1
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
2
|
O'Grady T, Feswick A, Hoffman BA, Wang Y, Medina EM, Kara M, van Dyk LF, Flemington EK, Tibbetts SA. Genome-wide Transcript Structure Resolution Reveals Abundant Alternate Isoform Usage from Murine Gammaherpesvirus 68. Cell Rep 2019; 27:3988-4002.e5. [PMID: 31242428 PMCID: PMC7071827 DOI: 10.1016/j.celrep.2019.05.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
The gammaherpesviruses, including Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, MuHV-4, γHV68), are etiologic agents of a wide range of lymphomas and non-hematological malignancies. These viruses possess large and highly dense dsDNA genomes that feature >80 bidirectionally positioned open reading frames (ORFs). The abundance of overlapping transcripts and extensive splicing throughout these genomes have until now prohibited high throughput-based resolution of transcript structures. Here, we integrate the capabilities of long-read sequencing with the accuracy of short-read platforms to globally resolve MHV68 transcript structures using the transcript resolution through integration of multi-platform data (TRIMD) pipeline. This approach reveals highly complex features, including: (1) pervasive overlapping transcript structures; (2) transcripts containing intra-gene or trans-gene splices that yield chimeric ORFs; (3) antisense and intergenic transcripts containing ORFs; and (4) noncoding transcripts. This work sheds light on the underappreciated complexity of gammaherpesvirus transcription and provides an extensively revised annotation of the MHV68 transcriptome.
Collapse
Affiliation(s)
- Tina O'Grady
- Laboratory of Gene Expression and Cancer, GIGA-R (MBD), University of Liège, Liège, Belgium
| | - April Feswick
- Department of Molecular Genetics & Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Brett A Hoffman
- Department of Molecular Genetics & Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Yiping Wang
- Department of Molecular Genetics & Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Eva M Medina
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mehmet Kara
- Department of Molecular Genetics & Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Linda F van Dyk
- Department of Immunology and Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| | - Scott A Tibbetts
- Department of Molecular Genetics & Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
In Vivo Persistence of Chimeric Virus after Substitution of the Kaposi's Sarcoma-Associated Herpesvirus LANA DNA Binding Domain with That of Murid Herpesvirus 4. J Virol 2018; 92:JVI.01251-18. [PMID: 30111565 PMCID: PMC6189500 DOI: 10.1128/jvi.01251-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The latency-associated nuclear antigen from Kaposi's sarcoma-associated herpesvirus (KSHV), kLANA, and its homolog from the murid herpesvirus 4 (MuHV-4), mLANA, are essential for viral latency. kLANA is nearly four times the size of mLANA, mainly due to an extensive central repeat region that is absent in mLANA. Both proteins harbor a C-terminal DNA binding domain (DBD). The DBD binds the terminal repeat (TR) DNA sequences of the viral genome to mediate persistence. Despite structural conservation, the kLANA and mLANA DBDs differ in sequence and mode of oligomerization. kLANA DBD oligomers are flexible and bent, while mLANA DBD oligomers bind DNA in a rigid, linear conformation. We previously reported that kLANA and mLANA acted reciprocally on TR sequences. Furthermore, a MuHV-4 expressing kLANA instead of mLANA (v-kLANA) established latency in mice, albeit at a lower magnitude than the wild-type (WT) virus. Here, we asked if kLANA can accommodate the mLANA DBD and generated a fusion protein which contains kLANA but with the mLANA C-terminal region in place of that of kLANA. We report a recombinant MuHV-4 (v-KM) encoding this LANA fusion protein instead of mLANA. The fusion protein was expressed in lytic infection in vitro and assembled nuclear LANA dots in infected splenocytes. Results demonstrated that kLANA functionally accommodated mLANA's mode of DNA binding, allowing MuHV-4 chimeric virus to establish latency in vivo Notably, v-KM established latency in germinal center B cells more efficiently than did v-kLANA, although levels were reduced compared to WT MuHV-4.IMPORTANCE KSHV is a human oncogenic virus for which there is no tractable, immunocompetent animal model of infection. MuHV-4, a related rodent gammaherpesvirus, enables pathogenesis studies in mice. In latency, both viruses persist as extrachromosomal, circular genomes (episomes). LANA proteins encoded by KSHV (kLANA) and MuHV-4 (mLANA) contain a C-terminal DNA binding domain (DBD) that acts on the virus terminal repeats to enable episome persistence. mLANA is a smaller protein than kLANA. Their DBDs are structurally conserved but differ strikingly in the conformation of DNA binding. We report a recombinant, chimeric MuHV-4 which contains kLANA in place of mLANA, but in which the DBD is replaced with that of mLANA. Results showed that kLANA functionally accommodated mLANA's mode of DNA binding. In fact, the new chimeric virus established latency in vivo more efficiently than MuHV-4 expressing full-length kLANA.
Collapse
|
4
|
Gammaherpesvirus Colonization of the Spleen Requires Lytic Replication in B Cells. J Virol 2018; 92:JVI.02199-17. [PMID: 29343572 DOI: 10.1128/jvi.02199-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect lymphocytes and cause lymphocytic cancers. Murid herpesvirus-4 (MuHV-4), Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus all infect B cells. Latent infection can spread by B cell recirculation and proliferation, but whether this alone achieves systemic infection is unclear. To test the need of MuHV-4 for lytic infection in B cells, we flanked its essential ORF50 lytic transactivator with loxP sites and then infected mice expressing B cell-specific Cre (CD19-Cre). The floxed virus replicated normally in Cre- mice. In CD19-Cre mice, nasal and lymph node infections were maintained; but there was little splenomegaly, and splenic virus loads remained low. Cre-mediated removal of other essential lytic genes gave a similar phenotype. CD19-Cre spleen infection by intraperitoneal virus was also impaired. Therefore, MuHV-4 had to emerge lytically from B cells to colonize the spleen. An important role for B cell lytic infection in host colonization is consistent with the large CD8+ T cell responses made to gammaherpesvirus lytic antigens during infectious mononucleosis and suggests that vaccine-induced immunity capable of suppressing B cell lytic infection might reduce long-term virus loads.IMPORTANCE Gammaherpesviruses cause B cell cancers. Most models of host colonization derive from cell cultures with continuous, virus-driven B cell proliferation. However, vaccines based on these models have worked poorly. To test whether proliferating B cells suffice for host colonization, we inactivated the capacity of MuHV-4, a gammaherpesvirus of mice, to reemerge from B cells. The modified virus was able to colonize a first wave of B cells in lymph nodes but spread poorly to B cells in secondary sites such as the spleen. Consequently, viral loads remained low. These results were consistent with virus-driven B cell proliferation exploiting normal host pathways and thus having to transfer lytically to new B cells for new proliferation. We conclude that viral lytic infection is a potential target to reduce B cell proliferation.
Collapse
|
5
|
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM. Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathog 2017; 13:e1006555. [PMID: 28910389 PMCID: PMC5599060 DOI: 10.1371/journal.ppat.1006555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.
Collapse
Affiliation(s)
- Aline C. Habison
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Beauchemin
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Tan
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sofia A. Cerqueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Colin E. McVey
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (KMK); (JPS)
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KMK); (JPS)
| |
Collapse
|
6
|
Paden CR, Forrest JC, Tibbetts SA, Speck SH. Unbiased mutagenesis of MHV68 LANA reveals a DNA-binding domain required for LANA function in vitro and in vivo. PLoS Pathog 2012; 8:e1002906. [PMID: 22969427 PMCID: PMC3435236 DOI: 10.1371/journal.ppat.1002906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/26/2012] [Indexed: 02/02/2023] Open
Abstract
The Latency-Associated Nuclear Antigen (LANA), encoded by ORF73, is a conserved gene among the γ2-herpesviruses (rhadinoviruses). The Kaposi's Sarcoma-Associated Herpesvirus (KSHV) LANA is consistently expressed in KSHV-associated malignancies. In the case of the rodent γ2-herpesvirus, murine gammaherpesvirus 68 (MHV68), the LANA homolog (mLANA) is required for efficient virus replication, reactivation from latency and immortalization of murine fetal liver-derived B cells. To gain insights into mLANA function(s), knowing that KSHV LANA binds DNA and can modulate transcription of a variety of promoters, we sought out and identified a mLANA-responsive promoter which maps to the terminal repeat (TR) of MHV68. Notably, mLANA strongly repressed activity from this promoter. We extended these analyses to demonstrate direct, sequence-specific binding of recombinant mLANA to TR DNA by DNase I footprinting. To assess whether the DNA-binding and/or transcription modulating function is important in the known mLANA phenotypes, we generated an unbiased library of mLANA point mutants using error-prone PCR, and screened a large panel of mutants for repression of the mLANA-responsive promoter to identify loss of function mutants. Notably, among the mutant mLANA proteins recovered, many of the mutations are in a predicted EBNA-1-like DNA-binding domain. Consistent with this prediction, those tested displayed loss of DNA binding activity. We engineered six of these mLANA mutants into the MHV68 genome and tested the resulting mutant viruses for: (i) replication fitness; (ii) efficiency of latency establishment; and (iii) reactivation from latency. Interestingly, each of these mLANA-mutant viruses exhibited phenotypes similar to the mLANA-null mutant virus, indicating that DNA-binding is critical for mLANA function. The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are tightly associated with a number of different cancers. Unfortunately, due to their very narrow host tropism, characterizing the pathogenesis of these viruses has been difficult. Infection of laboratory mice with the rodent gammaherpesvirus, murine gammaherpesvirus 68 (MHV68), has proven to be an excellent approach for understanding how these viruses cause disease. One of the MHV68 encoded proteins, which is also found in KSHV, is called LANA and in the case of KSHV-associated diseases LANA expression is consistently detected in infected cells. Here we show that the MHV68 LANA shares a key function with the KSHV homolog—namely, modulating gene expression. Using a random mutagenesis protocol, we identified mLANA mutants that had lost transcriptional regulatory activity. We engineered these mutations back into the virus, used the viruses to infect mice, and find that this function is critical to LANA function in vivo and in vitro. This method, combined with the knowledge gained here, sets the stage for future studies to identify mutant forms of LANA that could be used to block wild type LANA function or, alternatively, to design drugs that target LANA function.
Collapse
Affiliation(s)
- Clinton R. Paden
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, Georgia, United States of America
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Samuel H. Speck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Murine gammaherpesvirus 68 LANA acts on terminal repeat DNA to mediate episome persistence. J Virol 2012; 86:11863-76. [PMID: 22915819 DOI: 10.1128/jvi.01656-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) ORF73 (mLANA) has sequence homology to Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA). LANA acts on the KSHV terminal repeat (TR) elements to mediate KSHV episome maintenance. Disruption of mLANA expression severely reduces the ability of MHV68 to establish latent infection in mice, consistent with the possibility that mLANA mediates episome persistence. Here we assess the roles of mLANA and MHV68 TR (mTR) elements in episome persistence. mTR-associated DNA persisted as an episome in latently MHV68-infected tumor cells, demonstrating that the mTR elements can serve as a cis-acting element for MHV68 episome maintenance. In some cases, both control vector and mTR-associated DNAs integrated into MHV68 episomal genomes. Therefore, we also assessed the roles of mTRs as well as mLANA in the absence of infection. DNA containing both mLANA and mTRs in cis persisted as an episome in murine A20 or MEF cells. In contrast, mTR DNA never persisted as an episome in the absence of mLANA. mLANA levels were increased when mLANA was expressed from its native promoters, and episome maintenance was more efficient with higher mLANA levels. Increased numbers of mTRs conferred more efficient episome maintenance, since DNA containing mLANA and eight mTR elements persisted more efficiently in A20 cells than did DNA with mLANA and two or four mTRs. Similar to KSHV LANA, mLANA broadly associated with mitotic chromosomes but relocalized to concentrated dots in the presence of episomes. Therefore, mLANA acts on mTR elements to mediate MHV68 episome persistence.
Collapse
|
8
|
Tiled microarray identification of novel viral transcript structures and distinct transcriptional profiles during two modes of productive murine gammaherpesvirus 68 infection. J Virol 2012; 86:4340-57. [PMID: 22318145 DOI: 10.1128/jvi.05892-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.
Collapse
|
9
|
Gaspar M, May JS, Sukla S, Frederico B, Gill MB, Smith CM, Belz GT, Stevenson PG. Murid herpesvirus-4 exploits dendritic cells to infect B cells. PLoS Pathog 2011; 7:e1002346. [PMID: 22102809 PMCID: PMC3213091 DOI: 10.1371/journal.ppat.1002346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells. We detect invading viruses with dendritic cells and eliminate them with lymphocytes. A key interaction is lymphocyte activation by dendritic cells presenting viral antigens. Not all viruses can be eliminated, and some that persist deliberately colonize lymphocytes and dendritic cells, such that parasitism and host defence co-exist within the same sites. Once established, these infections are very hard to eliminate. Therefore to vaccinate against them we must determine how infection first occurs. Here we show that a gamma-herpesvirus relation of the Kaposi's Sarcoma-associated Herpesvirus and Epstein-Barr virus - B cell-tropic human pathogens that cause cancers - uses dendritic cells to reach and infect B lymphocytes. Dendritic cells were infected before B cells; viruses marked genetically in dendritic cells were recovered from B cells; and a virus unable to replicate in dendritic cells infected B cells poorly. Thus dendritic cells not only present viral antigens to lymphocytes, but can be exploited by evasive viruses to infect lymphocytes. Therefore targeting dendritic cell infection could be an effective means of vaccine-primed host defence.
Collapse
Affiliation(s)
- Miguel Gaspar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Soumi Sukla
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bruno Frederico
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michael B. Gill
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
11
|
Thirion M, Machiels B, Farnir F, Donofrio G, Gillet L, Dewals B, Vanderplasschen A. Bovine herpesvirus 4 ORF73 is dispensable for virus growth in vitro, but is essential for virus persistence in vivo. J Gen Virol 2010; 91:2574-84. [DOI: 10.1099/vir.0.023192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Use of a virus-encoded enzymatic marker reveals that a stable fraction of memory B cells expresses latency-associated nuclear antigen throughout chronic gammaherpesvirus infection. J Virol 2010; 84:7523-34. [PMID: 20484501 DOI: 10.1128/jvi.02572-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An integral feature of gammaherpesvirus infections is the ability to establish lifelong latency in B cells. During latency, the viral genome is maintained as an extrachomosomal episome, with stable maintenance in dividing cells mediated by the viral proteins Epstein-Barr nuclear antigen 1 (EBNA-1) for Epstein-Barr virus and latency-associated nuclear antigen (LANA) for Kaposi's sarcoma-associated herpesvirus. It is believed that the expression of episome maintenance proteins is turned off in the predominant long-term latency reservoir of resting memory B cells, suggesting that chronic gammaherpesvirus infection is primarily dormant. However, the kinetics of LANA/EBNA-1 expression in individual B-cell subsets throughout a course of infection has not been examined. The infection of mice with murine gammaherpesvirus 68 (MHV68, gammaHV68) provides a model to determine the specific cellular and molecular events that occur in vivo during lifelong gammaherpesvirus latency. In work described here, we make use of a heterologously expressed enzymatic marker to define the types of B cells that express the LANA homolog (mLANA) during chronic MHV68 infection. Our data demonstrate that mLANA is expressed in a stable fraction of B cells throughout chronic infection, with a prominent peak at 28 days. The expression of mLANA was detected in naïve follicular B cells, germinal-center B cells, and memory B cells throughout infection, with germinal-center and memory B cells accounting for more than 80% of the mLANA-expressing cells during the maintenance phase of latency. These findings suggest that the maintenance phase of latency is an active process that involves the ongoing proliferation or reseeding of latently infected memory B cells.
Collapse
|
13
|
Murine gammaherpesvirus 68 LANA is essential for virus reactivation from splenocytes but not long-term carriage of viral genome. J Virol 2010; 84:7214-24. [PMID: 20444892 DOI: 10.1128/jvi.00133-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ORF73, which encodes the latency-associated nuclear antigen (LANA), is a conserved gamma-2-herpesvirus gene. The murine gammaherpesvirus 68 (MHV68) LANA (mLANA) is critical for efficient virus replication and the establishment of latent infection following intranasal inoculation. To test whether the initial host immune response limits the capacity of mLANA-null virus to traffic to and establish latency in the spleen, we infected type I interferon receptor knockout (IFN-alpha/betaR(-/-)) mice via intranasal inoculation and observed the presence of viral genome-positive splenocytes at day 18 postinfection at approximately 10-fold-lower levels than in the genetically repaired marker rescue-infected mice. However, no mLANA-null virus reactivation from infected IFN-alpha/betaR(-/-) splenocytes was observed. To more thoroughly define a role of mLANA in MHV68 infection, we evaluated the capacity of an mLANA-null virus to establish and maintain infection apart from restriction in the lungs of immunocompetent mice. At day 18 following intraperitoneal infection of C57BL/6 mice, the mLANA-null virus was able to establish a chronic infection in the spleen albeit at a 5-fold-reduced level. However, as in IFN-alpha/betaR(-/-) mice, little or no virus reactivation could be detected from mLANA-null virus-infected splenocytes upon explant. An examination of peritoneal exudate cells (PECs) following intraperitoneal inoculation revealed nearly equivalent frequencies of PECs harboring the mLANA-null virus relative to the marker rescue virus. Furthermore, although significantly compromised, mLANA-null virus reactivation from PECs was detected upon explant. Notably, at later times postinfection, the frequency of mLANA-null genome-positive splenocytes was indistinguishable from that of marker rescue virus-infected animals. Analyses of viral genome-positive splenocytes revealed the absence of viral episomes in mLANA-null infected mice, suggesting that the viral genome is integrated or maintained in a linear state. Thus, these data provide the first evidence that a LANA homolog is directly involved in the formation and/or maintenance of an extrachromosomal viral episome in vivo, which is likely required for the reactivation of MHV68.
Collapse
|
14
|
Hughes DJ, Kipar A, Milligan SG, Cunningham C, Sanders M, Quail MA, Rajandream MA, Efstathiou S, Bowden RJ, Chastel C, Bennett M, Sample JT, Barrell B, Davison AJ, Stewart JP. Characterization of a novel wood mouse virus related to murid herpesvirus 4. J Gen Virol 2010; 91:867-79. [PMID: 19940063 PMCID: PMC2888160 DOI: 10.1099/vir.0.017327-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022] Open
Abstract
Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.
Collapse
Affiliation(s)
- David J. Hughes
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| | - Anja Kipar
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Steven G. Milligan
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Mandy Sanders
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Michael A. Quail
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Marie-Adele Rajandream
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Rory J. Bowden
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Claude Chastel
- Laboratoire de Virologie, Faculté de Médecine, 29285 Brest, France
| | - Malcolm Bennett
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Jeffery T. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bart Barrell
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Andrew J. Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - James P. Stewart
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
15
|
Abstract
Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8(+) cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8(+) CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.
Collapse
Affiliation(s)
- Neil Blake
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
16
|
Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 2008; 3:e2781. [PMID: 18648660 PMCID: PMC2464709 DOI: 10.1371/journal.pone.0002781] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/01/2008] [Indexed: 11/23/2022] Open
Abstract
All gamma-herpesviruses encode at least one homolog of the cellular enzyme formyl-glycineamide-phosphoribosyl-amidotransferase. Murid herpesvirus-4 (MuHV-4) encodes 3 (ORFs 75a, 75b and 75c), suggesting that at least some copies have acquired new functions. Here we show that the corresponding proteins are all present in virions and localize to infected cell nuclei. Despite these common features, ORFs 75a and 75b did not substitute functionally for a lack of ORF75c, as ORF75c virus knockouts were severely impaired for lytic replication in vitro and for host colonization in vivo. They showed 2 defects: incoming capsids failed to migrate to the nuclear margin following membrane fusion, and genomes that did reach the nucleus failed to initiate normal gene expression. The latter defect was associated with a failure of in-coming virions to disassemble PML bodies. The capsid transport deficit seemed to be functionally more important, since ORF75c− MuHV-4 infected both PML+ and PML− cells poorly. The original host enzyme has therefore evolved into a set of distinct and multi-functional viral tegument proteins. One important function is moving incoming capsids to the nuclear margin for viral genome delivery.
Collapse
|
17
|
Smith CM, Gill MB, May JS, Stevenson PG. Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2007; 2:e1048. [PMID: 17940612 PMCID: PMC2002512 DOI: 10.1371/journal.pone.0001048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 10/01/2007] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DCs) play a central role in initiating adaptive immunity. Murine gammaherpesvirus-68 (MHV-68), like many persistent viruses, infects DCs during normal host colonization. It therefore provides a means to understanding what host and viral genes contribute to this aspect of pathogenesis. The infected DC phenotype is likely to depend on whether viral gene expression is lytic or latent and whether antigen presentation is maintained. For MHV-68, neither parameter has been well defined. Here we show that MHV-68 infects immature but not mature bone marrow-derived DCs. Infection was predominantly latent and these DCs showed no obvious defect in antigen presentation. Lytically infected DCs were very different. These down-regulated CD86 and MHC class I expression and presented a viral epitope poorly to CD8+ T cells. Antigen presentation improved markedly when the MHV-68 K3 gene was disrupted, indicating that K3 fulfils an important function in infected DCs. MHV-68 infects only a small fraction of the DCs present in lymphoid tissue, so K3 expression is unlikely to compromise significantly global CD8+ T cell priming. Instead it probably helps to maintain lytic gene expression in DCs once CD8+ T cell priming has occurred.
Collapse
Affiliation(s)
- Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michael B. Gill
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Thakur NN, El-Gogo S, Steer B, Freimüller K, Waha A, Adler H. A gammaherpesviral internal repeat contributes to latency amplification. PLoS One 2007; 2:e733. [PMID: 17710133 PMCID: PMC1939874 DOI: 10.1371/journal.pone.0000733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 07/09/2007] [Indexed: 01/24/2023] Open
Abstract
Background Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. The genomes of gammaherpesviruses contain variable numbers of internal repeats whose precise role for in vivo pathogenesis is not well understood. Methodology/Principal Findings We used infection of laboratory mice with murine gammaherpesvirus 68 (MHV-68) to explore the biological role of the 40 bp internal repeat of MHV-68. We constructed several mutant viruses partially or completely lacking this repeat. Both in vitro and in vivo, the loss of the repeat did not substantially affect lytic replication of the mutant viruses. However, the extent of splenomegaly, which is associated with the establishment of latency, and the number of ex vivo reactivating and genome positive splenocytes were reduced. Since the 40 bp repeat is part of the hypothetical open reading frame (ORF) M6, it might function as part of M6 or as an independent structure. To differentiate between these two possibilities, we constructed an N-terminal M6STOP mutant, leaving the repeat structure intact but rendering ORF M6 unfunctional. Disruption of ORF M6 did neither affect lytic nor latent infection. In contrast to the situation in lytically infected NIH3T3 cells, the expression of the latency-associated genes K3 and ORF72 was reduced in the latently infected murine B cell line Ag8 in the absence of the 40 bp repeat. Conclusions/Significance These data suggest that the 40 bp repeat contributes to latency amplification and might be involved in the regulation of viral gene expression.
Collapse
Affiliation(s)
- Nagendra N. Thakur
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF National Research Center for Environment and Health, Munich, Germany
- Department of Medicine III, Ludwig Maximilians University of Munich, Munich, Germany
| | - Susanne El-Gogo
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Beatrix Steer
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF National Research Center for Environment and Health, Munich, Germany
- Department of Medicine III, Ludwig Maximilians University of Munich, Munich, Germany
| | - Klaus Freimüller
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF National Research Center for Environment and Health, Munich, Germany
| | - Andreas Waha
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Heiko Adler
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF National Research Center for Environment and Health, Munich, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Forrest JC, Paden CR, Allen RD, Collins J, Speck SH. ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J Virol 2007; 81:11957-71. [PMID: 17699571 PMCID: PMC2168792 DOI: 10.1128/jvi.00111-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses establish lifelong, latent infections in host lymphocytes, during which a limited subset of viral gene products facilitates maintenance of the viral episome. Among the gamma-2-herpesvirus (rhadinovirus) subfamily, this includes expression of the conserved ORF73-encoded LANA proteins. We previously demonstrated by loss-of-function mutagenesis that the murine gammaherpesvirus 68 (MHV68) ORF73 gene product, mLANA, is required for the establishment of latency following intranasal inoculation of mice (N. J. Moorman, D. O. Willer, and S. H. Speck, J. Virol. 77:10295-10303, 2003). mLANA-deficient viruses also exhibited a defect in acute virus replication in the lungs of infected mice. The latter observation led us to examine the role of mLANA in productive viral replication. We assessed the capacity of mLANA-deficient virus (73.Stop) to replicate in cell culture at low multiplicities of infection (MOIs) and found that 73.Stop growth was impaired in murine fibroblasts but not in Vero cells. A recombinant virus expressing an mLANA-green fluorescent protein (GFP) fusion revealed that mLANA is expressed throughout the virus replication cycle. In addition, 73.Stop infection of murine fibroblasts at high MOIs was substantially more cytotoxic than infection with a genetically repaired marker rescue virus (73.MR), a phenotype that correlated with enhanced kinetics of viral gene expression and increased activation of p53. Notably, augmented cell death, viral gene expression, and p53 induction were independent of viral DNA replication. Expression of a mLANA-GFP fusion protein in fibroblasts correlated with both reduced p53 stabilization and reduced cell death following treatment with p53-inducing agonists. In agreement, accentuated cell death associated with 73.Stop infection was reduced in p53-deficient murine embryonic fibroblasts. Additionally, replication of 73.Stop in p53-deficient cells was restored to levels comparable to those of 73.MR. More remarkably, the absence of p53 led to an overall delay in replication for both 73.Stop and 73.MR viruses, which correlated with delayed viral gene expression, indicating a role for p53 in MHV68 replication. Consistent with these findings, the expression of replication-promoting viral genes was positively influenced by p53 overexpression or treatment with the p53 agonist etoposide. Overall, these data demonstrate the importance of mLANA in MHV68 replication and suggest that LANA proteins limit the induction of cellular stress responses to regulate the viral gene expression cascade and limit host cell injury.
Collapse
Affiliation(s)
- J Craig Forrest
- Department of Microbiology and immunology, Emory Vaccine Center, Emory University School of Medicine, 1462 Clifton Rd., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
20
|
Rosa GT, Gillet L, Smith CM, de Lima BD, Stevenson PG. IgG fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2007; 2:e560. [PMID: 17593961 PMCID: PMC1891442 DOI: 10.1371/journal.pone.0000560] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 05/30/2007] [Indexed: 01/22/2023] Open
Abstract
Background Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor+ cells. Principal Findings Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. Conclusions IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antigen Presentation
- Cells, Cultured
- Cytomegalovirus/genetics
- DNA, Viral/genetics
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycoproteins/immunology
- Green Fluorescent Proteins/metabolism
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/pathology
- Immediate-Early Proteins/genetics
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Promoter Regions, Genetic/genetics
- Receptors, Fc/immunology
- Receptors, IgG/immunology
- Rhadinovirus/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/pathology
- Virion/immunology
- Virus Replication
Collapse
Affiliation(s)
- Gustavo T. Rosa
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Laurent Gillet
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brigitte D. de Lima
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Hair JR, Lyons PA, Smith KGC, Efstathiou S. Control of Rta expression critically determines transcription of viral and cellular genes following gammaherpesvirus infection. J Gen Virol 2007; 88:1689-1697. [PMID: 17485528 PMCID: PMC2884955 DOI: 10.1099/vir.0.82548-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 02/02/2007] [Indexed: 12/30/2022] Open
Abstract
The replication and transcriptional activator (Rta), encoded by ORF50 of gammaherpesviruses, initiates the lytic cycle of gene expression; therefore understanding the impact of Rta on viral and cellular gene expression is key to elucidating the transcriptional events governing productive infection and reactivation from latency. To this end, the impact of altering Rta transcription on viral and cellular gene expression was studied in the context of a whole virus infection. Recombinant murine gammaherpesvirus (MHV)-68 engineered to overexpress Rta greatly accelerated expression of specific lytic cycle ORFs, but repressed transcription of the major latency gene, ORF73. Increased expression of Rta accelerated the dysregulation in transcription of specific cellular genes when compared with cells infected with wild-type and revertant viruses. A subset of cellular genes was dysregulated only in cells infected with Rta-overexpressing virus, and never in those infected with non-overexpressing viruses. These data highlight the critical role of Rta abundance in governing viral and cellular gene transcription, and demonstrate the importance of understanding how the relative expression of ORF50 during the virus life cycle impacts on these processes.
Collapse
Affiliation(s)
- James R Hair
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2XY, UK
| | - Paul A Lyons
- Juvenile Diabetes Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2XY, UK
- Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2XY, UK
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research and the Department of Medicine, Wellcome Trust/MRC Building, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2XY, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
22
|
Smith CM, Rosa GTL, May JS, Bennett NJ, Mount AM, Belz GT, Stevenson PG. CD4+ T cells specific for a model latency-associated antigen fail to control a gammaherpesvirusin vivo. Eur J Immunol 2006; 36:3186-97. [PMID: 17109468 DOI: 10.1002/eji.200636164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4(+) T cells play a major role in containing herpesvirus infections. However, their cellular targets remain poorly defined. In vitro CD4(+) T cells have been reported to kill B cells that harbor a latent gammaherpesvirus. We used the B cell-tropic murine gammaherpesvirus-68 (MHV-68) to test whether this also occurred in vivo. MHV-68 that expressed cytoplasmic ovalbumin (OVA) in tandem with its episome maintenance protein, ORF73, stimulated CD8(+) T cells specific for the H2-K(b)-restricted OVA epitope SIINFEKL and was rapidly eliminated from C57BL/6 (H2(b)) mice. However, the same virus failed to stimulate CD4(+) T cells specific for the I-A(d)/I-A(b)-restricted OVA(323-339) epitope. We overcame any barrier to the MHC class II-restricted presentation of an endogenous epitope by substituting OVA(323-339) for the CLIP peptide of the invariant chain (ORF73-IRES-Ii-OVA), again expressed in tandem with ORF73. This virus presented OVA(323-339) but showed little or no latency deficit in either BALB/c (H2(d)) or C57BL/6 mice. Latent antigen-specific CD4(+) T cells therefore either failed to recognize key virus-infected cell populations in vivo or lacked the effector functions required to control them.
Collapse
Affiliation(s)
- Christopher M Smith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Geere HM, Ligertwood Y, Templeton KM, Bennet I, Gangadharan B, Rhind SM, Nash AA, Dutia BM. The M4 gene of murine gammaherpesvirus 68 modulates latent infection. J Gen Virol 2006; 87:803-807. [PMID: 16528028 DOI: 10.1099/vir.0.81577-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) encodes a set of unique genes, M1, M2, M3 and M4, and eight non-translated tRNA-like molecules that are thought to be important in virus-host interactions and latent infection. The M4 gene is predicted to encode a novel secreted protein. To investigate the role of M4 in viral pathogenesis, a mutant MHV-68 that did not express M4 was constructed and its replication was characterized in vitro and in vivo. Virus replication was identical to the wild type in vitro and no difference could be detected in virus replication in the lung following intranasal infection. However, in the spleen, virus deficient in M4 expression was severely attenuated in the establishment of latency. These results indicate a critical role for M4 in MHV-68 pathogenesis.
Collapse
Affiliation(s)
- Hannah M Geere
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Yvonne Ligertwood
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Kerra M Templeton
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Ian Bennet
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Babunilayam Gangadharan
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Susan M Rhind
- Division of Animal Health and Welfare, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Midlothian EH25 9RG, UK
| | - Anthony A Nash
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Bernadette M Dutia
- Centre for Infectious Diseases, Division of Veterinary Biomedical Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| |
Collapse
|
24
|
Allen RD, Dickerson S, Speck SH. Identification of spliced gammaherpesvirus 68 LANA and v-cyclin transcripts and analysis of their expression in vivo during latent infection. J Virol 2006; 80:2055-62. [PMID: 16439562 PMCID: PMC1367133 DOI: 10.1128/jvi.80.4.2055-2062.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of orf73 (LANA) gene expression is critical to the establishment and maintenance of latency following infection by members of the gamma-2 herpesvirus (rhadinovirus) family. Previous studies of murine gammaherpesvirus 68 (gammaHV68) have demonstrated that loss of LANA function results in a complete failure to establish virus latency in the spleens of laboratory mice. Here we report the characterization of alternatively spliced LANA and v-cyclin (orf72) transcripts encoded by gammaHV68. Similar to other rhadinoviruses, alternative splicing, coupled with alternative 3' processing, of a ca. 16-kb transcriptional unit can lead to expression of either LANA or v-cyclin during gammaHV68 infection. Spliced LANA and v-cyclin transcripts were initially identified from an analysis of the gammaHV68 latently infected B-cell lymphoma cell line S11E, but were also detected during lytic infection of NIH 3T12 fibroblasts. 5' Random amplification of cDNA ends (RACE) analyses identified two distinct promoters, p1 and p2, that drive expression of spliced LANA transcripts. Analysis of p1 and p2, using transiently transfected reporter constructs, mapped the minimal sequences required for promoter activity and demonstrated that both promoters are active in the absence of any viral antigens. Analysis of spliced LANA and v-cyclin transcripts in spleens recovered from latently infected mice at days 16 and 42 postinfection revealed that spliced v-cyclin transcripts can only be detected sporadically, suggesting that these may be associated with cells reactivating from latency. In contrast, spliced LANA transcripts were detected in ca. 1 in 4,000 splenocytes harvested at day 16 postinfection. Notably, based on the frequency of viral genome-positive splenocytes at day 16 postinfection (ca. 1 in 200), only 5 to 10% of viral genome-positive splenocytes express LANA. The failure of the majority of infected splenocytes at day 16 postinfection to express LANA may contribute to the contraction in the frequency of latently infected splenocytes as chronic infection is established, due to failure to maintain the viral episome in proliferating B cells.
Collapse
Affiliation(s)
- Robert D Allen
- Center for Emerging Infectious Diseases, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Rd., NE, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
25
|
Abstract
The murine gamma-herpesvirus-68 (MHV-68) is a relative of the Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) that infects mice. All these gamma-herpesviruses are subject to immune control, but limit the impact of this control through immune evasion. Molecular evasion mechanisms have been described in abundance. However, we can only speculate what EBV and KSHV immune evasion contributes to the viral lifecycle. With MHV-68, we can analyze in vivo the contribution of immunological and virological gene expression to pathogenesis. While the physiology of infection seems quite well conserved between these viruses, the pathologies associated with immune suppression are obviously very different. MHV-68 is therefore more suited to uncovering the basic biology of gamma-herpesvirus infection than to testing disease interventions. Nevertheless, it may make some useful predictions about effective strategies of vaccination and infection control. This review aims to outline our current state of knowledge and to highlight some limitations of the MHV-68 model as it stands, in the hope of stimulating constructive progress.
Collapse
Affiliation(s)
- Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|