1
|
Brynes A, Williams JV. Small hydrophobic (SH) proteins of Pneumoviridae and Paramyxoviridae: small but mighty. J Virol 2024; 98:e0080924. [PMID: 39177356 PMCID: PMC11407002 DOI: 10.1128/jvi.00809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Small hydrophobic (SH) proteins are a class of viral accessory proteins expressed by many members of the negative-stranded RNA viral families Paramyxoviridae and Pneumoviridae. Identified SH proteins are type I or II transmembrane (TM) proteins with a single-pass TM domain. Little is known about the functions of SH proteins; however, several possess viroporin activity, enhancing membrane permeability of infected cells or those expressing SH protein. Moreover, several SH proteins inhibit apoptosis and immune signaling pathways within infected cells, including TNF and interferon signaling, or activate inflammasomes. SH proteins are generally nonessential for viral replication in vitro, but loss of SH is often associated with reduced replication in vivo, suggesting a role in enhancing viral replication or evading host immunity. Analogous proteins are expressed by a variety of pathogens of public health importance; thus, understanding the functional importance and mechanisms of SH proteins provides insight into the pathogenesis and replication of negative-sense RNA viruses.
Collapse
Affiliation(s)
- Adam Brynes
- Program in Microbiology & Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Jobe F, Kelly JT, Simpson J, Wells J, Armstrong SD, Spick M, Lacey E, Logan L, Geifman N, Hawes P, Bailey D. Viral PIC-pocketing: RSV sequestration of translational preinitiation complexes into bi-phasic biomolecular condensates. J Virol 2024; 98:e0015324. [PMID: 38421168 PMCID: PMC10949503 DOI: 10.1128/jvi.00153-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.
Collapse
Affiliation(s)
| | | | | | - Joanna Wells
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Stuart D. Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Matt Spick
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Emily Lacey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Leanne Logan
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| |
Collapse
|
3
|
Liu Y, Bai Y, Chen S, Pu F, Li Y, Chi H, Zheng Z, Xu P, Zhou T. Molecular characterization, expression pattern and immunologic function of CD82a in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1301877. [PMID: 38370405 PMCID: PMC10869527 DOI: 10.3389/fimmu.2024.1301877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Visceral white spot disease (VWND) caused by Pseudomonas plecoglossicida poses a major threat to the sustainable development of large yellow croaker (Larimichthys crocea) aquaculture. Genome-wide association analysis (GWAS) and RNA-seq research indicated that LcCD82a play an important role in resistance to visceral white spot disease in L. crocea, but the molecular mechanism of LcCD82a response to P. plecoglossicida infection is still unclear. In this study, we cloned and validated the Open Reading Frame (ORF) sequence of LcCD82a and explored the expression profile of LcCD82a in various tissues of L.crocea. In addition, two different transcript variants (LcCD82a-L and LcCD82a-S) of LcCD82a were identified that exhibit alternative splicing patterns after P. plecoglossicida infection, which may be closely related to the immune regulation during pathogenetic process of VWND. In order to explore the function of LcCD82a, we purified the recombinant protein of LcCD82a-L and LcCD82a-S. The bacterial agglutination and apoptosis function analysis showed that LcCD82a may involve in extracellular bacterial recognition, agglutination, and at the same time participate in the process of antigen presentation and induction of cell apoptosis. Collectively, our studies demonstrate that LcCD82a plays a crucial role in regulating apoptosis and antimicrobial immunity.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Sijing Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yaxian Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zaiyu Zheng
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Kaplan M, Özan E, Pekmez K, Çağırgan AA, Arslan F. Molecular characterization of G and F protein genes of bovine respiratory syncytial virus detected from dead calves caused by severe respiratory syndrome: emergence of novel mutations and their importance. Virusdisease 2023; 34:539-549. [PMID: 38046057 PMCID: PMC10686935 DOI: 10.1007/s13337-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an important viral agent in bovine respiratory disease complex affecting young calves from asymptomatic to fatal. Although BRSV is widely prevalent in Türkiye as in other parts of the world, there are limited molecular studies on BRSV in Türkiye. Therefore, in order to better understand the characteristics of circulating BRSV in Türkiye, a study based on the molecular analysis of both F and G proteins was performed. For this purpose, the presence of BRSV was investigated in 20 calves that died as a result of severe respiratory syndrome in the western region of Türkiye in 2020. Nested PCR was performed for both gene regions, and the products were sequenced. Four samples detected as BRSV positive were identified as genotype III according to both gene regions in molecular analysis. However, they were separated into two distinct clusters due to significant differences in nucleotide (90.09-99.54%) and amino acid (85.42-99.31%) similarities between them. Besides, two positive samples in the same cluster were even more different from previously detected Turkish isolates (90.78-92.17% nt and 87.50-89.58% aa). More over, we detected nine novel aa mutations in the extracellular domain, an immunologically important region in the G protein of the virus, that have not been reported in other world isolates found in Genbank until now. These findings suggest that there may be many different viruses in circulation that have the ability to escape the immune system. We recommend that these findings be taken into account in planning both vaccine and epidemiological studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00846-7.
Collapse
Affiliation(s)
- Murat Kaplan
- Virology Department, Izmir/Bornova Veterinary Control Institute, 35040 Izmir, Turkey
| | - Emre Özan
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Kemal Pekmez
- Virology Department, Izmir/Bornova Veterinary Control Institute, 35040 Izmir, Turkey
| | | | - Fatih Arslan
- Virology Department, Izmir/Bornova Veterinary Control Institute, 35040 Izmir, Turkey
| |
Collapse
|
5
|
Huong TN, Ravi Iyer L, Lui J, Wang DY, Tan BH, Sugrue RJ. The respiratory syncytial virus SH protein is incorporated into infectious virus particles that form on virus-infected cells. Virology 2023; 580:28-40. [PMID: 36746062 DOI: 10.1016/j.virol.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
The association of the SH protein with respiratory syncytial virus (RSV) particles was examined in HEp2 cells and human ciliated nasal epithelial cells. Imaging of infected cells demonstrated the presence of the SH protein in virus filaments, and analysis of purified RSV particles revealed a SH protein species whose size was consistent with the glycosylated SH protein. Although the SH protein was detected in virus filaments it was not required for virus filament formation. Analysis of RSV-infected ciliated cells also revealed that the SH protein was trafficked into the cilia, and this correlated with reduced cilia density on these cells. Reduced cilia loss was not observed on ciliated cells infected with a RSV isolate that failed to express the SH protein. These data provide direct evidence that the SH protein is trafficked into virus particles, and suggests that the SH protein may also promote cilia dysfunction on nasal epithelial cells.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Laxmi Ravi Iyer
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Republic of Singapore
| | - Boon Huan Tan
- Biological Defence Program, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore; LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
6
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
8
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
10
|
Makoschey B, Berge AC. Review on bovine respiratory syncytial virus and bovine parainfluenza - usual suspects in bovine respiratory disease - a narrative review. BMC Vet Res 2021; 17:261. [PMID: 34332574 PMCID: PMC8325295 DOI: 10.1186/s12917-021-02935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.The interaction between the viruses and the different branches of the host's immune system is rather complex. Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response considerably contributes to the tissue damage in the upper respiratory tract.BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3 vaccines are commercially available.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/MSD-Animal Health, Wim de Körverstraat, 5831AN, Boxmeer, The Netherlands.
| | - Anna Catharina Berge
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
11
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
12
|
Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies. Vaccines (Basel) 2021; 9:vaccines9030236. [PMID: 33803302 PMCID: PMC8001206 DOI: 10.3390/vaccines9030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.
Collapse
|
13
|
Marzo E, Montbrau C, Moreno MC, Roca M, Sitjà M, March R, Gow S, Lacoste S, Ellis J. NASYM, a live intranasal vaccine, protects young calves from bovine respiratory syncytial virus in the presence of maternal antibodies. Vet Rec 2021; 188:e83. [PMID: 33818796 DOI: 10.1002/vetr.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major problem for cattle worldwide during their first year of life. The aim of the present study was to evaluate efficacy and longevity of immunity of a live vaccine (NASYM, HIPRA) in the presence of maternally derived antibodies (MDA). METHOD Calves (36) were distributed in four groups, based on MDA status and treatment. They received NASYM or a placebo at an early age (less than two weeks) by intranasal route. Eight weeks later, animals were challenged with the Asquith strain of BRSV. Efficacy was assessed by monitoring clinical signs and mortality, PaO2 , virus shedding and lung lesions. The immunological response was evaluated by measuring IgG in serum and IgA in nasal secretions. RESULTS A reduction of mortality, lung lesions, shedding and a higher PaO2 was achieved in NASYM vaccinated groups, independently of MDA status. An anamnestic IgG response was observed after challenge in vaccinated animals, both in MDA+ and MDA- groups. An IgA response was also observed in vaccinated animals after vaccination and challenge. CONCLUSION NASYM protected newborn calves with MDAs during the first 10 weeks of life, against a very virulent challenge that caused extensive pulmonary lesions and deaths in control animals, with just a single intranasal dose.
Collapse
Affiliation(s)
- Elena Marzo
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Carlos Montbrau
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Maria-Carmen Moreno
- Department of R&D Biologics, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Mercè Roca
- Department of R&D Experimentation and Controls, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Marta Sitjà
- Department of R&D Biologics, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Ricard March
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain.,Department of R&D Experimentation and Controls, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Sheryl Gow
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Stacey Lacoste
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - John Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
14
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
15
|
Yazici Z, Ozan E, Tamer C, Muftuoglu B, Barry G, Kurucay HN, Elhag AE, Cagirgan AA, Gumusova S, Albayrak H. Circulation of Indigenous Bovine Respiratory Syncytial Virus Strains in Turkish Cattle: The First Isolation and Molecular Characterization. Animals (Basel) 2020; 10:E1700. [PMID: 32962234 PMCID: PMC7552771 DOI: 10.3390/ani10091700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 01/27/2023] Open
Abstract
Bovine respiratory disease (BRD) is a huge economic burden on the livestock industries of countries worldwide. Bovine respiratory syncytial virus (BRSV) is one of the most important pathogens that contributes to BRD. In this study, we report the identification and first isolation, with molecular characterization, of a new BRSV strain from lung specimens of three beef cows in Turkey that died from respiratory distress. After the screening of lung tissues for BRD-associated viruses using a multiscreen antigen-ELISA, a BRSV antigen was detected. This was then confirmed by real-time RT-PCR specific for BRSV. Following confirmation, virus isolation was conducted in MDBK cell cultures and clear CPE, including syncytia compatible with BRSV, were detected. RT-nested PCR, using F gene-specific primers, was performed on the cultured isolates, and the products were sequenced and deposited to Genbank with accession numbers MT179304, MT024766, and MT0244767. Phylogenetic analysis of these sequences indicated that the cattle were infected with BRSV from subgroup III and were closely related to previously identified American and Turkish strains, but contained some amino acid and nucleotide differences. This research paves the way for further studies on the molecular characteristics of natural BRSV isolates, including full genome analysis and disease pathogenesis, and also contributes to the development of robust national strategies against this virus.
Collapse
Affiliation(s)
- Zafer Yazici
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| | - Emre Ozan
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (E.O.); (B.M.)
| | - Cuneyt Tamer
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| | - Bahadir Muftuoglu
- Department of Veterinary Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (E.O.); (B.M.)
| | - Gerald Barry
- Veterinary Science Centre, School of Veterinary Medicine, University College of Dublin, Dublin 4, Ireland;
| | - Hanne Nur Kurucay
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| | - Ahmed Eisa Elhag
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| | - Abdurrahman Anil Cagirgan
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, 35010 Izmir, Turkey;
| | - Semra Gumusova
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| | - Harun Albayrak
- Department of Veterinary Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey; (C.T.); (H.N.K.); (S.G.); (H.A.)
| |
Collapse
|
16
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Ávila-Pérez G, Nogales A, Park JG, Márquez-Jurado S, Iborra FJ, Almazan F, Martínez-Sobrido L. A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Sci Rep 2019; 9:19968. [PMID: 31882898 PMCID: PMC6934710 DOI: 10.1038/s41598-019-56291-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) infection is currently one of the major concerns in human public health due to its association with neurological disorders. Intensive effort has been implemented for the treatment of ZIKV, however there are not currently approved vaccines or antivirals available to combat ZIKV infection. In this sense, the identification of virulence factors associated with changes in ZIKV virulence could help to develop safe and effective countermeasures to treat ZIKV or to prevent future outbreaks. Here, we have compared the virulence of two related ZIKV strains from the recent outbreak in Brazil (2015), Rio Grande do Norte Natal (RGN) and Paraiba. In spite of both viruses being identified in the same period of time and region, significant differences in virulence and replication were observed using a validated mouse model of ZIKV infection. While ZIKV-RGN has a 50% mouse lethal dose (MLD50) of ~105 focus forming units (FFUs), ZIKV-Paraiba infection resulted in 100% of lethality with less than 10 FFUs. Combining deep-sequencing analysis and our previously described infectious ZIKV-RGN cDNA clone, we identified a natural polymorphism in the non-structural protein 2 A (NS2A) that increase the virulence of ZIKV. Moreover, results demonstrate that the single amino acid alanine to valine substitution at position 117 (A117V) in the NS2A was sufficient to convert the attenuated rZIKV-RGN in a virulent Paraiba-like virus (MLD50 < 10 FFU). The mechanism of action was also evaluated and data indicate that substitution A117V in ZIKV NS2A protein reduces host innate immune responses and viral-induced apoptosis in vitro. Therefore, amino acid substitution A117V in ZIKV NS2A could be used as a genetic risk-assessment marker for future ZIKV outbreaks.
Collapse
Affiliation(s)
- Gines Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
- Center for Animal Health Research, INIA-CISA, 28130, Valdeolmos, Madrid, Spain
| | - Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Silvia Márquez-Jurado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain
| | - Francisco J Iborra
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain
| | - Fernando Almazan
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autonóma de Madrid, 3 Darwin Street, 28049, Madrid, Spain.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
18
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
19
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
20
|
Role of Small Hydrophobic Protein of J Paramyxovirus in Virulence. J Virol 2018; 92:JVI.00653-18. [PMID: 30068647 DOI: 10.1128/jvi.00653-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in 1972. It is a paramyxovirus classified under the newly proposed genus Jeilongvirus JPV has a genome of 18,954 nucleotides, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. JPV causes little cytopathic effect (CPE) in tissue culture cells but severe disease in mice. The small hydrophobic (SH) protein is an integral membrane protein encoded by many paramyxoviruses, such as mumps virus (MuV) and respiratory syncytial virus (RSV). However, the function of SH has not been defined in a suitable animal model. In this work, the functions of SH of JPV, MuV, and RSV have been examined by generating recombinant JPV lacking the SH protein (rJPV-ΔSH) or replacing SH of JPV with MuV SH (rJPV-MuVSH) or RSV SH (rJPV-RSVSH). rJPV-ΔSH, rJPV-MuVSH, and rJPV-RSVSH were viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPV-ΔSH infection, confirming the role of SH in inhibiting TNF-α production. rJPV-ΔSH induced more apoptosis in tissue culture cells than rJPV, rJPV-MuVSH, and rJPV-RSVSH, suggesting that SH plays a role in blocking apoptosis. Furthermore, rJPV-ΔSH was attenuated in mice compared to rJPV, rJPV-MuVSH, and rJPV-RSVSH, indicating that the SH protein plays an essential role in virulence. The results indicate that the functions of MuV SH and RSV SH are similar to that of JPV SH even though they have no sequence homology.IMPORTANCE Paramyxoviruses are associated with many devastating diseases in animals and humans. J paramyxovirus (JPV) was isolated from moribund mice in Australia in 1972. Newly isolated viruses, such as Beilong virus (BeiPV) and Tailam virus (TlmPV), have genome structures similar to that of JPV. A new paramyxovirus genus, Jeilongvirus, which contains JPV, BeiPV, and TlmPV, has been proposed. Small hydrophobic (SH) protein is present in many paramyxoviruses. Our present study investigates the role of SH protein of JPV in pathogenesis in its natural host. Understanding the pathogenic mechanism of Jeilongvirus is important to control and prevent potential diseases that may emerge from this group of viruses.
Collapse
|
21
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
22
|
Ponte C, Hacker M, Moraes M, Castello-Branco L, Silva F, Antas P. The patterns of in vitro cell-death and inflammatory cytokines induced by distinct BCG vaccine strains are differentially induced in human mononuclear cells. Hum Vaccin Immunother 2017; 14:28-35. [PMID: 29053932 DOI: 10.1080/21645515.2017.1382788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains among the world's leading cause of mortality. For its control, studies of TB vaccines are needed. Since live-attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only TB vaccine currently in use, studies on the protective role of BCG are required. In this study, we analyzed host cells purified directly from whole blood of human immunodeficiency virus (HIV)-negative volunteers, comprising adult healthy donors (HD) and neonates (umbilical cord bloods, UCB), with the aim to directly compare in vitro immune responses with distinct BCG strains in human mononuclear cells. The Moreau, Pasteur, and Danish BCG strains were used to infect mononuclear cells in vitro for 48 h; bacilli viability and cell-death were subsequently detected by flow cytometry. In addition, cell culture supernatants were used in cytokine detection assays. Overall, the Moreau BCG strain induced higher levels of apoptosis than the Pasteur and Danish BCG strains in both the HD and UCB groups (p-value < 0.05), and a human monocytic cell-line mirrored those cell-death patterns after BCG infection. The Moreau BCG strain, exclusively, induced Th1 cytokines at the highest levels in cells from adults (p-value < 0.05) when compared with both Pasteur and Danish BCG strains, whereas TGF-β1 levels were reduced significantly (p-value < 0.01) in the HD group when cells were infected with the Moreau BCG vaccine. As expected, eight out of 22 pro-inflammatory cytokines were secreted at significant levels (p-value < 0.05) above the baseline rates in all BCG-infected cell cultures, in the HD group only. When analyzing these results, we excluded confounding factors related to storage and viability of the BCG strains used. These findings suggest that Moreau BCG is a more potent immunostimulating agent than the Pasteur and Danish BCG strains. Clinical trials will be needed to confirm these findings.
Collapse
Affiliation(s)
- C Ponte
- a Laboratório de Imunologia Clínica, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | - M Hacker
- b Laboratório de Hanseníase, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | - M Moraes
- b Laboratório de Hanseníase, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | - L Castello-Branco
- a Laboratório de Imunologia Clínica, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | - F Silva
- c Gaffree Guinle State University Hospital of Rio de Janeiro , Brazil
| | - P Antas
- a Laboratório de Imunologia Clínica, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| |
Collapse
|
23
|
Mumps Virus SH Protein Inhibits NF-κB Activation by Interacting with Tumor Necrosis Factor Receptor 1, Interleukin-1 Receptor 1, and Toll-Like Receptor 3 Complexes. J Virol 2017; 91:JVI.01037-17. [PMID: 28659487 DOI: 10.1128/jvi.01037-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
The mumps virus (MuV) small hydrophobic protein (SH) is a type I membrane protein expressed in infected cells. SH has been reported to interfere with innate immunity by inhibiting tumor necrosis factor alpha (TNF-α)-mediated apoptosis and NF-κB activation. To elucidate the underlying mechanism, we generated recombinant MuVs (rMuVs) expressing the SH protein with an N-terminal FLAG epitope or lacking SH expression due to the insertion of three stop codons into the SH gene. Using these viruses, we were able to show that SH reduces the phosphorylation of IKKβ, IκBα, and p65 as well as the translocation of p65 into the nucleus of infected A549 cells. Reporter gene assays revealed that SH interferes not only with TNF-α-mediated NF-κB activation but also with IL-1β- and poly(I·C)-mediated NF-κB activation, and that this inhibition occurs upstream of the NF-κB pathway components TRAF2, TRAF6, and TAK1. Since SH coimmunoprecipitated with tumor necrosis factor receptor 1 (TNFR1), RIP1, and IRAK1, we hypothesize that SH exerts its inhibitory function by interacting with TNFR1, interleukin-1 receptor type 1 (IL-1R1), and TLR3 complexes in the plasma membrane of infected cells.IMPORTANCE The MuV SH has been shown to impede TNF-α-mediated NF-κB activation and is therefore thought to contribute to viral immune evasion. However, the mechanisms by which SH mediates NF-κB inhibition remained largely unknown. In this study, we show that SH interacts with TNFR1, IL-1R1, and TLR3 complexes in infected cells. We thereby not only shed light on the mechanisms of SH-mediated NF-κB inhibition but also reveal that SH interferes with NF-κB activation induced by interleukin-1β (IL-1β) and double-stranded RNA.
Collapse
|
24
|
New Insights Contributing to the Development of Effective Vaccines and Therapies to Reduce the Pathology Caused by hRSV. Int J Mol Sci 2017; 18:ijms18081753. [PMID: 28800119 PMCID: PMC5578143 DOI: 10.3390/ijms18081753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Human Respiratory Syncytial Virus (hRSV) is one of the major causes of acute lower respiratory tract infections (ALRTI) worldwide, leading to significant levels of immunocompromisation as well as morbidity and mortality in infants. Its main target of infection is the ciliated epithelium of the lungs and the host immune responses elicited is ineffective at achieving viral clearance. It is thought that the lack of effective immunity against hRSV is due in part to the activity of several viral proteins that modulate the host immune response, enhancing a Th2-like pro-inflammatory state, with the secretion of cytokines that promote the infiltration of immune cells to the lungs, with consequent damage. Furthermore, the adaptive immunity triggered by hRSV infection is characterized by weak cytotoxic T cell responses and secretion of low affinity antibodies by B cells. These features of hRSV infection have meant that, to date, no effective and safe vaccines have been licensed. In this article, we will review in detail the information regarding hRSV characteristics, pathology, and host immune response, along with several prophylactic treatments and vaccine prototypes. We will also expose significant data regarding the newly developed BCG-based vaccine that promotes protective cellular and humoral response against hRSV infection, which is currently undergoing clinical evaluation.
Collapse
|
25
|
Shil NK, Pokharel SM, Bose S. Inflammasome Activation by Paramyxoviruses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Pollock N, Taylor G, Jobe F, Guzman E. Modulation of the transcription factor NF-κB in antigen-presenting cells by bovine respiratory syncytial virus small hydrophobic protein. J Gen Virol 2017; 98:1587-1599. [PMID: 28714847 PMCID: PMC5656777 DOI: 10.1099/jgv.0.000855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young cattle and is closely related to human RSV (HRSV), which causes severe respiratory disease in infants and the elderly. The RSV genome encodes a small hydrophobic (SH) protein with viroporin activity. Previous studies have shown that recombinant BRSV lacking the SH gene (rBRSVΔSH) is attenuated in the lungs, but not in the upper respiratory tract, of calves and mucosal vaccination with rBRSVΔSH induced long-lasting protective immunity. Attenuation of rBRSVΔSH may be due to the ability of this virus to induce an early innate response as rBRSVΔSH induces higher levels of pro-inflammatory cytokines than wild-type (wt) rBRSV. In this study, we investigated the effects of the BRSV SH protein on NF-κB p65 phosphorylation, a master step in the regulation of pro-inflammatory cytokines. Expression of SH resulted in the inhibition of NF-κB p65 phosphorylation in response to BRSV infection and extracellular lipopolysaccharide, and a reduction in the production of pro-inflammatory cytokines. In contrast, rBRSVΔSH does not inhibit NF-κB p65 phosphorylation in bovine antigen-presenting cells, including monocytes, macrophages and dendritic cells, resulting in increased expression of pro-inflammatory cytokines and increased activation of T cells compared to cells infected with wt BRSV. These findings highlight an important role for the BRSV SH protein in immune modulation.
Collapse
Affiliation(s)
- Nicola Pollock
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.,The Pirbright Institute, Ash Road, Pirbright, Woking, RG8 0JU, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, RG8 0JU, UK
| | - Fatoumatta Jobe
- The Pirbright Institute, Ash Road, Pirbright, Woking, RG8 0JU, UK
| | - Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, RG8 0JU, UK
| |
Collapse
|
27
|
Taylor G. Animal models of respiratory syncytial virus infection. Vaccine 2017; 35:469-480. [PMID: 27908639 PMCID: PMC5244256 DOI: 10.1016/j.vaccine.2016.11.054] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of respiratory disease and hospitalisation of infants, worldwide, and is also responsible for significant morbidity in adults and excess deaths in the elderly. There is no licensed hRSV vaccine or effective therapeutic agent. However, there are a growing number of hRSV vaccine candidates that have been developed targeting different populations at risk of hRSV infection. Animal models of hRSV play an important role in the preclinical testing of hRSV vaccine candidates and although many have shown efficacy in preclinical studies, few have progressed to clinical trials or they have had only limited success. This is, at least in part, due to the lack of animal models that fully recapitulate the pathogenesis of hRSV infection in humans. This review summarises the strengths and limitations of animal models of hRSV, which include those in which hRSV is used to infect non-human mammalian hosts, and those in which non-human pneumoviruses, such as bovine (b)RSV and pneumonia virus of mice (PVM) are studied in their natural host. Apart from chimpanzees, other non-human primates (NHP) are only semi-permissive for hRSV replication and experimental infection with large doses of virus result in little or no clinical signs of disease, and generally only mild pulmonary pathology. Other animal models such as cotton rats, mice, ferrets, guinea pigs, hamsters, chinchillas, and neonatal lambs are also only semi-permissive for hRSV. Nevertheless, mice and cotton rats have been of value in the development of monoclonal antibody prophylaxis for infants at high risk of severe hRSV infection and have provided insights into mechanisms of immunity to and pathogenesis of hRSV. However, the extent to which they predict hRSV vaccine efficacy and safety is unclear and several hRSV vaccine candidates that are completely protective in rodent models are poorly effective in chimpanzees and other NHP, such as African Green monkeys. Furthermore, interpretation of findings from many rodent and NHP models of vaccine-enhanced hRSV disease has been confounded by sensitisation to non-viral antigens present in the vaccine and challenge virus. Studies of non-human pneumoviruses in their native hosts are more likely to reflect the pathogenesis of natural hRSV infection, and experimental infection of calves with bRSV and of mice with PVM result in clinical disease and extensive pulmonary pathology. These animal models have not only been of value in studies on mechanisms of immunity to and the pathogenesis of pneumovirus infections but have also been used to evaluate hRSV vaccine concepts. Furthermore, the similarities between the epidemiology of bRSV in calves and hRSV in infants and the high level of genetic and antigenic similarity between bRSV and hRSV, make the calf model of bRSV infection a relevant model for preclinical evaluation of hRSV vaccine candidates which contain proteins that are conserved between hRSV and bRSV.
Collapse
Affiliation(s)
- Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
28
|
The innate immune response to RSV: Advances in our understanding of critical viral and host factors. Vaccine 2016; 35:481-488. [PMID: 27686836 DOI: 10.1016/j.vaccine.2016.09.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022]
Abstract
Respiratory syncytial virus (RSV) causes mild to severe respiratory illness in humans and is a major cause of hospitalizations of infants and the elderly. Both the innate and the adaptive immune responses contribute to the control of RSV infection, but despite successful viral clearance, protective immunity against RSV re-infection is usually suboptimal and infections recur. Poor understanding of the mechanisms limiting the induction of long-lasting immunity has delayed the development of an effective vaccine. The innate immune response plays a critical role in driving the development of adaptive immunity and is thus a crucial determinant of the infection outcome. Advances in recent years have improved our understanding of cellular and viral factors that influence the onset and quality of the innate immune response to RSV. These advances include the identification of a complex system of cellular sensors that mediate RSV detection and stimulate transcriptome changes that lead to virus control and the discovery that cell stress and apoptosis participate in the control of RSV infection. In addition, it was recently demonstrated that defective viral genomes (DVGs) generated during RSV replication are the primary inducers of the innate immune response. Newly discovered host pathways involved in the innate response to RSV, together with the potential generation of DVG-derived oligonucleotides, present various novel opportunities for the design of vaccine adjuvants able to induce a protective response against RSV and similar viruses.
Collapse
|
29
|
Elderfield RA, Koutsakos M, Frise R, Bradley K, Ashcroft J, Miah S, Lackenby A, Barclay WS. NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets. J Gen Virol 2015; 97:593-601. [PMID: 26703440 DOI: 10.1099/jgv.0.000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The influenza B virus encodes a unique protein, NB, a membrane protein whose function in the replication cycle is not, as yet, understood. We engineered a recombinant influenza B virus lacking NB expression, with no concomitant difference in expression or activity of viral neuraminidase (NA) protein, an important caveat since NA is encoded on the same segment and initiated from a start codon just 4 nt downstream of NB. Replication of the virus lacking NB was not different to wild-type virus with full-length NB in clonal immortalized or complex primary cell cultures. In the mouse model, virus lacking NB induced slightly lower IFN-α levels in infected lungs, but this did not affect virus titres or weight loss. In ferrets infected with a mixture of viruses that did or did not express NB, there was no fitness advantage for the virus that retained NB. Moreover, virus lacking NB protein was transmitted following respiratory droplet exposure of sentinel animals. These data suggest no role for NB in supporting replication or transmission in vivo in this animal model. The role of NB and the nature of selection to retain it in all natural influenza B viruses remain unclear.
Collapse
Affiliation(s)
- Ruth A Elderfield
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Marios Koutsakos
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Rebecca Frise
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Konrad Bradley
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Jonathan Ashcroft
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Shanhjahan Miah
- Public Health England, Centre for Infections, Colindale, London, UK
| | - Angie Lackenby
- Public Health England, Centre for Infections, Colindale, London, UK
| | - Wendy S Barclay
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
30
|
Taylor G, Thom M, Capone S, Pierantoni A, Guzman E, Herbert R, Scarselli E, Napolitano F, Giuliani A, Folgori A, Colloca S, Cortese R, Nicosia A, Vitelli A. Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections. Sci Transl Med 2015; 7:300ra127. [DOI: 10.1126/scitranslmed.aac5757] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses. J Virol 2015; 89:8974-81. [PMID: 26085154 DOI: 10.1128/jvi.01070-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The small hydrophobic (SH) gene of respiratory syncytial virus (RSV), a major cause of infant hospitalization, encodes a viroporin of unknown function. SH gene knockout virus (RSV ΔSH) is partially attenuated in vivo, but not in vitro, suggesting that the SH protein may have an immunomodulatory role. RSV ΔSH has been tested as a live attenuated vaccine in humans and cattle, and here we demonstrate that it protected against viral rechallenge in mice. We compared the immune response to infection with RSV wild type and RSV ΔSH in vivo using BALB/c mice and in vitro using epithelial cells, neutrophils, and macrophages. Strikingly, the interleukin-1β (IL-1β) response to RSV ΔSH infection was greater than to wild-type RSV, in spite of a decreased viral load, and when IL-1β was blocked in vivo, the viral load returned to wild-type levels. A significantly greater IL-1β response to RSV ΔSH was also detected in vitro, with higher-magnitude responses in neutrophils and macrophages than in epithelial cells. Depleting macrophages (with clodronate liposome) and neutrophils (with anti-Ly6G/1A8) demonstrated the contribution of these cells to the IL-1β response in vivo, the first demonstration of neutrophilic IL-1β production in response to viral lung infection. In this study, we describe an increased IL-1β response to RSV ΔSH, which may explain the attenuation in vivo and supports targeting the SH gene in live attenuated vaccines. IMPORTANCE There is a pressing need for a vaccine for respiratory syncytial virus (RSV). A number of live attenuated RSV vaccine strains have been developed in which the small hydrophobic (SH) gene has been deleted, even though the function of the SH protein is unknown. The structure of the SH protein has recently been solved, showing it is a pore-forming protein (viroporin). Here, we demonstrate that the IL-1β response to RSV ΔSH is greater in spite of a lower viral load, which contributes to the attenuation in vivo. This potentially suggests a novel method by which viruses can evade the host response. As all Pneumovirinae and some Paramyxovirinae carry similar SH genes, this new understanding may also enable the development of live attenuated vaccines for both RSV and other members of the Paramyxoviridae.
Collapse
|
32
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
33
|
Guzman E, Taylor G. Immunology of bovine respiratory syncytial virus in calves. Mol Immunol 2014; 66:48-56. [PMID: 25553595 DOI: 10.1016/j.molimm.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease in young calves. The virus is genetically and antigenically closely related to human (H)RSV, which is a major cause of respiratory disease in young infants. As a natural pathogen of calves, BRSV infection recapitulates the pathogenesis of respiratory disease in man more faithfully than semi-permissive, animal models of HRSV infection. With the increasing availability of immunological reagents, the calf can be used to dissect the pathogenesis of and mechanisms of immunity to RSV infection, to analyse the ways in which the virus proteins interact with components of the innate response, and to evaluate RSV vaccine strategies. Passively transferred, neutralising bovine monoclonal antibodies, which recognise the same epitopes in the HRSV and BRSV fusion (F) protein, can protect calves against BRSV infection, and depletion of different T cells subsets in calves has highlighted the importance of CD8(+) T cells in viral clearance. Calves can be used to model maternal-antibody mediated suppression of RSV vaccine efficacy, and to increase understanding of the mechanisms responsible for RSV vaccine-enhanced respiratory disease.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK.
| |
Collapse
|
34
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|
35
|
Blodörn K, Hägglund S, Fix J, Dubuquoy C, Makabi-Panzu B, Thom M, Karlsson P, Roque JL, Karlstam E, Pringle J, Eléouët JF, Riffault S, Taylor G, Valarcher JF. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PLoS One 2014; 9:e100392. [PMID: 24945377 PMCID: PMC4063758 DOI: 10.1371/journal.pone.0100392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022] Open
Abstract
The development of safe and effective vaccines against both bovine and human respiratory syncytial viruses (BRSV, HRSV) to be used in the presence of RSV-specific maternally-derived antibodies (MDA) remains a high priority in human and veterinary medicine. Herein, we present safety and efficacy results from a virulent BRSV challenge of calves with MDA, which were immunized with one of three vaccine candidates that allow serological differentiation of infected from vaccinated animals (DIVA): an SH gene-deleted recombinant BRSV (ΔSHrBRSV), and two subunit (SU) formulations based on HRSV-P, -M2-1, and -N recombinant proteins displaying BRSV-F and -G epitopes, adjuvanted by either oil emulsion (Montanide ISA71VG, SUMont) or immunostimulating complex matrices (AbISCO-300, SUAbis). Whereas all control animals developed severe respiratory disease and shed high levels of virus following BRSV challenge, ΔSHrBRSV-immunized calves demonstrated almost complete clinical and virological protection five weeks after a single intranasal vaccination. Although mucosal vaccination with ΔSHrBRSV failed to induce a detectable immunological response, there was a rapid and strong anamnestic mucosal BRSV-specific IgA, virus neutralizing antibody and local T cell response following challenge with virulent BRSV. Calves immunized twice intramuscularly, three weeks apart with SUMont were also well protected two weeks after boost. The protection was not as pronounced as that in ΔSHrBRSV-immunized animals, but superior to those immunized twice subcutaneously three weeks apart with SUAbis. Antibody responses induced by the subunit vaccines were non-neutralizing and not directed against BRSV F or G proteins. When formulated as SUMont but not as SUAbis, the HRSV N, P and M2-1 proteins induced strong systemic cross-protective cell-mediated immune responses detectable already after priming. ΔSHrBRSV and SUMont are two promising DIVA-compatible vaccines, apparently inducing protection by different immune responses that were influenced by vaccine-composition, immunization route and regimen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cattle
- Epitopes/chemistry
- Epitopes/immunology
- Gene Deletion
- Genes, Viral
- Humans
- Lung/immunology
- Lung/pathology
- Lung/virology
- Lymph Nodes/pathology
- Lymphocytes/immunology
- Molecular Sequence Data
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Bovine/genetics
- Respiratory Syncytial Virus, Bovine/immunology
- Respiratory Syncytial Virus, Bovine/pathogenicity
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/metabolism
- Species Specificity
- Vaccination
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Viral Load
- Viral Proteins/metabolism
- Virulence
Collapse
Affiliation(s)
- Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | - Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Jenna Fix
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Catherine Dubuquoy
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Michelle Thom
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Per Karlsson
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| | | | - Erika Karlstam
- National Veterinary Institute, Department of Pathology and Wildlife Diseases, Uppsala, Sweden
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden
- National Veterinary Institute, Department of Virology, Immunology, and Parasitology, Uppsala, Sweden
| |
Collapse
|