1
|
Omler A, Mutso M, Vaher M, Freitas JR, Taylor A, David CT, Moseley GW, Liu X, Merits A, Mahalingam S. Exploring Barmah Forest virus pathogenesis: molecular tools to investigate non-structural protein 3 nuclear localization and viral genomic determinants of replication. mBio 2024; 15:e0099324. [PMID: 38953633 PMCID: PMC11323547 DOI: 10.1128/mbio.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.
Collapse
Affiliation(s)
- Ailar Omler
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margit Mutso
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Vaher
- The Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Abstract
Infection with mosquito-borne arthritogenic alphaviruses, such as Ross River virus (RRV) and Barmah Forest virus (BFV), can lead to long-lasting rheumatic disease. Existing mouse models that recapitulate the disease signs and immunopathogenesis of acute RRV and BFV infection have consistently shown relevance to human disease. However, these mouse models, which chiefly model hindlimb dysfunction, may be prone to subjective interpretation when scoring disease. Assessment is therefore time-consuming and requires experienced users. The DigiGait system provides video-based measurements of movement, behavior, and gait dynamics in mice and small animals. Previous studies have shown DigiGait to be a reliable system to objectively quantify changes in gait in other models of pain and inflammation. Here, for the first time, we determine measurable differences in the gait of mice with infectious arthritis using the DigiGait system. Statistically significant differences in paw area and paw angle were detected during peak disease in RRV-infected mice. Significant differences in temporal gait parameters were also identified during the period of peak disease in RRV-infected mice. These trends were less obvious or absent in BFV-infected mice, which typically present with milder disease signs than RRV-infected mice. The DigiGait system therefore provides an objective model of variations in gait dynamics in mice acutely infected with RRV. DigiGait is likely to have further utility for murine models that develop severe forms of infectious arthritis resulting in hindlimb dysfunction like RRV. IMPORTANCE Mouse models that accurately replicate the immunopathogenesis and clinical disease of alphavirus infection are vital to the preclinical development of therapeutic strategies that target alphavirus infection and disease. Current models rely on subjective scoring made through experienced observation of infected mice. Here, we demonstrate how the DigiGait system, and interventions on mice to use this system, can make an efficient objective assessment of acute disease progression and changes in gait in alphavirus-infected mice. Our study highlights the importance of measuring gait parameters in the assessment of models of infectious arthritis.
Collapse
|
5
|
Zaid A, Burt FJ, Liu X, Poo YS, Zandi K, Suhrbier A, Weaver SC, Texeira MM, Mahalingam S. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. THE LANCET. INFECTIOUS DISEASES 2020; 21:e123-e133. [PMID: 33160445 DOI: 10.1016/s1473-3099(20)30491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Mosquito-borne viruses, or arboviruses, have been part of the infectious disease landscape for centuries, and are often, but not exclusively, endemic to equatorial and subtropical regions of the world. The past two decades saw the re-emergence of arthritogenic alphaviruses, a genus of arboviruses that includes several members that cause severe arthritic disease. Recent outbreaks further highlight the substantial public health burden caused by these viruses. Arthritogenic alphaviruses are often reported in the context of focused outbreaks in specific regions (eg, Caribbean, southeast Asia, and Indian Ocean) and cause debilitating acute disease that can extend to chronic manifestations for years after infection. These viruses are classified among several antigenic complexes, span a range of hosts and mosquito vectors, and can be distributed along specific geographical locations. In this Review, we highlight key features of alphaviruses that are known to cause arthritic disease in humans and outline the present findings pertaining to classification, immunogenicity, pathogenesis, and experimental approaches aimed at limiting disease manifestations. Although the most prominent alphavirus outbreaks in the past 15 years featured chikungunya virus, and a large body of work has been dedicated to understanding chikungunya disease mechanisms, this Review will instead focus on other arthritogenic alphaviruses that have been identified globally and provide a comprehensive appraisal of present and future research directions.
Collapse
Affiliation(s)
- Ali Zaid
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Felicity J Burt
- Division of Virology, National Health Laboratory Services, Bloemfontein, South Africa; Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Xiang Liu
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Yee Suan Poo
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology and Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro M Texeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation, and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
6
|
Arboviruses and Muscle Disorders: From Disease to Cell Biology. Viruses 2020; 12:v12060616. [PMID: 32516914 PMCID: PMC7354517 DOI: 10.3390/v12060616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Infections due to arboviruses (arthropod-borne viruses) have dramatically increased worldwide during the last few years. In humans, symptoms associated with acute infection of most arboviruses are often described as "dengue-like syndrome", including fever, rash, conjunctivitis, arthralgia, and muscular symptoms such as myalgia, myositis, or rhabdomyolysis. In some cases, muscular symptoms may persist over months, especially following flavivirus and alphavirus infections. However, in humans the cellular targets of infection in muscle have been rarely identified. Animal models provide insights to elucidate pathological mechanisms through studying viral tropism, viral-induced inflammation, or potential viral persistence in the muscle compartment. The tropism of arboviruses for muscle cells as well as the viral-induced cytopathic effect and cellular alterations can be confirmed in vitro using cellular models. This review describes the link between muscle alterations and arbovirus infection, and the underlying mechanisms.
Collapse
|
7
|
Abdelnabi R, Jacobs S, Delang L, Neyts J. Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochem Pharmacol 2019; 174:113777. [PMID: 31874146 DOI: 10.1016/j.bcp.2019.113777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023]
Abstract
Alphaviruses are (mainly) arthropod-borne viruses that belong to the family of the Togaviridae. Based on the disease they cause, alphaviruses are divided into an arthritogenic and an encephalitic group. Arthritogenic alphaviruses such as the chikungunya virus (CHIKV), the Ross River virus (RRV) and the Mayaro virus (MAYV) have become a serious public health concern in recent years. Epidemics are associated with high morbidity and the infections cause in many patients debilitating joint pain that can persist for months to years. The recent (2013-2014) introduction of CHIKV in the Americas resulted in millions of infected persons. Massive outbreaks of CHIKV and other arthritogenic alphaviruses are likely to occur in the future. Despite the worldwide (re-)emergence of these viruses, there are no antivirals or vaccines available for the treatment or prevention of infections with alphaviruses. It is therefore of utmost importance to develop antiviral strategies against these viruses. We here review the possible molecular targets in the replication cycle of these viruses for the development of antivirals. In addition, we provide an overview of the currently available in vitro systems and mouse infection models that can be used to assess the potential antiviral effect against these viruses.
Collapse
Affiliation(s)
- Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Prophylactic Antiheparanase Activity by PG545 Is Antiviral In Vitro and Protects against Ross River Virus Disease in Mice. Antimicrob Agents Chemother 2018; 62:AAC.01959-17. [PMID: 29437628 DOI: 10.1128/aac.01959-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Recently we reported on the efficacy of pentosan polysulfate (PPS), a heparan sulfate mimetic, to reduce the recruitment of inflammatory infiltrates and protect the cartilage matrix from degradation in Ross River virus (RRV)-infected PPS-treated mice. Here, we describe both prophylactic and therapeutic treatment with PG545, a low-molecular-weight heparan sulfate mimetic, for arthritogenic alphaviral infection. We first assessed antiviral activity in vitro through a 50% plaque reduction assay. Increasing concentrations of PG545 inhibited plaque formation prior to viral adsorption in viral strains RRV T48, Barmah Forest virus 2193, East/Central/South African chikungunya virus (CHIKV), and Asian CHIKV, suggesting a strong antiviral mode of action. The viral particle-compound dissociation constant was then evaluated through isothermal titration calorimetry. Furthermore, prophylactic RRV-infected PG545-treated mice had reduced viral titers in target organs corresponding to lower clinical scores of limb weakness and immune infiltrate recruitment. At peak disease, PG545-treated RRV-infected mice had lower concentrations of the matrix-degrading enzyme heparanase in conjunction with a protective effect on tissue morphology, as seen in the histopathology of skeletal muscle. Enzyme-linked immunosorbent assay quantification of cartilage oligomeric matrix protein and cross-linked C-telopeptides of type II collagen as well as knee histopathology showed increased matrix protein degradation and cartilage erosion in RRV-infected phosphate-buffered saline-treated mice compared to their PG545-treated RRV-infected counterparts. Taken together, these findings suggest that PG545 has a direct antiviral effect on arthritogenic alphaviral infection and curtails RRV-induced inflammatory disease when administered as a prophylaxis.
Collapse
|
9
|
Faddy HM, Prow NA, Fryk JJ, Hall RA, Keil SD, Goodrich RP, Marks DC. The effect of riboflavin and ultraviolet light on the infectivity of arboviruses. Transfusion 2014; 55:824-31. [PMID: 25370822 DOI: 10.1111/trf.12899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Arboviruses are an emerging threat to transfusion safety and rates of infection are likely to increase with the increased rainfall associated with climate change. Arboviral infections are common in Australia, where Ross River virus (RRV), Barmah Forest virus (BFV), and Murray Valley encephalitis virus (MVEV), among others, have the potential to cause disease in humans. The use of pathogen reduction technology (PRT) may be an alternative approach for blood services to manage the risk of arboviral transfusion transmission. In this study, the effectiveness of the Mirasol PRT (Terumo BCT) system at inactivating RRV, BFV, and MVEV in buffy coat (BC)-derived platelets (PLTs) was investigated. STUDY DESIGN AND METHODS BC-derived PLT concentrates in additive solution (SSP+) were spiked with RRV, BFV, or MVEV and then treated with the Mirasol PRT system. The level of infectious virus was determined before and after treatment, and the reduction in viral infectivity was calculated. RESULTS Treatment with PRT (Mirasol) reduced the amount of infectious virus of all three arboviruses. The greatest level of inactivation was observed for RRV (2.33 log; 99.25%), followed by BFV (1.97 log; 98.68%) and then MVEV (1.83 log; 98.42%). CONCLUSION Our study demonstrates that treatment of PLT concentrates with PRT (Mirasol) reduces the infectious levels of RRV, BFV, and MVEV. The relevance of the level of reduction required to prevent disease transmission by transfusion has not been fully defined and requires further investigation. In the face of a changing climate, with its associated threat to blood safety, PRT represents a proactive approach for maintaining blood safety.
Collapse
Affiliation(s)
- Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Natalie A Prow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesse J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Denese C Marks
- Research and Development, Australian Red Cross Blood Service, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|