox disease (CPD) and herpesviral haematopoietic necrosis (HPHN). The present review described the characteristics of these diseases from epidemiology, pathology, etiology and diagnostics. Furthermore, the development of specific vaccines respective to these diseases is stated according to preparation methods and immunization approaches. It is hoped that the review could contribute to aquaculture in prevention and controlling of cyprinid viral diseases, and serve the healthy and sustainable development of aquaculture industry.
Collapse
Affiliation(s)
- Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
22
|
Yan X, Xiong L, Li J, Wang Y, Wu Z, Jian J, Ding Y. GCRV 096 VP6 protein and its impacts on GCRV replication with different genotypes in CIK cells. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Wang H, Liu W, Sun M, Chen D, Zeng L, Lu L, Xie J. Inhibitor analysis revealed that clathrin-mediated endocytosis is involed in cellular entry of type III grass carp reovirus. Virol J 2018; 15:92. [PMID: 29793525 PMCID: PMC5968591 DOI: 10.1186/s12985-018-0993-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background Grass carp (Ctenopharyngodon idella) hemorrhagic disease is caused by an acute infection with grass carp reovirus (GCRV). The frequent outbreaks of this disease have suppressed development of the grass carp farming industry. GCRV104, the representative strain of genotype III grass carp (Ctenopharyngodon idella) reovirus, belongs to the Spinareovirinae subfamily and serves as a model for studying the strain of GCRV which encodes an outer-fiber protein. There is no commercially available vaccine for this genotype of GCRV. Therefore, the discovery of new inhibitors for genotype III of GCRV will be clinically beneficial. In addition, the mechanism of GCRV with fiber entry into cells remains poorly understood. Methods Viral entry was determined by a combination of specific pharmacological inhibitors, transmission electron microscopy, and real-time quantitative PCR. Results Our results demonstrate that both GCRV-JX01 (genotype I) and GCRV104 (genotype III) of GCRV propagated in the grass carp kidney cell line (CIK) with a typical cytopathic effect (CPE). However, GCRV104 replicated slower than GCRV-JX01 in CIK cells. The titer of GCRV-JX01 was 1000 times higher than GCRV104 at 24 h post-infection. We reveal that ammonium chloride, dynasore, pistop2, chlorpromazine, and rottlerin inhibit viral entrance and infection, but not nystatin, methyl-β-cyclodextrin, IPA-3, amiloride, bafilomycin A1, nocodazole, and latrunculin B. Furthermore, GCRV104 and GCRV-JX01 infection of CIK cells depended on dynamin and the acidification of the endosome. This was evident by the significant inhibition following prophylactic treatment with the lysosomotropic drug ammonium chloride or dynasore. Conclusions Taken together, our data have suggested that GCRV104 enters CIK cells through clathrin-mediated endocytosis in a pH-dependent manner. We also suggest that dynamin is critical for efficient viral entry. Additionally, the phosphatidylinositol 3-kinase inhibitor wortmannin and the protein kinase C inhibitor rottlerin block GCRV104 cell entry and replication.
Collapse
Affiliation(s)
- Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, People's Republic of China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, People's Republic of China
| | - Weisha Liu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Meng Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, People's Republic of China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Dubo Chen
- Department of Laboratory Medicine, the frist affiliated hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, People's Republic of China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, People's Republic of China. .,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai, People's Republic of China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, People's Republic of China.
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. FISH & SHELLFISH IMMUNOLOGY 2018; 76:206-215. [PMID: 29477498 DOI: 10.1016/j.fsi.2018.02.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.
Collapse
Affiliation(s)
- Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Jieming Zhang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, PR China.
| |
Collapse
|
25
|
Molecular and Antigenic Characterization of Piscine orthoreovirus (PRV) from Rainbow Trout (Oncorhynchus mykiss). Viruses 2018; 10:v10040170. [PMID: 29614838 PMCID: PMC5923464 DOI: 10.3390/v10040170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Piscine orthoreovirus (PRV-1) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). Recently, a novel PRV (formerly PRV-Om, here called PRV-3), was found in rainbow trout (Oncorhynchus mykiss) with HSMI-like disease. PRV is considered to be an emerging pathogen in farmed salmonids. In this study, molecular and antigenic characterization of PRV-3 was performed. Erythrocytes are the main target cells for PRV, and blood samples that were collected from experimentally challenged fish were used as source of virus. Virus particles were purified by gradient ultracentrifugation and the complete coding sequences of PRV-3 were obtained by Illumina sequencing. When compared to PRV-1, the nucleotide identity of the coding regions was 80.1%, and the amino acid identities of the predicted PRV-3 proteins varied from 96.7% (λ1) to 79.1% (σ3). Phylogenetic analysis showed that PRV-3 belongs to a separate cluster. The region encoding σ3 were sequenced from PRV-3 isolates collected from rainbow trout in Europe. These sequences clustered together, but were distant from PRV-3 that was isolated from rainbow trout in Norway. Bioinformatic analyses of PRV-3 proteins revealed that predicted secondary structures and functional domains were conserved between PRV-3 and PRV-1. Rabbit antisera raised against purified virus or various recombinant virus proteins from PRV-1 all cross-reacted with PRV-3. Our findings indicate that despite different species preferences of the PRV subtypes, several genetic, antigenic, and structural properties are conserved between PRV-1 and-3.
Collapse
|
26
|
Yu XB, Hao K, Li J, Chen XH, Wang GX, Ling F. Effects of moroxydine hydrochloride and ribavirin on the cellular growth and immune responses by inhibition of GCRV proliferation. Res Vet Sci 2018; 117:37-44. [DOI: 10.1016/j.rvsc.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
|
27
|
Chen X, Hao K, Yu X, Huang A, Zhu B, Wang GX, Ling F. Magnolol protects Ctenopharyngodon idella kidney cells from apoptosis induced by grass carp reovirus. FISH & SHELLFISH IMMUNOLOGY 2018; 74:426-435. [PMID: 29277695 DOI: 10.1016/j.fsi.2017.12.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Many natural products from medicinal plants are small molecular weight compounds with enormous structural diversity and show various biological activities. Magnolol is a biphenol compound rich in the stem bark of Magnolia officinalis Rehd et Wils., and is able to suppress viral replication in GCRV-infected grass carp (Ctenopharyngodon idella) kidney (CIK) cells in the previous study. In this study, in vivo studies demonstrated that magnolol was efficient to restrain the replication of GCRV and repair the low level of superoxide dismutase and total antioxidant capacity in serum at the non-toxic concentration in vivo. Furthermore, magnolol inhibited CIK cell apoptosis induced by GCRV and kept the normal cellular morphological structure, reflecting in the protection of CIK cells from cell swelling, the formation of apoptotic bodies, the disappearance of cellular morphology and nuclear fragmentation. Reverse transcript quantitative polymerase chain reaction (RT-qPCR) showed that magnolol facilitated the expression of apoptosis-inhibiting gene bcl-2, while suppressed the expression of apoptosis-promoting gene bax in GCRV-infected cells. Besides, RT-qPCR and enzyme activity assays proved that magnolol suppressed the expression of caspase 3, caspase 8 and caspase 9. Moreover, interactions between magnolol and proteins were predicted by using the STITCH program, which revealed that ten proteins including caspase 3, were involved in the apoptosis pathway, p53 signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway and toll-like receptor signaling pathway. Further assays were performed to test the effect of magnolol on apoptosis pathway, which showed that magnolol dramatically inhibited the activity of caspase 3 rather than those of caspase 8 and caspase 9. Collectively, the present study revealed that magnolol heightened the resistance of grass carp against GCRV infection and refrained GCRV-induced apoptosis, which may be attributed to the direct interaction of magnolol with caspase 3. The present results make a contribution to understanding the mechanisms by which small-molecule drugs possess antiviral activities, and lay a foundation for the development of broad-spectrum antiviral compounds in aquaculture industry.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaobo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Aiguo Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
28
|
Targeting Heat Shock Protein 70 as an antiviral strategy against grass carp reovirus infection. Virus Res 2018; 247:1-9. [DOI: 10.1016/j.virusres.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
|
29
|
Orthoreovirus outer-fiber proteins are substrates for SUMO-conjugating enzyme Ubc9. Oncotarget 2018; 7:79814-79827. [PMID: 27806335 PMCID: PMC5346753 DOI: 10.18632/oncotarget.12973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
Reoviruses are potential anticancer agents due to their ability to induce cell death in tumor cells. Grass carp reovirus (GCRV) is one of the best characterized models on reovirus pathogenesis in vitro. However, there is little known about how SUMOylation affects reovirus pathogenesis. The SUMO conjugating enzyme 9 (Ubc9) determines the targets of SUMOylation. Here, the protein interactions between reovirus outer fiber proteins, specifically GCRV-104 VP55, and Ubc9 were probed using a yeast two-hybrid system. The N-terminal coiled-coil domain of VP55, containing a single lysine residue, was responsible for the interaction between VP55 and Ubc9 in yeast. In solid phase binding assays, a single amino acid mutation (K87R) prevented Ubc9 from binding to VP55. Overexpression of Ubc9 enhanced GCRV-104 infection efficiency, and knockdown of Ubc9 in CIK cells inhibited viral replication, which suggested that Ubc9 was a proviral factor. Furthermore, Ubc9 was shown to bind outer fiber proteins from type II GCRV, avian reovirus and mammalian reovirus in yeast. To our knowledge, this is the first study to show that Ubc9 binds to reovirus outer-fiber proteins and likely contributes to efficient orthoreovirus replication. These results suggest that SUMOylation modifications could be targeted to improve the therapeutic efficacy of oncolytic reovirus.
Collapse
|
30
|
Grass Carp Reovirus VP41 Targets Fish MITA To Abrogate the Interferon Response. J Virol 2017; 91:JVI.00390-17. [PMID: 28446676 DOI: 10.1128/jvi.00390-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Although fish possess an efficient interferon (IFN) system to defend against aquatic virus infection, grass carp reovirus (GCRV) still causes hemorrhagic disease in grass carp. To date, GCRV's strategy for evading the fish IFN response is still unknown. Here, we report that GCRV VP41 inhibits fish IFN production by suppressing the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA). First, the activation of the IFN promoter (IFNpro) stimulated by mitochondrial antiviral signaling protein (MAVS) and MITA was decreased by the overexpression of VP41, whereas such activation induced by TANK-binding kinase 1 (TBK1) was not affected. Second, VP41 was colocalized in the cellular endoplasmic reticulum (ER) and associated with MITA. Furthermore, as a phosphorylation substrate of TBK1, VP41 significantly decreased the phosphorylation of MITA. Truncation assays indicated that the transmembrane (TM) region of VP41 was indispensable for the suppression of IFNpro activity. Finally, after infection with GCRV, VP41 blunted the transcription of host IFN and facilitated viral RNA synthesis. Taken together, our findings suggest that GCRV VP41 prevents the fish IFN response by attenuating the phosphorylation of MITA for viral evasion.IMPORTANCE MITA is thought to act as an adaptor protein to facilitate the phosphorylation of IRF3 by TBK1 upon viral infection, and it plays a critical role in innate antiviral responses. Here, we report that GCRV VP41 colocalizes with MITA at the ER and reduces MITA phosphorylation by acting as a decoy substrate of TBK1, thus inhibiting IFN production. These findings reveal GCRV's strategy for evading the host IFN response for the first time.
Collapse
|
31
|
He L, Zhang A, Pei Y, Chu P, Li Y, Huang R, Liao L, Zhu Z, Wang Y. Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics 2017; 18:452. [PMID: 28595568 PMCID: PMC5465539 DOI: 10.1186/s12864-017-3824-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/28/2017] [Indexed: 11/28/2022] Open
Abstract
Background Grass carp is an important farmed fish in China that is affected by serious disease, especially hemorrhagic disease caused by grass carp reovirus (GCRV). The mechanism underlying the hemorrhagic symptoms in infected fish remains to be elucidated. Although GCRV can be divided into three distinct subtypes, differences in the pathogenesis and host immune responses to the different subtypes are still unclear. The aim of this study was to provide a comprehensive insight into the grass carp response to different GCRV subtypes and to elucidate the mechanism underlying the hemorrhagic symptoms. Results Following infection of grass carp, GCRV-I was associated with a long latent period and low mortality (42.5%), while GCRV-II was associated with a short latent period and high mortality (81.4%). The relative copy number of GCRV-I remained consistent or decreased slightly throughout the first 7 days post-infection, whereas a marked increase in GCRV-II high copy number was detected at 5 days post-infection. Transcriptome sequencing revealed 211 differentially expressed genes (DEGs) in Group I (66 up-regulated, 145 down-regulated) and 670 (386 up-regulated, 284 down-regulated) in Group II. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant enrichment in the terms or pathways involved in immune responses and correlating with blood or platelets. Most of the DEGs in Group I were also present in Group II, although the expression profiles differed, with most DEGs showing mild changes in Group I, while marked changes were observed in Group II, especially the interferon-related genes. Many of the genes involved in the complement pathway and coagulation cascades were significantly up-regulated at 7 days post-infection in Group II, suggesting activation of these pathways. Conclusion GCRV-I is associated with low virulence and a long latent period prior to the induction of a mild host immune response, whereas GCRV-II is associated with high virulence, a short latent period and stimulates a strong and extensive host immune response. The complement and coagulation pathways are significantly activated at 7 days post-infection, leading to the endothelial cell and blood cell damage that result in hemorrhagic symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3824-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
32
|
Grass carp reovirus-GD108 fiber protein is involved in cell attachment. Virus Genes 2017; 53:613-622. [PMID: 28550501 DOI: 10.1007/s11262-017-1467-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Viral attachment to specific host receptors is the first step in viral infection and serves an essential function in the selection of target cells. In this study, structure analysis, neutralization assays, and cell attachment assays were carried out to evaluate the cell attachment functions of the outer capsid fiber protein of grass carp reovirus GD108 strain (GCRV-GD108). The GCRV-GD108 fiber protein contained 512 amino acids encoded by S7 segment and shared sequence similarities with mammalian reovirus cell attachment protein σ1 and adenovirus fiber. Structural analyses predicted the presence of a coiled-coil tail domain, three adenoviral shafts in the body domain, and a globular head domain, similar to other fiber proteins. Neutralization assays showed that polyclonal antibodies against the fiber protein could prevent viral infection in both fish and grass carp snout fibroblast cells (PSF), suggesting that the recombinant fiber protein could induce neutralized antibodies against GCRV-GD108. Cell attachment assays showed that recombinant fiber protein could bind to PSF cells, demonstrating that the fiber protein functioned as the cell attachment protein in GCRV-GD108. These results provided the basis for further studies of the pathogenesis of grass carp reovirus.
Collapse
|
33
|
Chen X, Hu Y, Shan L, Yu X, Hao K, Wang GX. Magnolol and honokiol from Magnolia officinalis enhanced antiviral immune responses against grass carp reovirus in Ctenopharyngodon idella kidney cells. FISH & SHELLFISH IMMUNOLOGY 2017; 63:245-254. [PMID: 28232195 DOI: 10.1016/j.fsi.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
Medicinal plants have been widely used for a long history. Exploration of pharmacologically active compounds from medicinal plants present a broad prevalent of application. By examining viral mRNA expression in GCRV-infected Ctenopharyngodon idella kidney (CIK) cells treated with thirty kinds of plant extracts, we identified Magnolia officinalis Rehd et Wils. was able to preferably suppress viral replication. Further studies demonstrated that the main ingredients of magnolia bark, namely, magnolol and honokiol presented protective pharmacological function when treated GCRV-infected CIK cells with a concentration of 2.00 μg/ml and 1.25 μg/ml, respectively. Furthermore, reverse transcript quantitative polymerase chain reaction (RT-qPCR) and western blot showed that both magnolol and honokiol were efficient to restrain the replication of GCRV in CIK cells at non-toxic concentration (2.51 ± 0.51 μg/ml for magnolol, and 3.18 ± 0.61 μg/ml for honokiol). Moreover, it was found that magnolol and honokiol promoted the expression of immune-related genes. Magnolol obviously significantly increased the expression of interferon (IFN) regulatory factor (IRF)7 rather than that of IRF3 in the GCRV-infected cells, leading to the activation of type I IFN (IFN-I). Simultaneously, magnolol drastically facilitated the expression of interleukin (IL)-1β, but failed to induce the molecules in nuclear factor (NF)-κB pathways. Differently, honokiol strikingly motivated not only the expression of IL-1β, but also those of tumor necrosis factor α (TNFα) and NF-κB. Interestingly, though honokiol motivated the expression of IFN-β promoter stimulator 1 (IPS-1), IRF3 and IRF7, it failed to up-regulate the expression of IFN-I, indicating that honokiol enhanced the host innate antiviral response to GCRV infection via NF-κB pathways. Collectively, the present study revealed that magnolol and honokiol facilitated the expression of innate immune-related genes to strengthen the innate immune signaling responses to resist GCRV infection, which contributed to understanding the mechanisms by which small-molecule drugs possessed antiviral activities. In addition, these results lay a foundation for the development of broad-spectrum antiviral compounds in aquaculture industry.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yang Hu
- College of Science, Northwest A&F University, Yangling 712100, China
| | - Lipeng Shan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaobo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
34
|
Zhang A, He L, Wang Y. Prediction of GCRV virus-host protein interactome based on structural motif-domain interactions. BMC Bioinformatics 2017; 18:145. [PMID: 28253857 PMCID: PMC5335770 DOI: 10.1186/s12859-017-1500-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Grass carp hemorrhagic disease, caused by grass carp reovirus (GCRV), is the most fatal causative agent in grass carp aquaculture. Protein-protein interactions between virus and host are one avenue through which GCRV can trigger infection and induce disease. Experimental approaches for the detection of host-virus interactome have many inherent limitations, and studies on protein-protein interactions between GCRV and its host remain rare. RESULTS In this study, based on known motif-domain interaction information, we systematically predicted the GCRV virus-host protein interactome by using motif-domain interaction pair searching strategy. These proteins derived from different domain families and were predicted to interact with different motif patterns in GCRV. JAM-A protein was successfully predicted to interact with motifs of GCRV Sigma1-like protein, and shared the similar binding mode compared with orthoreovirus. Differentially expressed genes during GCRV infection process were extracted and mapped to our predicted interactome, the overlapped genes displayed different tissue expression distributions on the whole, the overall expression level in intestinal is higher than that of other three tissues, which may suggest that the functions of these genes are more active in intestinal. Function annotation and pathway enrichment analysis revealed that the host targets were largely involved in signaling pathway and immune pathway, such as interferon-gamma signaling pathway, VEGF signaling pathway, EGF receptor signaling pathway, B cell activation, and T cell activation. CONCLUSIONS Although the predicted PPIs may contain some false positives due to limited data resource and poor research background in non-model species, the computational method still provide reasonable amount of interactions, which can be further validated by high throughput experiments. The findings of this work will contribute to the development of system biology for GCRV infectious diseases, and help guide the identification of novel receptors of GCRV in its host.
Collapse
Affiliation(s)
- Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
35
|
Structure and function of S9 segment of grass carp reovirus Anhui strain. Virusdisease 2017; 28:26-32. [PMID: 28466052 DOI: 10.1007/s13337-016-0357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022] Open
Abstract
A highly virulent grass carp reovirus (GCRV) strain, named GCRV-AH528, was recently purified from a diseased grass carp with hemorrhage disease in Anhui, China. GCRV-AH528 S9 segment was 1320 nucleotides in length and encoded a 418 amino acid VP6 protein. BLAST search showed that the VP6 protein owned a conserved domain belonging to the reoviral σ2 family. Phylogenetic analysis of VP6 presented that GCRV-AH528 belonged to GCRV genotype II, which was more closely related to Orthoreovirus than GCRV genotype I and genotype III. Further analysis revealed that GCRV-AH528 S9 and mammalian orthoreovirus S8 might have evolved from a common ancestral precursor and have identical mechanism in virus assembly. The expression level of vp6 gene was detected by quantitative real-time PCR (qRT-PCR). Over time, the expression level of vp6 gradually increased in Ctenopharyngodon idellus kidney cells. However, the level of vp6 expression in blood sharply increased at 4-6 days, and then decreased to a low level after GCRV-AH528 challenge (P < 0.05). The vp6 gene was detected in all tissues examined, whereas at relatively higher levels in blood, kidney, and liver (P < 0.05). The yeast two-hybrid (Y2H) system was used to identify VP6 self-interaction, while no interaction was detected in VP6-VP6. This study not only revealed the S9 segment structure and expression pattern but also analyzed the VP6 mechanism by yeast hybridization method. The present study provides valuable informations for further experimental design and investigation of VP6 functions.
Collapse
|
36
|
Yu XB, Chen XH, Shan LP, Hao K, Wang GX. In vitro antiviral efficacy of moroxydine hydrochloride and ribavirin against grass carp reovirus and giant salamander iridovirus. DISEASES OF AQUATIC ORGANISMS 2016; 121:189-199. [PMID: 27786157 DOI: 10.3354/dao03053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Moroxydine hydrochloride (Mor) and ribavirin (Rib) have been reported to exhibit multi-antiviral activities against DNA and RNA viruses, but their antiviral activities and pharmacologies have seldom been studied in aquaculture. This paper has selected 3 aquatic viruses including a double-stranded RNA virus (grass carp reovirus, GCRV), a single-stranded RNA virus (spring viraemia of carp virus, SVCV) and a DNA virus (giant salamander iridovirus, GSIV) for antiviral testing. The results showed that Mor and Rib can effectively control the infection of GCRV and GSIV in respective host cells. Further study was undertaken to explore the antivirus efficiencies and pharmacological mechanisms of Mor and Rib on GCRV and GSIV in vitro. Briefly, compounds showed over 50% protective effects at 15.9 µg ml-1 except for the group of GSIV-infected epithelioma papulosum cyprinid (EPC) cells treated with Mor. Moreover, Mor and Rib blocked the virus-induced cytopathic effects and apoptosis in host cells to keep the normal cellular structure. The expression of VP1 (GCRV) and major capsid protein (MCP; GSIV) gene was also significantly inhibited in the virus-infected cells when treated with Mor and Rib. Cytotoxicity assay verified the 2 compounds had no toxic effects on grass carp ovary (GCO) cells and EPC cells at ≤96 µg ml-1. In conclusion, these results indicated that exposing GCRV-infected GCO cells and GSIV-infected EPC cells to Mor and Rib could elicit significant antiviral responses, and the 2 compounds have been shown to be promising agents for viral control in the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | |
Collapse
|
37
|
Lu J, Wang H, Zhang Y, Li Y, Lu L. Grass carp reovirus NS26 interacts with cellular lipopolysaccharide-induced tumor necrosis factor-alpha factor, LITAF. Virus Genes 2016; 52:789-796. [PMID: 27405988 DOI: 10.1007/s11262-016-1370-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022]
Abstract
The nonstructural protein NS26 of grass carp reovirus (GCRV) is encoded by the 11th genomic dsRNA segment, homolog of which is not found in orthoreoviruses. The role of NS26 in GCRV pathogenesis is still unclear. Previously, grass carp LITAF/SIMPLE protein was identified as a putative binding partner for NS26 in a yeast two-hybrid screen. Here, we further characterized the association between NS26 and LITAF using in vivo and in vitro protein interaction assays. Soluble GST-NS26 and His6-LITAF were expressed and purified from E. coli; recombinant NS26 tagged with myc and LITAF tagged with GFP were expressed in Ctenopharyngon idellus kidney cells (CIK) by transient transfection experiments. A GST pulldown assay demonstrated that GST-tagged NS26 efficiently bound to His6-LITAF. Co-immunoprecipitation assays demonstrated that GCRV NS26 reciprocally precipitated endogenous LITAF in CIK cells. Double-immunofluorescent analyses revealed myc-NS26 colocalized with GFP-LITAF in CIK cells. Taken together, the current in vitro and in vivo data demonstrated the interaction between cellular LITAF and GCRV NS26.
Collapse
Affiliation(s)
- Jianfei Lu
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Wang
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Zhang
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Li
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Liqun Lu
- Aquatic Pathogen Collection Center, MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
38
|
Yu XB, Chen XH, Ling F, Hao K, Wang GX, Zhu B. Moroxydine hydrochloride inhibits grass carp reovirus replication and suppresses apoptosis in Ctenopharyngodon idella kidney cells. Antiviral Res 2016; 131:156-65. [PMID: 27188236 DOI: 10.1016/j.antiviral.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/06/2016] [Accepted: 05/13/2016] [Indexed: 02/08/2023]
Abstract
Moroxydine hydrochloride (Mor) is known to have multi-antiviral activities against DNA and RNA viruses but very little information exists on its pharmacology. The paper was undertaken to explore the antiviral response and antiapoptotic mechanism of Mor against grass carp reovirus (GCRV) in Ctenopharyngodon idella kidney (CIK) cells. The results showed that exposing GCRV-infected cell to 6.3 μg mL(-1) of Mor for 96 h avoid ca. 50% apoptosis. Meanwhile, Mor had lower cytotoxicity than ribavirin (Rib) as the value of safe concentration was threefold higher than effective concentration and the compound could ensure sufficient into and out of cells within 4 h when tested at the maximal safe concentration. Mor blocked the GCRV-induced cytopathic effects and eliminated nucleocapsids in CIK cells to keep the normal morphological structure. Moreover, the expressions of viral protein genes were significantly inhibited especially the guanylyl transferase and RNA-dependent RNA polymerase related expression. Furthermore, GCRV caused Bcl-2 down-regulation and Bax mitochondrial translocation was prevented by treatment of CIK cells with Mor. The downstream effector, caspase activity was also significantly inhibited in Mor treated cells. The potential mechanism might be that mitochondrial apoptotic signals were not activated by the intervention of Mor for targeting viral gene expression. Taken together, Mor showed high anti-GCRV activity and had been proved as a secure and promising agent in viral controlling in aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Gao XC, Chen ZY, Liu J, Zhang QY. Development and application of monoclonal antibodies for detection and analysis of aquareoviruses. J Immunoassay Immunochem 2016; 37:376-89. [PMID: 26889962 DOI: 10.1080/15321819.2016.1151440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Monoclonal antibodies (mAbs) play an important role in detection of aquareoviruses. Three mAbs against grass carp reovirus (GCRV) were prepared. Isotyping revealed that all three mAbs were of subclass IgG2b. Western blot assay showed that all three mAbs reacted with GCRV 69 kDa protein (the putative VP5). In addition to the 69 kDa protein of GCRV, mAb 4B6 also recognize a 54 kDa protein. All three mAbs were used for detecting aquareovirus by Western blot assay and indirect immunofluorescence assay (IFA). All of them reacted with GCRV, and mAb 4A3 could also react with turbot Scophthalmus maximus reovirus (SMReV) and largemouth bass Microptererus salmonides reovirus (MsReV). Viral antigens were only observed in the cytoplasm of infected cells. Finally, syncytia formation was observed with light microscopy and fluorescence microscopy using fluorescein labelled 4A3 mAb at various times post-infection. Syncytia were observed at 36 hr post-infection (hpi) by light microscopy and at 12 hpi by fluorescence microscopy. The immunofluorescence based assay allowed earlier detection of virus than observation of virus-induced cytopathic effect (CPE) assay in inoculated cell cultures. The sensitivity and specificity of these mAbs may be useful for diagnosis and monitoring of aquareoviruses.
Collapse
Affiliation(s)
- Xiao-Chan Gao
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Wuhan , China
| | - Zhong-Yuan Chen
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Wuhan , China
| | - Jia Liu
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Wuhan , China
| | - Qi-Ya Zhang
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Wuhan , China
| |
Collapse
|
40
|
Laminin receptor is an interacting partner for viral outer capsid protein VP5 in grass carp reovirus infection. Virology 2016; 490:59-68. [PMID: 26848829 DOI: 10.1016/j.virol.2016.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/19/2015] [Accepted: 01/21/2016] [Indexed: 11/23/2022]
Abstract
Grass carp reovirus (GCRV) is responsible for viral hemorrhagic disease in cultured grass carp Ctenopharyngon idellus. Through yeast two-hybrid screen, laminin receptor (LamR) was identified as a potential interacting partner for the outer capsid protein VP5 of GCRV. We cloned and sequenced the gene encoding grass carp LamR. Viral attachment assay demonstrated the involvement of membrane-associated LamR in GCRV infection. Solid-phase overlay assays demonstrated that GCRV interacted with GST-tagged LamR in vitro. In contrast to VP7, GST-tagged VP5 was shown to associate with LamR in both pull-down and solid-phase blot overlay assays. With the reduction of LamR expression in CIK cells achieved by RNAi, remarkably reduced infection efficiency of GCRV was observed. CIK cells pretreated with polyclonal antibody against LamR resulted in dose-dependent inhibition of GCRV infection. These results collectively indicated that grass carp LamR was involved in GCRV infection by interacting with viral outer capsid protein VP5.
Collapse
|
41
|
Wu M, Cui K, Li H, He J, Chen H, Jiang Y, Ren J. Genomic characterization and evolution analysis of a mutant reovirus isolated from grass carp in Anhui. Arch Virol 2016; 161:1385-7. [PMID: 26758730 DOI: 10.1007/s00705-016-2754-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Minglin Wu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| | - Kai Cui
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| | - Haiyang Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| | - Jixiang He
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China.
| | - Honglian Chen
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| | - Yangyang Jiang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| | - Jun Ren
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, No. 40 South Nongke Road, Luyang District, Hefei, 230031, China
| |
Collapse
|
42
|
Yu F, Wang H, Liu W, Lu L. Grass carp Ctenopharyngodon idella Fibulin-4 as a potential interacting partner for grass carp reovirus outer capsid proteins. FISH & SHELLFISH IMMUNOLOGY 2016; 48:169-174. [PMID: 26626583 DOI: 10.1016/j.fsi.2015.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/21/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Mammalian EGF containing fibulin-like extracellular matrix protein 2 (Fibulin-4/EFEMP2), an extracellular matrix(ECM) protein and a member of the fibulin family, is involved in elastic fiber formation, connective tissue development and some human diseases. In a yeast-two hybrid screening of host proteins interacting with outer capsid protein of grass carp reovirus (GCRV), a grass carp homologue of Fibulin-4 (designated as GcFibulin-4) is suggested to hold the potential to bind VP7, VP56 and VP55, the outer capsid protein encoded by type I, II, III GCRV, respectively. GcFibulin-4 gene of grass carp was cloned and sequenced from the cDNA library constructed for the yeast two-hybrid screening. Full-length cDNA of GcFibulin-4 contains an open reading frame (ORF) of 1323 bp encoding a putative protein of 440 amino acids. Phylogenetic analysis of GcFibulin-4 indicated that it shared a high homology with zebra fish Fibulin-4 protein. Transcriptional distribution analysis of GcFibulin-4 in various tissues of healthy grass carp showed that GcFibulin-4 was highly expressed in muscle, moderately expressed in the intestine and brain, and slightly expressed in other examined tissues; the expression pattern is consistent with tissue tropism of GCRV resulting in hemorrhage symptom in the corresponding tissues. Our results suggested that Fibulin-4 might enable free GCRV particles, the pathogen for grass carp hemorrhagic disease, to target fish tissues more efficiently by interacting with viral outer capsid proteins.
Collapse
Affiliation(s)
- Fei Yu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China
| | - Weisha Liu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, PR China; Aquaculture Collaborative Innovation Center of Hubei Province, PR China.
| |
Collapse
|
43
|
Liu J, Pei C, Gao XC, Chen ZY, Zhang QY. Fish reovirus GCReV-109 VP33 protein elicits protective immunity in rare minnows. Arch Virol 2015; 161:573-82. [PMID: 26615551 DOI: 10.1007/s00705-015-2675-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/31/2015] [Indexed: 02/05/2023]
Abstract
Grass carp reovirus strain 109 (GCReV-109) was previously isolated from a grass carp (Ctenopharyngodon idellus) with hemorrhagic disease, and its complete genome has been sequenced. However, the infectivity of GCReV-109 has not been studied, and the viral protein VP33, encoded on genome segment S11, had no detectable sequence homology to other known reovirus proteins. In this study, we characterized GCReV-109 infections in vivo and in vitro, as well as the VP33 protein. Infectivity analysis showed that GCReV-109 caused severe hemorrhagic disease and 100% mortality at dilutions up to 10(-4) in rare minnows (Gobiocypris rarus) by 8 days postinfection, but no visible cytopathic effect was observed in GCReV-109-infected subcultured grass carp muscle (GCM) cells. To confirm that GCReV-109 could be propagated in GCM cells, three virus genome segments were detected by RT-PCR, and large numbers of virus particles were observed by transmission electron microscopy in samples from the infected GCM cells. The suspension of GCReV-109-infected GCM cells was pathogenic to rare minnows. VP33 protein was expressed and purified for generation of an anti-VP33 antiserum. In western blot analysis of purified GCReV-109 particles, the antiserum specifically recognized a protein band (approximately 33 kDa). This revealed that VP33 is a major structural protein of GCReV-109 that might have immunogenic properties. The protective efficacy of the anti-VP33 antiserum against GCReV-109 infection was tested. The death of infected fish was delayed and the mortality fell to 10% when fish were treated with the anti-VP33 antiserum, suggesting that it might be useful for the prevention and control of fish reoviral disease.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chao Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhong-yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
44
|
Song L, Wang H, Wang T, Lu L. Sequestration of RNA by grass carp Ctenopharyngodon idella TIA1 is associated with its positive role in facilitating grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 46:442-448. [PMID: 26208752 PMCID: PMC7173117 DOI: 10.1016/j.fsi.2015.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 05/27/2023]
Abstract
Previous report demonstrated that grass carp reovirus (GCRV) infection resulted in unlinking cellular stress granule formation from aggregation of grass carp Ctenopharyngodon idella TIA1 (CiTIA1). Here, we provided evidence to show that CiTIA1 bound to synthesized ssRNA and dsRNA in vitro. Both GST-pull down assay and RNA immunoprecipitation analysis confirmed the association between GCRV-specific RNA and GST-tagged CiTIA1 in C. idella kidney (CIK) cells. Furthermore, CiTIA1 was shown to protect dsRNA of virus-origin from degradation in CIK cells through Northern blot analysis. Finally, transient overexpression of CiTIA1 enhanced the replication efficiency of GCRV in CIK cells. Taken together, our results suggested that cellular CiTIA1 might facilitate GCRV replication through sequestrating and protecting viral RNA from degradation.
Collapse
Affiliation(s)
- Lang Song
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- MOA Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
45
|
Chen ZY, Gao XC, Zhang QY. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments. Viruses 2015; 7:4282-302. [PMID: 26247954 PMCID: PMC4576181 DOI: 10.3390/v7082820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1–S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.
Collapse
Affiliation(s)
- Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
46
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
47
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
48
|
A one-step duplex rRT-PCR assay for the simultaneous detection of grass carp reovirus genotypes I and II. J Virol Methods 2014; 210:32-5. [PMID: 25205265 DOI: 10.1016/j.jviromet.2014.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 11/22/2022]
Abstract
Hemorrhagic disease of grass carp, caused by grass carp reovirus (GCRV), leads to severe economic losses in the grass carp farming industry in China. GCRV has been divided into three genotypes based on genome sequence. Genotypes I and II (GCRV-1 and GCRV-II, respectively) are the dominant genotypes and co-infections of GCRV-I and GCRV-II are common in grass carp aquaculture. A one-step duplex real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay was developed for simultaneous detection of GCRV-I and GCRV-II. The PCR assay is suitable for early diagnosis of grass carp hemorrhagic disease and for epidemiological surveillance. The detection limit of the assay is 10 copies for both GCRV-I and GCRV-II, which is as high as single-target rRT-PCR and higher than conventional RT-PCR. No cross reactivity with other GCRV subtypes or other viruses was observed. One hundred and twelve samples from grass carp suspected of hemorrhagic disease were collected from South and Central China. Eleven samples were positive for GCRV-I by RT-PCR alone, and fourteen samples were positive by single-target and duplex rRT-PCR. Forty two samples were positive for GCRV-II by RT-PCR alone and forty seven samples were positive by single-target and duplex rRT-PCR. Mixed infections were found in eight samples when analyzed by RT-PCR alone and in ten samples analyzed by single-target and duplex rRT-PCR. The duplex rRT-PCR system provides a sensitive and specific method to detect and differentiate between GCRV-I and GCRV-II in a single sample. This rRT-PCR assay could be a useful tool for the routine diagnosis of these two viruses and for epidemiology studies in grass carp aquaculture.
Collapse
|
49
|
Rao Y, Su J, Yang C, Yan N, Chen X, Feng X. Dynamic localization and the associated translocation mechanism of HMGBs in response to GCRV challenge in CIK cells. Cell Mol Immunol 2014; 12:342-53. [PMID: 25042634 DOI: 10.1038/cmi.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
High-mobility group box (HMGB) proteins, a family of chromatin-associated nuclear proteins, play amazingly multifaceted roles in the immune system of mammals. Thus far, little is known about the nucleocytoplasmic distribution of HMGBs in teleosts. The present study systematically investigated the dynamic localization of all six HMGB proteins in Ctenopharyngodon idella kidney (CIK) cells. Under basal conditions, all HMGBs exclusively localized to the nucleus. Grass carp reovirus (GCRV), polyinosinic-polycytidylic (poly(I∶C)) potassium salt and lipopolysaccharide (LPS) challenge evoked the nuclear export of HMGBs to various degrees: GCRV challenge induced the highest nuclear export of CiHMGB2b, and poly(I∶C) and LPS evoked the highest nucleocytoplasmic shuttling of CiHMGB1b. Overall, the nucleocytoplasmic shuttling of CiHMGB2a and CiHMGB3b was rarely induced by these challenges. Dynamic imaging uncovered that the nucleocytoplasmic GCRV-induced relocation of CiHMGB2b occurred in cells undergoing karyotheca rupture, apoptosis or proliferation. Western blot analyses were used to examine HMGB-EGFP fusion proteins in whole cell lysates, cytosol, nuclear fractions and culture medium. Further investigation demonstrated the nuclear retention of N-terminal HMG-boxes and the nucleocytoplasmic distribution of the C-terminal acidic tails. Comparative analyses of the dynamic relocation of full-length, truncated or chimeric HMGBs confirmed that the intramolecular interaction between HMG-boxes and C-tail domains mediated the nucleocytoplasmic translocation of HMGBs. These results not only provide an overall understanding of the subcellular localization of HMGBs, but also reveal the induction mechanism of the nucleocytoplasmic translocation of HMGBs by GCRV challenge, which lays a foundation for further studies on the interactions among pathogens, HMGBs and pattern recognition receptors in the innate immunity of teleosts.
Collapse
|
50
|
Ma J, Zeng L, Fan Y, Zhou Y, Jiang N, Chen Q. Significant inhibition of two different genotypes of grass carp reovirus in vitro using multiple shRNAs expression vectors. Virus Res 2014; 189:47-55. [PMID: 24844987 DOI: 10.1016/j.virusres.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/14/2022]
Abstract
The hemorrhagic disease of grass carp (Ctenopharyngodon idellus), caused by grass carp reovirus (GCRV), is the most severe disease of the fish that leads to huge economic losses. GCRV, belonging to the genus Aquareovirus of the family Reoviridae, has been classified into three genotypes based on their phylogenetic relationship. It is essential to develop an effective method to inhibit the replication of different genotypes of GCRV simultaneously. In this report, two multiple-shRNAs expression vectors, named pMultishVP2/2 and pMultishVP6/7, were generated and investigated. pMultishVP2/2 targeted the VP2 gene of GCRV-JX0901 (genotype I) and the VP2 gene of HGDRV (Hubei grass carp disease reovirus; genotype III). pMultishVP6/7 targeted the VP7 gene of GCRV-JX0901 and the VP6 gene of HGDRV. These two multiple-shRNAs expression vectors can simultaneously, significantly inhibit the replication of GCRV-JX0901 and HGDRV in vitro. Compared to the positive control, CPE induced by GCRV-JX0901 or HGDRV in cell transfected with shRNA transcribing vector was significantly delayed. The quantitative PCR analysis of the GCRV genomic RNA revealed that the pMultishVP2/2 could simultaneously inhibit the GCRV-JX0901 and HGDRV VP2 coding genes by 89.02% and 89.84%, respectively. The pMultishVP6/7 could simultaneously inhibit the GCRV-JX0901 VP7 coding gene and HGDRV VP6 coding gene by 80.63% and 86.78%, respectively. Furthermore, compared to the positive control, the indirect immunofluorescence assay and western blot demonstrated that the protein expression of the two genotypes of GCRV decreased significantly. The results in this study indicated that this multiple-shRNAs expression system could be used as a cross-reactive antiviral agent for treating the hemorrhagic disease of grass carp caused by multiple genotypes of GCRV.
Collapse
Affiliation(s)
- Jie Ma
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China
| | - Lingbing Zeng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China.
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China
| | - Yong Zhou
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China
| | - Qian Chen
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Wuhan, Hubei 430223, PR China
| |
Collapse
|